36 datasets found
  1. N

    Median Household Income Variation by Family Size in South Range, MI:...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Median Household Income Variation by Family Size in South Range, MI: Comparative analysis across 7 household sizes [Dataset]. https://www.neilsberg.com/research/datasets/1b74898b-73fd-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Range, Michigan
    Variables measured
    Household size, Median Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 7 household sizes (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out how household income varies with the size of the family unit. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median household incomes for various household sizes in South Range, MI, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.

    Key observations

    • Of the 7 household sizes (1 person to 7-or-more person households) reported by the census bureau, South Range did not include 4, 5, 6, or 7-person households. Across the different household sizes in South Range the mean income is $51,844, and the standard deviation is $18,238. The coefficient of variation (CV) is 35.18%. This high CV indicates high relative variability, suggesting that the incomes vary significantly across different sizes of households.
    • In the most recent year, 2021, The smallest household size for which the bureau reported a median household income was 1-person households, with an income of $31,226. It then further increased to $65,869 for 3-person households, the largest household size for which the bureau reported a median household income.

    https://i.neilsberg.com/ch/south-range-mi-median-household-income-by-household-size.jpeg" alt="South Range, MI median household income, by household size (in 2022 inflation-adjusted dollars)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Household Sizes:

    • 1-person households
    • 2-person households
    • 3-person households
    • 4-person households
    • 5-person households
    • 6-person households
    • 7-or-more-person households

    Variables / Data Columns

    • Household Size: This column showcases 7 household sizes ranging from 1-person households to 7-or-more-person households (As mentioned above).
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific household size.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Range median household income. You can refer the same here

  2. d

    Mean tidal range of marsh units in Atlantic-facing New Jersey salt marshes

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Dec 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Mean tidal range of marsh units in Atlantic-facing New Jersey salt marshes [Dataset]. https://catalog.data.gov/dataset/mean-tidal-range-of-marsh-units-in-atlantic-facing-new-jersey-salt-marshes
    Explore at:
    Dataset updated
    Dec 25, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This data release contains coastal wetland synthesis products for the Atlantic-facing New Jersey salt marshes. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services.

  3. N

    Income Distribution by Quintile: Mean Household Income in South Range, MI //...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in South Range, MI // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/south-range-mi-median-household-income/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Range, Michigan
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in South Range, MI, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 9,872, while the mean income for the highest quintile (20% of households with the highest income) is 175,498. This indicates that the top earners earn 18 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 352,222, which is 200.70% higher compared to the highest quintile, and 3567.89% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Range median household income. You can refer the same here

  4. ECMWF ERA5: ensemble means of surface level analysis parameter data

    • catalogue.ceda.ac.uk
    Updated Jun 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (ECMWF) (2023). ECMWF ERA5: ensemble means of surface level analysis parameter data [Dataset]. https://catalogue.ceda.ac.uk/uuid/d8021685264e43c7a0868396a5f582d0
    Explore at:
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    European Centre for Medium-Range Weather Forecasts (ECMWF)
    License

    https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf

    Area covered
    Earth
    Variables measured
    cloud_area_fraction, sea_ice_area_fraction, air_pressure_at_mean_sea_level, lwe_thickness_of_atmosphere_mass_content_of_water_vapor
    Description

    This dataset contains ERA5 surface level analysis parameter data ensemble means (see linked dataset for spreads). ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. The ensemble means and spreads are calculated from the ERA5 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.

    Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble member and ensemble mean data.

    The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.

    An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.

  5. ECMWF Reanalysis v5

    • ecmwf.int
    application/x-grib
    Updated Dec 31, 1969
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (1969). ECMWF Reanalysis v5 [Dataset]. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
    Explore at:
    application/x-grib(1 datasets)Available download formats
    Dataset updated
    Dec 31, 1969
    Dataset authored and provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    land and oceanic climate variables. The data cover the Earth on a 31km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80km. ERA5 includes information about uncertainties for all variables at reduced spatial and temporal resolutions.

  6. ERA5 hourly data on pressure levels from 1940 to present

    • cds.climate.copernicus.eu
    • cds-test-cci2.copernicus-climate.eu
    grib
    Updated Jul 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly data on pressure levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.bd0915c6
    Explore at:
    gribAvailable download formats
    Dataset updated
    Jul 14, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Jul 8, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on pressure levels from 1940 to present".

  7. d

    Mean tidal range in marsh units of Assateague Island National Seashore and...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Mean tidal range in marsh units of Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia [Dataset]. https://catalog.data.gov/dataset/mean-tidal-range-in-marsh-units-of-assateague-island-national-seashore-and-chincoteague-ba
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Assateague Island, Maryland, Virginia, Chincoteague Bay
    Description

    Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in the Assateague Island National Seashore and Chincoteague Bay based on conceptual marsh units defined by Defne and Ganju (2018). MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) database ( http://vdatum.noaa.gov/ ). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Assateague Island National Seashore and Chincoteague Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. Mean elevation of marsh units is planned to be an underlying parameter in the synthesis of these factors. References: Defne, Z., and Ganju, N.K., 2018, Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia: U.S. Geological Survey data release, https://doi.org/10.5066/P92ZW4D9.

  8. N

    Comprehensive Median Household Income and Distribution Dataset for Grass...

    • neilsberg.com
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Comprehensive Median Household Income and Distribution Dataset for Grass Range, MT: Analysis by Household Type, Size and Income Brackets [Dataset]. https://www.neilsberg.com/research/datasets/cd9e83ad-b041-11ee-aaca-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Montana, Grass Range
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the median household income in Grass Range. It can be utilized to understand the trend in median household income and to analyze the income distribution in Grass Range by household type, size, and across various income brackets.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Grass Range, MT Median Household Income Trends (2010-2021, in 2022 inflation-adjusted dollars)
    • Median Household Income Variation by Family Size in Grass Range, MT: Comparative analysis across 7 household sizes
    • Income Distribution by Quintile: Mean Household Income in Grass Range, MT
    • Grass Range, MT households by income brackets: family, non-family, and total, in 2022 inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Grass Range median household income. You can refer the same here

  9. n

    Data from: Accounting for nonlinear responses to traits improves range shift...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Apr 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Cannistra; Lauren Buckley (2024). Accounting for nonlinear responses to traits improves range shift predictions [Dataset]. http://doi.org/10.5061/dryad.wstqjq2v8
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 3, 2024
    Dataset provided by
    University of Washington
    Authors
    Anthony Cannistra; Lauren Buckley
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Accurately predicting species’ range shifts in response to environmental change is paramount for understanding ecological processes and global change. In synthetic analyses, traits emerge as significant but weak predictors of species’ range shifts across recent climate change. These studies assume linear responses to traits, while detailed empirical work often reveals trait responses that are unimodal and contain thresholds or other nonlinearities. We hypothesize that the use of linear modeling approaches fails to capture these nonlinearities and therefore may be under-powering traits to predict range shifts. We evaluate the predictive performance of approaches that can capture nonlinear relationships (ridge-regularized linear regression, support vector regression with linear and nonlinear kernels, and random forests). We apply our models using six multi-decadal range shift datasets for plants, moths, marine fish, birds, and small mammals. We show that nonlinear approaches can perform better than least-squares linear modeling in reproducing historical range shifts. Consistent with expectations, we identify dispersal and climatic niche traits as primary determinants of distribution shifts. Traits identified as important predictors and the direction of trait effects are generally consistent across models but there are notable exceptions. Among important predictors, there are more consistent responses to climatic niches than dispersal ability. Modest improvements in predictability when accounting for nonlinearities and interactions and the overall low amount of variance accounted for by trait predictors suggest limits to trait-based statistical predictive frameworks. Methods We assess model performance using six datasets encompassing a broad taxonomic range. The number of species per dataset ranges from 28 to 239 (mean=118, median=94), and range shifts were observed over periods ranging from 20 to 100+ years. Each dataset was derived from previous evaluations of traits as range shift predictors and consists of a list of focal species, associated species-level traits, and a range shift metric.

  10. d

    Data from: Raster image of mean tidal range in the Edwin B. Forsythe...

    • catalog.data.gov
    • data.usgs.gov
    • +4more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Raster image of mean tidal range in the Edwin B. Forsythe National Wildlife Refuge, New Jersey (32-bit GeoTIFF) [Dataset]. https://catalog.data.gov/dataset/raster-image-of-mean-tidal-range-in-the-edwin-b-forsythe-national-wildlife-refuge-new-jers
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    New Jersey
    Description

    Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation mean tidal range (i.e. Mean Range of Tides, MN) in the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay in New Jersey, USA. MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) software (http://vdatum.noaa.gov/). The input elevation was set to zero in VDatum to calculate the relative difference between the two datums. As part of the Hurricane Sandy Science Plan, the U.S. Geological Survey has started a Wetland Synthesis Project to expand National Assessment of Coastal Change Hazards and forecast products to coastal wetlands. The intent is to provide federal, state, and local managers with tools to estimate their vulnerability and ecosystem service potential. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. EBFNWR was selected as a pilot study area.

  11. Tidal Dataset - CAMRIS - Maximum Tidal Range

    • data.csiro.au
    • researchdata.edu.au
    Updated Mar 27, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSIRO (2015). Tidal Dataset - CAMRIS - Maximum Tidal Range [Dataset]. http://doi.org/10.4225/08/551485767777F
    Explore at:
    Dataset updated
    Mar 27, 2015
    Dataset authored and provided by
    CSIROhttp://www.csiro.au/
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1995 - Present
    Area covered
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Description

    This dataset contains maps showing the principal attributes of tides around the Australian coast. It has been derived from data published in the Australian National Tide Tables.

    Format: shapefile.

    Quality - Scope: Dataset. External accuracy: +/- one degree. Non Quantitative accuracy: Data are assumed to be correct. Three datasets describe tidal information around Australia:

    Cover_Name, Item_Name, Item_Description:

    TIDEMAX, MAX_TIDE_(M), Maximum tidal range in metres.

    Conceptual consistency: Coverages are topologically consistent. No particular tests conducted by ERIN. Completeness omission: Complete for the Australian continent. Lineage: ERIN: Data was projected to geographics using the WGS84 datum and spheroid, to be compatible for the Australian Coastal Atlas. The digital datsets were attributed using the information held in the legend (.key) files.

    CSIRO: All CAMRIS data were stored in VAX files, MS-DOS R-base files and as a microcomputer dataset accessible under the LUPIS (Land Use Planning Information System) land allocation package. CAMRIS was established using SPANS Geographic Information System (GIS) software running under a UNIX operating system on an IBM RS 6000 platform. A summary follows of processing completed by the CSIRO: 1. r-BASE: Information imported into r-BASE from a number of different sources (ie Digitised, scanned, CD-ROM, NOAA World Ocean Atlas, Atlas of Australian Soils, NOAA GEODAS archive and The Complete Book of Australian Weather). 2. From the information held in r-BASE a BASE Table was generated incorporating specific fields. 3. SPANS environment: Works on creating a UNIVERSE with a geographic projection - Equidistant Conic (Simple Conic) and Lambert Conformal Conic, Spheroid: International Astronomical Union 1965 (Australia/Sth America); the Lower left corner and the longitude and latitude of the centre point. 4. BASE Table imported into SPANS and a BASE Map generated. 5. Categorise Maps - created from the BASE map and table by selecting out specified fields, a desired window size (ie continental or continent and oceans) and resolution level (ie the quad tree level). 6. Rasterise maps specifying key parameters such as: number of bits, resolution (quad tree level 8 lowest - 16 highest) and the window size (usually 00 or cn). 7. Gifs produced using categorised maps with a title, legend, scale and long/lat grid. 8. Supplied to ERIN with .bil; .hdr; .gif; Arc export files .e00; and text files .asc and .txt formats. 9. The reference coastline for CAMRIS was the mean high water mark (AUSLIG 1:100 000 topographic map series).

  12. Human Vital Sign Dataset

    • kaggle.com
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DatasetEngineer (2024). Human Vital Sign Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/8992827
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    DatasetEngineer
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Overview The Human Vital Signs Dataset is a comprehensive collection of key physiological parameters recorded from patients. This dataset is designed to support research in medical diagnostics, patient monitoring, and predictive analytics. It includes both original attributes and derived features to provide a holistic view of patient health.

    Attributes Patient ID

    Description: A unique identifier assigned to each patient. Type: Integer Example: 1, 2, 3, ... Heart Rate

    Description: The number of heartbeats per minute. Type: Integer Range: 60-100 bpm (for this dataset) Example: 72, 85, 90 Respiratory Rate

    Description: The number of breaths taken per minute. Type: Integer Range: 12-20 breaths per minute (for this dataset) Example: 16, 18, 15 Timestamp

    Description: The exact time at which the vital signs were recorded. Type: Datetime Format: YYYY-MM-DD HH:MM Example: 2023-07-19 10:15:30 Body Temperature

    Description: The body temperature measured in degrees Celsius. Type: Float Range: 36.0-37.5°C (for this dataset) Example: 36.7, 37.0, 36.5 Oxygen Saturation

    Description: The percentage of oxygen-bound hemoglobin in the blood. Type: Float Range: 95-100% (for this dataset) Example: 98.5, 97.2, 99.1 Systolic Blood Pressure

    Description: The pressure in the arteries when the heart beats (systolic pressure). Type: Integer Range: 110-140 mmHg (for this dataset) Example: 120, 130, 115 Diastolic Blood Pressure

    Description: The pressure in the arteries when the heart rests between beats (diastolic pressure). Type: Integer Range: 70-90 mmHg (for this dataset) Example: 80, 75, 85 Age

    Description: The age of the patient. Type: Integer Range: 18-90 years (for this dataset) Example: 25, 45, 60 Gender

    Description: The gender of the patient. Type: Categorical Categories: Male, Female Example: Male, Female Weight (kg)

    Description: The weight of the patient in kilograms. Type: Float Range: 50-100 kg (for this dataset) Example: 70.5, 80.3, 65.2 Height (m)

    Description: The height of the patient in meters. Type: Float Range: 1.5-2.0 m (for this dataset) Example: 1.75, 1.68, 1.82 Derived Features Derived_HRV (Heart Rate Variability)

    Description: A measure of the variation in time between heartbeats. Type: Float Formula: 𝐻 𝑅

    𝑉

    Standard Deviation of Heart Rate over a Period Mean Heart Rate over the Same Period HRV= Mean Heart Rate over the Same Period Standard Deviation of Heart Rate over a Period ​

    Example: 0.10, 0.12, 0.08 Derived_Pulse_Pressure (Pulse Pressure)

    Description: The difference between systolic and diastolic blood pressure. Type: Integer Formula: 𝑃

    𝑃

    Systolic Blood Pressure − Diastolic Blood Pressure PP=Systolic Blood Pressure−Diastolic Blood Pressure Example: 40, 45, 30 Derived_BMI (Body Mass Index)

    Description: A measure of body fat based on weight and height. Type: Float Formula: 𝐵 𝑀

    𝐼

    Weight (kg) ( Height (m) ) 2 BMI= (Height (m)) 2

    Weight (kg) ​

    Example: 22.8, 25.4, 20.3 Derived_MAP (Mean Arterial Pressure)

    Description: An average blood pressure in an individual during a single cardiac cycle. Type: Float Formula: 𝑀 𝐴

    𝑃

    Diastolic Blood Pressure + 1 3 ( Systolic Blood Pressure − Diastolic Blood Pressure ) MAP=Diastolic Blood Pressure+ 3 1 ​ (Systolic Blood Pressure−Diastolic Blood Pressure) Example: 93.3, 100.0, 88.7 Target Feature Risk Category Description: Classification of patients into "High Risk" or "Low Risk" based on their vital signs. Type: Categorical Categories: High Risk, Low Risk Criteria: High Risk: Any of the following conditions Heart Rate: > 90 bpm or < 60 bpm Respiratory Rate: > 20 breaths per minute or < 12 breaths per minute Body Temperature: > 37.5°C or < 36.0°C Oxygen Saturation: < 95% Systolic Blood Pressure: > 140 mmHg or < 110 mmHg Diastolic Blood Pressure: > 90 mmHg or < 70 mmHg BMI: > 30 or < 18.5 Low Risk: None of the above conditions Example: High Risk, Low Risk This dataset, with a total of 200,000 samples, provides a robust foundation for various machine learning and statistical analysis tasks aimed at understanding and predicting patient health outcomes based on vital signs. The inclusion of both original attributes and derived features enhances the richness and utility of the dataset.

  13. Z

    Data from: WiFi CSI-Based Long-Range Through-Wall Human Activity Recognition...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kampel, Martin (2024). WiFi CSI-Based Long-Range Through-Wall Human Activity Recognition with the ESP32 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8021098
    Explore at:
    Dataset updated
    Apr 5, 2024
    Dataset provided by
    Strohmayer, Julian
    Kampel, Martin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    WiFi CSI-Based Long-Range Through-Wall Human Activity Recognition with the ESP32

    This repository contains the WiFi CSI human presence detection and activity recognition datasets proposed in [1].

    Datasets

    DP_LOS - Line-of-sight (LOS) presence detection dataset, comprised of 392 CSI amplitude spectrograms.

    DP_NLOS - Non-line-of-sight (NLOS) presence detection dataset, comprised of 384 CSI amplitude spectrograms.

    DA_LOS - LOS activity recognition dataset, comprised of 392 CSI amplitude spectrograms.

    DA_NLOS - NLOS activity recognition dataset, comprised of 384 CSI amplitude spectrograms.

    Table 1: Characteristics of presence detection and activity recognition datasets.

    Dataset Scenario

    Rooms

    Persons

    Classes

    Packet Sending Rate Interval

    Spectrograms

    DP_LOS LOS 1 1 6 100Hz 4s (400 packets) 392

    DP_NLOS NLOS 5 1 6 100Hz 4s (400 packets) 384

    DA_LOS LOS 1 1 3 100Hz 4s (400 packets) 392

    DA_NLOS NLOS 5 1 3 100Hz 4s (400 packets) 384

    Data Format

    Each dataset employs an 8:1:1 training-validation-test split, defined in the provided label files trainLabels.csv, validationLabels.csv, and testLabels.csv. Label files use the sample format [i c], with i corresponding to the spectrogram index (i.png) and c corresponding to the class. For presence detection datasets (DP_LOS , DP_NLOS), c in {0 = "no presence", 1 = "presence in room 1", ..., 5 = "presence in room 5"}. For activity recognition datasets (DA_LOS , DA_NLOS), c in {0="no activity", 1="walking", and 2="walking + arm-waving"}. Furthermore, the mean and standard deviation of a given dataset are provided in meanStd.csv.

    Download and UseThis data may be used for non-commercial research purposes only. If you publish material based on this data, we request that you include a reference to our paper [1].

    [1] Strohmayer, Julian, and Martin Kampel. "WiFi CSI-Based Long-Range Through-Wall Human Activity Recognition with the ESP32" International Conference on Computer Vision Systems. Cham: Springer Nature Switzerland, 2023.

    BibTeX citation:

    @inproceedings{strohmayer2023wifi, title={WiFi CSI-Based Long-Range Through-Wall Human Activity Recognition with the ESP32}, author={Strohmayer, Julian and Kampel, Martin}, booktitle={International Conference on Computer Vision Systems}, pages={41--50}, year={2023}, organization={Springer} }

  14. Joshua Tree Range - California [ds3020]

    • data-cdfw.opendata.arcgis.com
    • data.ca.gov
    • +5more
    Updated Sep 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2022). Joshua Tree Range - California [ds3020] [Dataset]. https://data-cdfw.opendata.arcgis.com/datasets/CDFW::joshua-tree-range-california-ds3020
    Explore at:
    Dataset updated
    Sep 16, 2022
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Joshua tree is a visually distinctive plant found in California''s Mojave Desert and adjacent areas. The unique silhouette and tall stature of Joshua tree relative to typical surrounding vegetation make it one of the most recognizable native plants of California deserts. There are two species of Joshua tree in California, western Joshua Tree (Yucca brevifolia) and eastern Joshua tree (Yucca jaegeriana). Eastern Joshua tree (Yucca brevifolia ssp. jaegeriana) distribution is represented in the data incidentally, but the primary purpose of this dataset is to illustrate the distribution of western Joshua tree. Western Joshua tree is distributed in discontinuous populations in the Mojave Desert and in a portion of the Great Basin Desert. Western Joshua tree is often noted as being abundant near the borders of the Mojave Desert in transition zones. No attempt was made to map Joshua tree distribution outside of California, and therefore the data are limited to geographic areas within California. CDFW possesses vegetation maps that cover a large portion of the California deserts where Joshua tree generally occurs. CDFWs Vegetation Classification and Mapping Program (VegCAMP) uses a combination of aerial imagery and fieldwork to delineate polygons with similar vegetation and to categorize the polygons into vegetation types. In 2013, an effort was made to create a vegetation map that covers a large portion of the California deserts. The vegetation data from this project includes percent absolute cover of Joshua tree and in some instances only Joshua tree presence and absence data. Western Joshua tree and eastern Joshua tree were lumped together as one species in these vegetation maps. A rigorous accuracy assessment of Joshua tree woodland vegetation alliance was performed using field collected data and it was determined to be mapped with approximately 95 percent accuracy. This means that approximately 95 percent of field-verified, polygons mapped as Joshua tree woodland alliance were mapped correctly. While Joshua tree woodland alliance requires even cover of Joshua tree at greater than or equal to 1 percent, the vegetation dataset has polygons recorded with less than 1 percent cover of Joshua tree as well as simple presence and absence data. The CDFW used Joshua tree polygons from vegetation mapping combined with additional point data from other sources including herbarium records, Calflora, and iNaturalist to create the western Joshua tree range boundary used in the March 2022 Status Review of Western Joshua Tree. CDFW reviewed publicly available point observations that appeared to be geographic outliers to ensure that incorrectly mapped and erroneous observations did not substantially expand the presumed range of the species. In a limited region, hand digitized points were used where obvious Joshua tree occurrences that had not been mapped elsewhere were present on aerial photographs. Creating a range map with incomplete presence data can sometimes be misleading because the absence of data does not necessarily mean the absence of the species. Some of the observations used to produce the range map may also be old, particularly if they are based on herbarium records, and trees may no longer be present in some locations. Additionally, different buffer distances around data points can yield wildly different results for occupied areas. To create the the western Joshua tree range boundary used in the March 2022 Status Review of Western Joshua Tree, CDFW buffered presence locations, but did not use a specific buffer value, and instead used the data described above in a geographic information system exercise to extend the range polygons to closely follow known occurrence boundaries while eliminating small gaps between them.

  15. c

    Variable Terrestrial GPS Telemetry Detection Rates: Parts 1 - 7—Data

    • s.cnmilf.com
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Variable Terrestrial GPS Telemetry Detection Rates: Parts 1 - 7—Data [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/variable-terrestrial-gps-telemetry-detection-rates-parts-1-7data
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Studies utilizing Global Positioning System (GPS) telemetry rarely result in 100% fix success rates (FSR). Many assessments of wildlife resource use do not account for missing data, either assuming data loss is random or because a lack of practical treatment for systematic data loss. Several studies have explored how the environment, technological features, and animal behavior influence rates of missing data in GPS telemetry, but previous spatially explicit models developed to correct for sampling bias have been specified to small study areas, on a small range of data loss, or to be species-specific, limiting their general utility. Here we explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use. We also evaluate patterns in missing data that relate to potential animal activities that change the orientation of the antennae and characterize home-range probability of GPS detection for 4 focal species; cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Part 1, Positive Openness Raster (raster dataset): Openness is an angular measure of the relationship between surface relief and horizontal distance. For angles less than 90 degrees it is equivalent to the internal angle of a cone with its apex at a DEM _location, and is constrained by neighboring elevations within a specified radial distance. 480 meter search radius was used for this calculation of positive openness. Openness incorporates the terrain line-of-sight or viewshed concept and is calculated from multiple zenith and nadir angles-here along eight azimuths. Positive openness measures openness above the surface, with high values for convex forms and low values for concave forms (Yokoyama et al. 2002). We calculated positive openness using a custom python script, following the methods of Yokoyama et. al (2002) using a USGS National Elevation Dataset as input. Part 2, Northern Arizona GPS Test Collar (csv): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. The model training data are provided here for fix attempts by hour. This table can be linked with the site _location shapefile using the site field. Part 3, Probability Raster (raster dataset): Bias correction in GPS telemetry datasets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix aquistion. We found terrain exposure and tall overstory vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The models predictive ability was evaluated using two independent datasets from stationary test collars of different make/model, fix interval programing, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. We evaluated GPS telemetry datasets by comparing the mean probability of a successful GPS fix across study animals home-ranges, to the actual observed FSR of GPS downloaded deployed collars on cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Comparing the mean probability of acquisition within study animals home-ranges and observed FSRs of GPS downloaded collars resulted in a approximatly 1:1 linear relationship with an r-sq= 0.68. Part 4, GPS Test Collar Sites (shapefile): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. Part 5, Cougar Home Ranges (shapefile): Cougar home-ranges were calculated to compare the mean probability of a GPS fix acquisition across the home-range to the actual fix success rate (FSR) of the collar as a means for evaluating if characteristics of an animal’s home-range have an effect on observed FSR. We estimated home-ranges using the Local Convex Hull (LoCoH) method using the 90th isopleth. Data obtained from GPS download of retrieved units were only used. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose as additional 10% of data. Comparisons with home-range mean probability of fix were also used as a reference for assessing if the frequency animals use areas of low GPS acquisition rates may play a role in observed FSRs. Part 6, Cougar Fix Success Rate by Hour (csv): Cougar GPS collar fix success varied by hour-of-day suggesting circadian rhythms with bouts of rest during daylight hours may change the orientation of the GPS receiver affecting the ability to acquire fixes. Raw data of overall fix success rates (FSR) and FSR by hour were used to predict relative reductions in FSR. Data only includes direct GPS download datasets. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose approximately an additional 10% of data. Part 7, Openness Python Script version 2.0: This python script was used to calculate positive openness using a 30 meter digital elevation model for a large geographic area in Arizona, California, Nevada and Utah. A scientific research project used the script to explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use.

  16. Barred Owl Predicted Habitat - CWHR B699 [ds2377]

    • data-cdfw.opendata.arcgis.com
    • data.cnra.ca.gov
    • +5more
    Updated Sep 14, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2016). Barred Owl Predicted Habitat - CWHR B699 [ds2377] [Dataset]. https://data-cdfw.opendata.arcgis.com/content/CDFW::barred-owl-predicted-habitat-cwhr-b699-ds2377
    Explore at:
    Dataset updated
    Sep 14, 2016
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  17. d

    HUN AWRA-L ASRIS soil properties v01

    • data.gov.au
    • researchdata.edu.au
    • +1more
    Updated Nov 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2019). HUN AWRA-L ASRIS soil properties v01 [Dataset]. https://data.gov.au/data/dataset/d8091c0a-5fdc-4f6a-8b61-b1e6cc7c3ace
    Explore at:
    Dataset updated
    Nov 20, 2019
    Dataset provided by
    Bioregional Assessment Program
    Description

    Abstract

    The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    The dataset is an extract for the Hunter subregion of the soil thickness data from the ASRIS Continental-scale soil property predictions 2001. The source data are the Surface of predicted Thickness of soil layer 1 (A Horizon - top-soil) surface for the intensive agricultural areas of Australia. Data modelled from area based observations made by soil agencies both State and CSIRO and presented as .0.01 degree grid cells.

    The dataset consists of statistics for soils depths (MIN, MAX, RANGE, MEAN, STD, MEDIAN) for each of the simulation catchments in the AWRA-L model. The soil thickness data were resampled to the model grid (BILO cells - 0.05 degree grid cells) and the catchments are defined by the BILO cells which fall within them. The gauging station ID in the spreadsheet defines the gauges which were used to define the upstream catchment area.

    Purpose

    Used to define soils thickness in the AWRA-L model.

    Dataset History

    The soil thickness data were resampled to the model grid (BILO cells - 0.05 degree grid cells). Statistics for soils depths (MIN, MAX, RANGE, MEAN, STD, MEDIAN) for each of the simulation catchments in the AWRA-L model were calculated using the Zonal Statistics as Table tool within ArcGIS with the simulation catchments used as the zone dataset. The output table was used to populate the excel spreadsheet with the Station ID and catchments areas added.

    Dataset Citation

    Bioregional Assessment Programme (XXXX) HUN AWRA-L ASRIS soil properties v01. Bioregional Assessment Derived Dataset. Viewed 13 March 2019, http://data.bioregionalassessments.gov.au/dataset/d8091c0a-5fdc-4f6a-8b61-b1e6cc7c3ace.

    Dataset Ancestors

  18. M

    Township, Range, and Section (TRS) Boundaries, Minnesota

    • gisdata.mn.gov
    • data.wu.ac.at
    fgdb, gpkg, html +2
    Updated Jul 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Information Office (2024). Township, Range, and Section (TRS) Boundaries, Minnesota [Dataset]. https://gisdata.mn.gov/dataset/plan-mngeo-trs
    Explore at:
    gpkg, fgdb, html, shp, jpegAvailable download formats
    Dataset updated
    Jul 9, 2024
    Dataset provided by
    Geospatial Information Office
    Area covered
    Minnesota
    Description

    The TRS digital data set represents the Township, Range, and Section boundaries of the state. Beginning in the late 1840s, the federal government began surveying Minnesota as part of the Public Land Survey System (PLSS). The resulting network of land survey lines divided the state into townships, ranges, sections, quarter sections, quarter-quarter sections and government lots, and laid the groundwork for contemporary land ownership patterns.

    The township, range and section boundaries were digitized at MnGeo (formerly known as the Land Management Information Center - LMIC) from stable base mylars of the U.S. Geological Survey (USGS) 30-minute latitude by 60-minute longitude map series (1:100,000-scale). All survey lines were extended across water bodies despite the fact that U.S. Geological Survey base maps depict them only on land. This addition allows all sections and townships to be represented as closed areas (polygons) ensuring that township and range location can be determined for any point in the state. It also means that the data set is not affected if lake levels change over time.

  19. N

    Comprehensive Median Household Income and Distribution Dataset for South...

    • neilsberg.com
    Updated Jan 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Comprehensive Median Household Income and Distribution Dataset for South Range, MI: Analysis by Household Type, Size and Income Brackets [Dataset]. https://www.neilsberg.com/research/datasets/cdbf3d19-b041-11ee-aaca-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Range, Michigan
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the median household income in South Range. It can be utilized to understand the trend in median household income and to analyze the income distribution in South Range by household type, size, and across various income brackets.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • South Range, MI Median Household Income Trends (2010-2021, in 2022 inflation-adjusted dollars)
    • Median Household Income Variation by Family Size in South Range, MI: Comparative analysis across 7 household sizes
    • Income Distribution by Quintile: Mean Household Income in South Range, MI
    • South Range, MI households by income brackets: family, non-family, and total, in 2022 inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of South Range median household income. You can refer the same here

  20. d

    Mean tidal range in marsh units of Jamaica Bay to western Great South Bay...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Mean tidal range in marsh units of Jamaica Bay to western Great South Bay salt marsh complex, New York [Dataset]. https://catalog.data.gov/dataset/mean-tidal-range-in-marsh-units-of-jamaica-bay-to-western-great-south-bay-salt-marsh-compl
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Jamaica Bay, Great South Bay
    Description

    This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2024). Median Household Income Variation by Family Size in South Range, MI: Comparative analysis across 7 household sizes [Dataset]. https://www.neilsberg.com/research/datasets/1b74898b-73fd-11ee-949f-3860777c1fe6/

Median Household Income Variation by Family Size in South Range, MI: Comparative analysis across 7 household sizes

Explore at:
json, csvAvailable download formats
Dataset updated
Jan 11, 2024
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
South Range, Michigan
Variables measured
Household size, Median Household Income
Measurement technique
The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 7 household sizes (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out how household income varies with the size of the family unit. For additional information about these estimations, please contact us via email at research@neilsberg.com
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset presents median household incomes for various household sizes in South Range, MI, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.

Key observations

  • Of the 7 household sizes (1 person to 7-or-more person households) reported by the census bureau, South Range did not include 4, 5, 6, or 7-person households. Across the different household sizes in South Range the mean income is $51,844, and the standard deviation is $18,238. The coefficient of variation (CV) is 35.18%. This high CV indicates high relative variability, suggesting that the incomes vary significantly across different sizes of households.
  • In the most recent year, 2021, The smallest household size for which the bureau reported a median household income was 1-person households, with an income of $31,226. It then further increased to $65,869 for 3-person households, the largest household size for which the bureau reported a median household income.

https://i.neilsberg.com/ch/south-range-mi-median-household-income-by-household-size.jpeg" alt="South Range, MI median household income, by household size (in 2022 inflation-adjusted dollars)">

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

Household Sizes:

  • 1-person households
  • 2-person households
  • 3-person households
  • 4-person households
  • 5-person households
  • 6-person households
  • 7-or-more-person households

Variables / Data Columns

  • Household Size: This column showcases 7 household sizes ranging from 1-person households to 7-or-more-person households (As mentioned above).
  • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific household size.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for South Range median household income. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu