Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This application is intended for informational purposes only and is not an operational product. The tool provides the capability to access, view and interact with satellite imagery, and shows the latest view of Earth as it appears from space.For additional imagery from NOAA's GOES East and GOES West satellites, please visit our Imagery and Data page or our cooperative institute partners at CIRA and CIMSS.This website should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. In addition, we do not provide weather forecasts on this site — that is the mission of the National Weather Service. Please contact them for any forecast questions or issues. Using the MapsWhat does the Layering Options icon mean?The Layering Options widget provides a list of operational layers and their symbols, and allows you to turn individual layers on and off. The order in which layers appear in this widget corresponds to the layer order in the map. The top layer ‘checked’ will indicate what you are viewing in the map, and you may be unable to view the layers below.Layers with expansion arrows indicate that they contain sublayers or subtypes.What does the Time Slider icon do?The Time Slider widget enables you to view temporal layers in a map, and play the animation to see how the data changes over time. Using this widget, you can control the animation of the data with buttons to play and pause, go to the previous time period, and go to the next time period.Do these maps work on mobile devices and different browsers?Yes!Why are there black stripes / missing data on the map?NOAA Satellite Maps is for informational purposes only and is not an operational product; there are times when data is not available.Why does the imagery load slowly?This map viewer does not load pre-generated web-ready graphics and animations like many satellite imagery apps you may be used to seeing. Instead, it downloads geospatial data from our data servers through a Map Service, and the app in your browser renders the imagery in real-time. Each pixel needs to be rendered and geolocated on the web map for it to load.How can I get the raw data and download the GIS World File for the images I choose?The geospatial data Map Service for the NOAA Satellite Maps GOES satellite imagery is located on our Satellite Maps ArcGIS REST Web Service ( available here ).We support open information sharing and integration through this RESTful Service, which can be used by a multitude of GIS software packages and web map applications (both open and licensed).Data is for display purposes only, and should not be used operationally.Are there any restrictions on using this imagery?NOAA supports an open data policy and we encourage publication of imagery from NOAA Satellite Maps; when doing so, please cite it as "NOAA" and also consider including a permalink (such as this one) to allow others to explore the imagery.For acknowledgment in scientific journals, please use:We acknowledge the use of imagery from the NOAA Satellite Maps application: LINKThis imagery is not copyrighted. You may use this material for educational or informational purposes, including photo collections, textbooks, public exhibits, computer graphical simulations and internet web pages. This general permission extends to personal web pages. About this satellite imageryWhat am I looking at in these maps?In this map you are seeing the past 24 hours (updated approximately every 10 minutes) of the Western Hemisphere and Pacific Ocean, as seen by the NOAA GOES East (GOES-16) and GOES West (GOES-18) satellites. In this map you can also view four different ‘layers’. The views show ‘GeoColor’, ‘infrared’, and ‘water vapor’.This maps shows the coverage area of the GOES East and GOES West satellites. GOES East, which orbits the Earth from 75.2 degrees west longitude, provides a continuous view of the Western Hemisphere, from the West Coast of Africa to North and South America. GOES West, which orbits the Earth at 137.2 degrees west longitude, sees western North and South America and the central and eastern Pacific Ocean all the way to New Zealand.What does the GOES GeoColor imagery show?The 'Merged GeoColor’ map shows the coverage area of the GOES East and GOES West satellites and includes the entire Western Hemisphere and most of the Pacific Ocean. This imagery uses a combination of visible and infrared channels and is updated approximately every 15 minutes in real time. GeoColor imagery approximates how the human eye would see Earth from space during daylight hours, and is created by combining several of the spectral channels from the Advanced Baseline Imager (ABI) – the primary instrument on the GOES satellites. The wavelengths of reflected sunlight from the red and blue portions of the spectrum are merged with a simulated green wavelength component, creating RGB (red-green-blue) imagery. At night, infrared imagery shows high clouds as white and low clouds and fog as light blue. The static city lights background basemap is derived from a single composite image from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band. For example, temporary power outages will not be visible. Learn more.What does the GOES infrared map show?The 'GOES infrared' map displays heat radiating off of clouds and the surface of the Earth and is updated every 15 minutes in near real time. Higher clouds colorized in orange often correspond to more active weather systems. This infrared band is one of 12 channels on the Advanced Baseline Imager, the primary instrument on both the GOES East and West satellites. on the GOES the multiple GOES East ABI sensor’s infrared bands, and is updated every 15 minutes in real time. Infrared satellite imagery can be "colorized" or "color-enhanced" to bring out details in cloud patterns. These color enhancements are useful to meteorologists because they signify “brightness temperatures,” which are approximately the temperature of the radiating body, whether it be a cloud or the Earth’s surface. In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are usually “clear sky,” while pale white areas typically indicate low-level clouds. During a hurricane, cloud top temperatures will be higher (and colder), and therefore appear dark red. This imagery is derived from band #13 on the GOES East and GOES West Advanced Baseline Imager.How does infrared satellite imagery work?The infrared (IR) band detects radiation that is emitted by the Earth’s surface, atmosphere and clouds, in the “infrared window” portion of the spectrum. The radiation has a wavelength near 10.3 micrometers, and the term “window” means that it passes through the atmosphere with relatively little absorption by gases such as water vapor. It is useful for estimating the emitting temperature of the Earth’s surface and cloud tops. A major advantage of the IR band is that it can sense energy at night, so this imagery is available 24 hours a day.What do the colors on the infrared map represent?In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are clear sky, while pale white areas indicate low-level clouds, or potentially frozen surfaces. Learn more about this weather imagery.What does the GOES water vapor map layer show?The GOES ‘water vapor’ map displays the concentration and location of clouds and water vapor in the atmosphere and shows data from both the GOES East and GOES West satellites. Imagery is updated approximately every 15 minutes in real time. Water vapor imagery, which is useful for determining locations of moisture and atmospheric circulations, is created using a wavelength of energy sensitive to the content of water vapor in the atmosphere. In this imagery, green-blue and white areas indicate the presence of high water vapor or moisture content, whereas dark orange and brown areas indicate little or no moisture present. This imagery is derived from band #10 on the GOES East and GOES West Advanced Baseline Imager.What do the colors on the water vapor map represent?In this imagery, green-blue and white areas indicate the presence of high water vapor or moisture content, whereas dark orange and brown areas indicate less moisture present. Learn more about this water vapor imagery.About the satellitesWhat are the GOES satellites?NOAA’s most sophisticated Geostationary Operational Environmental Satellites (GOES), known as the GOES-R Series, provide advanced imagery and atmospheric measurements of Earth’s Western Hemisphere, real-time mapping of lightning activity, and improved monitoring of solar activity and space weather.The first satellite in the series, GOES-R, now known as GOES-16, was launched in 2016 and is currently operational as NOAA’s GOES East satellite. In 2018, NOAA launched another satellite in the series, GOES-T, which joined GOES-16 in orbit as GOES-18. GOES-17 became operational as GOES West in January 2023.Together, GOES East and GOES West provide coverage of the Western Hemisphere and most of the Pacific Ocean, from the west coast of Africa all the way to New Zealand. Each satellite orbits the Earth from about 22,200 miles away.
Facebook
TwitterDeveloped by SOLARGIS (https://solargis.com) and provided by the Global Solar Atlas (GSA), this data resource contains air temperature at 2m above ground level in °C covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characteristics: TEMP - GISdata (GeoTIFF) Data format: GEOTIFF File size : 121.03 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).
Facebook
Twitterhttps://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc
Developed by SOLARGIS (https://solargis.com) and provided by the Global Solar Atlas (GSA), this data resource contains photovoltaic power potential (PVOUT) in kWh/kWp covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km).
The data is hyperlinked under 'resources' with the following characteristics:
PVOUT - LTAy_AvgDailyTotals (GeoTIFF)
Data format: GEOTIFF
File size : 3.6 GB
There are two temporal representation of solar resource and PVOUT data available:
• Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals)
• Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals)
Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations:
• LTAy_YearlyTotals = LTAy_DailyTotals * 365.25
• LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month
*For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest)
*For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world.
For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General Information
Dopek.eu (Polish clear web and dark web message board) messages data.
Haitao Shi (The University of Edinburgh, UK); Leszek Świeca (Kazimierz Wielki University in Bydgoszcz, Poland).
The dataset is part of the research supported by the Polish National Science Centre (Narodowe Centrum Nauki) grant 2021/43/B/HS6/00710.
Project title: “Rhizomatic networks, circulation of meanings and contents, and offline contexts of online drug trade” (2022-2025; PLN 956 620; funding institution: Polish National Science Centre [NCN], call: OPUS 22; Principal Investigator: Piotr Siuda [Kazimierz Wielki University in Bydgoszcz, Poland]).
Data Collection Context
Clear web and dark web message board called dopek.eu (https://dopek.eu/).
This dataset was developed within the abovementioned project. The project delves into internet dynamics within disruptive activities, specifically focusing on the online drug trade in Poland. It aims to (1) examine the utilization of the open internet, including social media, in the drug trade; (2) delineate the role of darknet environments in narcotics distribution; and (3) uncover the intricate flow of drug trade-related content and its meanings between the open web and the darknet, and how these meanings are shaped within the so-called drug subculture.
The dopek.eu forum emerges as a pivotal online space on the Polish internet, serving as a hub for trading, discussions, and the exchange of knowledge and experiences concerning the use of the so-called new psychoactive substances (designer drugs). The dataset has been instrumental in conducting analyses pertinent to the earlier project goals.
The dataset was compiled using the Scrapy framework, a web crawling and scraping library for Python. This tool facilitated systematic content extraction from the targeted message board.
The data was collected in October 2023.
Data Content
The dataset comprises all messages posted on dopek.eu from its inception until October 2023. These messages include the initial posts that start each thread and the subsequent posts (replies) within those threads. A .txt file has been prepared detailing the structure of the message board folders from which the posts were extracted. The dataset includes 171,121 posts.
The data has been cleaned and processed using regular expressions in Python. Additionally, all personal information was removed through regular expressions. The data has been hashed to exclude all identifiers related to instant messaging apps and email addresses. Furthermore, all usernames appearing in messages have been eliminated.
The dataset consists of the following types of files:
Zipped .txt files (dopek.zip) containing all messages (posts).
A .csv file that lists all the messages, including file names and the content of each post.
Accessibility and Usage
The data can be accessed without any restrictions.
Attached are .txt files detailing the tree of folders for “dopek.zip”.
Ethical Considerations
A set of data handling policies aimed at ensuring safety and ethics has been outlined in the following paper:
Harviainen, J.T., Haasio, A., Ruokolainen, T., Hassan, L., Siuda, P., Hamari, J. (2021). Information Protection in Dark Web Drug Markets Research [in:] Proceedings of the 54th Hawaii International Conference on System Sciences, HICSS 2021, Grand Hyatt Kauai, Hawaii, USA, 4-8 January 2021, Maui, Hawaii, (ed.) Tung X. Bui, Honolulu, HI, pp. 4673-4680.
The primary safeguard was the early-stage hashing of usernames and identifiers from the posts, utilizing automated systems for irreversible hashing. Recognizing that scraping and automatic name removal might not catch all identifiers, the data underwent manual review to ensure compliance with research ethics and thorough anonymization.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General Information
Hyperreal Talk (Polish clear web message board) messages data.
Haitao Shi (The University of Edinburgh, UK); Leszek Świeca (Kazimierz Wielki University in Bydgoszcz, Poland).
The dataset is part of the research supported by the Polish National Science Centre (Narodowe Centrum Nauki) grant 2021/43/B/HS6/00710.
Project title: “Rhizomatic networks, circulation of meanings and contents, and offline contexts of online drug trade” (2022-2025; PLN 956 620; funding institution: Polish National Science Centre [NCN], call: OPUS 22; Principal Investigator: Piotr Siuda [Kazimierz Wielki University in Bydgoszcz, Poland]).
Data Collection Context
Polish clear web message board called Hyperreal Talk (https://hyperreal.info/talk/).
This dataset was developed within the abovementioned project. The project delves into internet dynamics within disruptive activities, specifically focusing on the online drug trade in Poland. It aims to (1) examine the utilization of the open internet, including social media, in the drug trade; (2) delineate the role of darknet environments in narcotics distribution; and (3) uncover the intricate flow of drug trade-related content and its meanings between the open web and the darknet, and how these meanings are shaped within the so-called drug subculture.
The Hyperreal Talk forum emerges as a pivotal online space on the Polish internet, serving as a hub for discussions and the exchange of knowledge and experiences concerning drug use. It plays a crucial role in investigating the narratives and discourses that shape the drug subculture and the broader societal perceptions of drug consumption. The dataset has been instrumental in conducting analyses pertinent to the earlier project goals.
The dataset was compiled using the Scrapy framework, a web crawling and scraping library for Python. This tool facilitated systematic content extraction from the targeted message board.
The data was collected in two periods, i.e., in September 2023 and November 2023.
Data Content
The dataset comprises all messages posted on the Polish-language Hyperreal Talk message board from its inception until November 2023. These messages include the initial posts that start each thread and the subsequent posts (replies) within those threads. The dataset is organized into two directories: “hyperreal” and “hyperreal_hidden.” The “hyperreal” directory contains accessible posts without needing to log in to Hyperreal Talk, while the “hyperreal_hidden” directory holds posts that can only be viewed by logged-in users. For each directory, a .txt file has been prepared detailing the structure of the message board folders from which the posts were extracted. The dataset includes 6,248,842 posts.
The data has been cleaned and processed using regular expressions in Python. Additionally, all personal information was removed through regular expressions. The data has been hashed to exclude all identifiers related to instant messaging apps and email addresses. Furthermore, all usernames appearing in messages have been eliminated.
The dataset consists of the following files:
Zipped .txt files (hyperreal.zip) containing messages that are visible without logging into Hyperreal Talk. These files are organized into individual directories that mirror the folder structure found on the Hyperreal Talk message board.
Zipped .txt files (hyperreal_hidden.zip) containing messages that are visible only after logging into Hyperreal Talk. Similar to the first type, these files are organized into directories corresponding to the website’s folder structure.
A .csv file that lists all the messages, including file names and the content of each post.
Accessibility and Usage
The data can be accessed without any restrictions.
Attached are .txt files detailing the tree of folders for “hyperreal.zip” and “hyperreal_hidden.zip.”
Documentation on the Python regular expressions used for scraping, cleaning, processing, and anonymizing the data can be found on GitHub at the following URLs:
https://github.com/LeszekSwieca/Project_2021-43-B-HS6-00710
https://github.com/HaitaoShi/Scrapy_hyperreal"
Ethical Considerations
A set of data handling policies aimed at ensuring safety and ethics has been outlined in the following paper:
Harviainen, J.T., Haasio, A., Ruokolainen, T., Hassan, L., Siuda, P., Hamari, J. (2021). Information Protection in Dark Web Drug Markets Research [in:] Proceedings of the 54th Hawaii International Conference on System Sciences, HICSS 2021, Grand Hyatt Kauai, Hawaii, USA, 4-8 January 2021, Maui, Hawaii, (ed.) Tung X. Bui, Honolulu, HI, pp. 4673-4680.
The primary safeguard was the early-stage hashing of usernames and identifiers from the messages, utilizing automated systems for irreversible hashing. Recognizing that scraping and automatic name removal might not catch all identifiers, the data underwent manual review to ensure compliance with research ethics and thorough anonymization.
Facebook
TwitterDeveloped by SOLARGIS (https://solargis.com) and provided by the Global Solar Atlas (GSA), this data resource contains global horizontal irradiation (GHI) in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characteristics: GHI - LTAy_AvgDailyTotals (GeoTIFF) Data format: GEOTIFF File size : 268.11 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).
Facebook
TwitterAI Training Data | Annotated Checkout Flows for Retail, Restaurant, and Marketplace Websites Overview
Unlock the next generation of agentic commerce and automated shopping experiences with this comprehensive dataset of meticulously annotated checkout flows, sourced directly from leading retail, restaurant, and marketplace websites. Designed for developers, researchers, and AI labs building large language models (LLMs) and agentic systems capable of online purchasing, this dataset captures the real-world complexity of digital transactions—from cart initiation to final payment.
Key Features
Breadth of Coverage: Over 10,000 unique checkout journeys across hundreds of top e-commerce, food delivery, and service platforms, including but not limited to Walmart, Target, Kroger, Whole Foods, Uber Eats, Instacart, Shopify-powered sites, and more.
Actionable Annotation: Every flow is broken down into granular, step-by-step actions, complete with timestamped events, UI context, form field details, validation logic, and response feedback. Each step includes:
Page state (URL, DOM snapshot, and metadata)
User actions (clicks, taps, text input, dropdown selection, checkbox/radio interactions)
System responses (AJAX calls, error/success messages, cart/price updates)
Authentication and account linking steps where applicable
Payment entry (card, wallet, alternative methods)
Order review and confirmation
Multi-Vertical, Real-World Data: Flows sourced from a wide variety of verticals and real consumer environments, not just demo stores or test accounts. Includes complex cases such as multi-item carts, promo codes, loyalty integration, and split payments.
Structured for Machine Learning: Delivered in standard formats (JSONL, CSV, or your preferred schema), with every event mapped to action types, page features, and expected outcomes. Optional HAR files and raw network request logs provide an extra layer of technical fidelity for action modeling and RLHF pipelines.
Rich Context for LLMs and Agents: Every annotation includes both human-readable and model-consumable descriptions:
“What the user did” (natural language)
“What the system did in response”
“What a successful action should look like”
Error/edge case coverage (invalid forms, OOS, address/payment errors)
Privacy-Safe & Compliant: All flows are depersonalized and scrubbed of PII. Sensitive fields (like credit card numbers, user addresses, and login credentials) are replaced with realistic but synthetic data, ensuring compliance with privacy regulations.
Each flow tracks the user journey from cart to payment to confirmation, including:
Adding/removing items
Applying coupons or promo codes
Selecting shipping/delivery options
Account creation, login, or guest checkout
Inputting payment details (card, wallet, Buy Now Pay Later)
Handling validation errors or OOS scenarios
Order review and final placement
Confirmation page capture (including order summary details)
Why This Dataset?
Building LLMs, agentic shopping bots, or e-commerce automation tools demands more than just page screenshots or API logs. You need deeply contextualized, action-oriented data that reflects how real users interact with the complex, ever-changing UIs of digital commerce. Our dataset uniquely captures:
The full intent-action-outcome loop
Dynamic UI changes, modals, validation, and error handling
Nuances of cart modification, bundle pricing, delivery constraints, and multi-vendor checkouts
Mobile vs. desktop variations
Diverse merchant tech stacks (custom, Shopify, Magento, BigCommerce, native apps, etc.)
Use Cases
LLM Fine-Tuning: Teach models to reason through step-by-step transaction flows, infer next-best-actions, and generate robust, context-sensitive prompts for real-world ordering.
Agentic Shopping Bots: Train agents to navigate web/mobile checkouts autonomously, handle edge cases, and complete real purchases on behalf of users.
Action Model & RLHF Training: Provide reinforcement learning pipelines with ground truth “what happens if I do X?” data across hundreds of real merchants.
UI/UX Research & Synthetic User Studies: Identify friction points, bottlenecks, and drop-offs in modern checkout design by replaying flows and testing interventions.
Automated QA & Regression Testing: Use realistic flows as test cases for new features or third-party integrations.
What’s Included
10,000+ annotated checkout flows (retail, restaurant, marketplace)
Step-by-step event logs with metadata, DOM, and network context
Natural language explanations for each step and transition
All flows are depersonalized and privacy-compliant
Example scripts for ingesting, parsing, and analyzing the dataset
Flexible licensing for research or commercial use
Sample Categories Covered
Grocery delivery (Instacart, Walmart, Kroger, Target, etc.)
Restaurant takeout/delivery (Ub...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Developed by SOLARGIS (https://solargis.com) and provided by the Global Solar Atlas (GSA), this data resource contains air temperature at 2m above ground level in °C covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characteristics: TEMP - GISdata (GeoTIFF) Data format: GEOTIFF File size : 121.03 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).
Facebook
TwitterAttribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
In 2014, EFSA has commissioned the compilation of a database specific for the pesticide residues including active substances and their metabolites, which comprises different genotoxicity endpoints, i.e. point mutations, structural and numerical chromosome aberrations, and DNA damage.
Data collection on individual genotoxicity studies has been retrieved from regulatory toxicological reports (Draft or Renewal Assessment Reports, i.e. DARs or RARs, respectively) as provided by the Rapporteur Member State (RMS) during the pesticide peer review process at European Level. The final EFSA conclusion on the overall genotoxic potential of active substance or metabolites taking into account all available information is not included in the database.
The database contains identity and genotoxicity information on more than 290 active substances and some of their metabolites.
The database represents a practical tool to complement in-silico tools i.e. QSAR (Quantitative structure–activity relationship models), grouping and read across for prediction of the genotoxicity hazard of the pesticides residues, and it supposes to enlarge the chemical domains for their application.
Format: xls; contact: data.collection@efsa.europa.eu, pesticides.ppr@efsa.europa.eu
DISCLAIMER Without prejudice to the legal notice applicable to EFSA's website available here, the following legal notice applies to the Pesticide genotoxicity database and any documents, data or information contained therein. Users are advised to read this legal notice carefully before accessing, using or reading any document, data or information made available in this context, or making any other use of the Database. The Pesticide genotoxicity database is a compilation of chemical and genotoxicity information on active substances and some of their metabolites. The database contains the results of individual studies as initially assessed by the Rapporteur member state (RMS) and reported in the respective Draft assessment reports (DARs) or Renewal Assessment Reports (RARs). The final EFSA Conclusions on the respective active substances are available to the public on the EFSA Journal. The database includes the data that was available at the moment of compilation of the database (December 2016) and will be updated on a regular basis by including or deleting of information as a result of renewal procedure of active substances (Regulation (EU) No 1107/2009). EFSA makes no representations or warranties about the accuracy or suitability of any document, information, data provided in the Database. In case of discrepancy between the data provided in the original scientific output (DARs/RARs) and that in this database, preference shall be given to the former. This database does not disclose any commercially sensitive or otherwise confidential information. Unless otherwise stated, the owners of the data compiled in this database are the applicants under Regulation (EU) No 1107/2009, and by acceiding the Database you acknowledge that agreement for reuse of these data should be sought from them. The information provided in the Database and related materials are not intended to constitute advice of any kind or the rendering of consulting, or other professional services of any kind. Acceding the Database does not establish any contractual relationship with EFSA. Users are advised to consult with an attorney, food consultant or other professional to determine what may be best for your individual needs. By acceding the Database, you also acknowledge that the documents, data or information made available by EFSA may contain inaccuracies or errors. The content of the information provided is for your information and use only. It may be subject to change at any time and without prior notice by EFSA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Ultimate Arabic News Dataset is a collection of single-label modern Arabic texts that are used in news websites and press articles.
Arabic news data was collected by web scraping techniques from many famous news sites such as Al-Arabiya, Al-Youm Al-Sabea (Youm7), the news published on the Google search engine and other various sources.
UltimateArabic: A file containing more than 193,000 original Arabic news texts, without pre-processing. The texts contain words, numbers, and symbols that can be removed using pre-processing to increase accuracy when using the dataset in various Arabic natural language processing tasks such as text classification.
UltimateArabicPrePros: It is a file that contains the data mentioned in the first file, but after pre-processing, where the number of data became about 188,000 text documents, where stop words, non-Arabic words, symbols and numbers have been removed so that this file is ready for use directly in the various Arabic natural language processing tasks. Like text classification.
1- Sample: This folder contains samples of the results of web-scraping techniques for two popular Arab websites in two different news categories, Sports and Politics. this folder contain two datasets:
Sample_Youm7_Politic: An example of news in the "Politic" category collected from the Youm7 website. Sample_alarabiya_Sport: An example of news in the "Sport" category collected from the Al-Arabiya website.
2- Dataset Versions: This volume contains four different versions of the original data set, from which the appropriate version can be selected for use in text classification techniques. The first data set (Original) contains the raw data without pre-processing the data in any way, so the number of tokens in the first data set is very high. In the second data set (Original_without_Stop) the data was cleaned, such as removing symbols, numbers, and non-Arabic words, as well as stop words, so the number of symbols is greatly reduced. In the third dataset (Original_with_Stem) the data was cleaned, and text stemming technique was used to remove all additions and suffixes that might affect the accuracy of the results and to obtain the words roots. In the 4th edition of the dataset (Original_Without_Stop_Stem) all preprocessing techniques such as data cleaning, stop word removal and text stemming technique were applied, so we note that the number of tokens in the 4th edition is the lowest among all releases.
Facebook
TwitterDeveloped by SOLARGIS (https://solargis.com) and provided by the Global Solar Atlas (GSA), this data resource contains direct normal irradiation (DNI) in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characteristics: DNI - LTAy_AvgDailyTotals (GeoTIFF) Data format: GEOTIFF File size : 343.99 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).
Facebook
TwitterAs changes in GDPR and the protection of personal data have become important topics in the lives of French people, the source had asked them if they were willing to refuse to use an online service because the information provided was not clear on how their personal data would be processed. Thus, about half of respondents mentioned probably not using that website, as a result to the unsure information.
Facebook
TwitterDeveloped by SOLARGIS (https://solargis.com) and provided by the Global Solar Atlas (GSA), this data resource contains global irradiation for optimally tilted surfaces (GTI) in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characteristics: GTI - LTAy_AvgDailyTotals (GeoTIFF) Data format: GEOTIFF File size : 300.57 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).
Facebook
Twitterhttps://www.gnu.org/licenses/lgpl-3.0-standalone.htmlhttps://www.gnu.org/licenses/lgpl-3.0-standalone.html
CorpoGrabber: The Toolchain to Automatic Acquiring and Extraction of the Website Content Jan Kocoń, Wroclaw University of Technology
CorpoGrabber is a pipeline of tools to get the most relevant content of the website, including all subsites (up to the user-defined depth). The proposed toolchain can be used to build a big Web corpora of text documents. It requires only the list of the root websites as the input. Tools composing CorpoGrabber are adapted to Polish, but most subtasks are language independent. The whole process can be run in parallel on a single machine and includes the following tasks: downloading of the HTML subpages of each input page URL [1], extracting of plain text from each subpage by removing boilerplate content (such as navigation links, headers, footers, advertisements from HTML pages) [2], deduplication of plain text [2], removing of bad quality documents utilizing Morphological Analysis Converter and Aggregator (MACA) [3], tagging of documents using Wrocław CRF Tagger (WCRFT) [4]. Last two steps are available only for Polish. The result is a corpora as a set of tagged documents for each website.
References [1] https://www.httrack.com/html/faq.html [2] J. Pomikalek. 2011. Removing Boilerplate and Duplicate Content from Web Corpora. Ph.D. Thesis. Masaryk University, Faculcy of Informatics. Brno. [3] A. Radziszewski, T. Sniatowski. 2011. Maca – a configurable tool to integrate Polish morphological data. Proceedings of the Second International Workshop on Free/Open-Source Rule-Based Machine Translation. Barcelona, Spain. [4] A. Radziszewski. 2013. A tiered CRF tagger for Polish. Intelligent Tools for Building a Scientific Information Platform: Advanced Architectures and Solutions. Springer Verlag.
Facebook
TwitterDeveloped by SOLARGIS (https://solargis.com) and provided by the Global Solar Atlas (GSA), this data resource contains optimum tilt to maximize yearly yield in (°) covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characteristics: OPTA - LTAy_AvgDailyTotals (GeoTIFF) Data format: GEOTIFF File size : 2.08 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).
Facebook
Twitterhttps://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc
Developed by SOLARGIS (https://solargis.com) and provided by the Global Solar Atlas (GSA), this data resource contains global irradiation for optimally tilted surfaces (GTI) in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km).
The data is hyperlinked under 'resources' with the following characteristics:
GTI - LTAy_AvgDailyTotals (GeoTIFF)
Data format: GEOTIFF
File size : 300.57 MB
There are two temporal representation of solar resource and PVOUT data available:
• Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals)
• Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals)
Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations:
• LTAy_YearlyTotals = LTAy_DailyTotals * 365.25
• LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month
*For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest)
*For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world.
For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).
Facebook
TwitterIn 2024, the number of data compromises in the United States stood at 3,158 cases. Meanwhile, over 1.35 billion individuals were affected in the same year by data compromises, including data breaches, leakage, and exposure. While these are three different events, they have one thing in common. As a result of all three incidents, the sensitive data is accessed by an unauthorized threat actor. Industries most vulnerable to data breaches Some industry sectors usually see more significant cases of private data violations than others. This is determined by the type and volume of the personal information organizations of these sectors store. In 2024 the financial services, healthcare, and professional services were the three industry sectors that recorded most data breaches. Overall, the number of healthcare data breaches in some industry sectors in the United States has gradually increased within the past few years. However, some sectors saw decrease. Largest data exposures worldwide In 2020, an adult streaming website, CAM4, experienced a leakage of nearly 11 billion records. This, by far, is the most extensive reported data leakage. This case, though, is unique because cyber security researchers found the vulnerability before the cyber criminals. The second-largest data breach is the Yahoo data breach, dating back to 2013. The company first reported about one billion exposed records, then later, in 2017, came up with an updated number of leaked records, which was three billion. In March 2018, the third biggest data breach happened, involving India’s national identification database Aadhaar. As a result of this incident, over 1.1 billion records were exposed.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Four datasets are included focusing on animal communicators (AC): practitioners of intuitive interspecies communication (IIC).
Dataset #1: International English language websites data set (n = 400). To be included and coded, websites had to meet the following 3 criteria: (1) have an English language version of the website, (2) currently offer private AC consultations, and (3) be identified before website analysis was determined comprehensive enough to represent the international scope of AC (Oct. 30, 2020). CITE AS: Barrett, M. J., Zmud, L., Mathur, A., & Hoessler, C. (2024). Animal communicator website scan [Data set]. Zenodo. DOI 10.5281/zenodo.15131964
Dataset #2: International English language published books. Total books (n = 191): Books were identified through internet searches, including searches on Amazon and used bookstores such as Abe Books, from practicing AC websites, and from the directory: Book Authority Website for “53 Best Animal Communication Books of All Time,” https://bookauthority.org/books/best-animal-communication-books. Dataset includes books’ titles, descriptions, front and back covers and tables of contents where available. Where it was not clear whether the author was an animal communicator who consulted with clients, we did additional online searches to make this determination. All books had an English language printed copy of the book. We excluded books that were available in electronic copy only. We expanded our initial content inclusion criteria used in the website report beyond individuals currently offering consultations as professional animal communicators to include: (1) professional animal communicators who have since retired; (2) individuals who work intensively with animals in other capacities such as healing, but also report instances of IIC; (3) individuals who may not have worked as professional animal communicators, but write about their own lived experience of the phenomena; and (4) books written by individuals who are not ACs but have interviewed ACs. Where a book was written by two authors, or in some cases, an animal communicator with an additional author, we included both authors in our formal citation. Books were written by ACs who offered professional services (182), or authors who were not ACs (9). CITE AS: Barrett, M. J., Mathur, A., & Ghoreishi, Z., Hoessler, C., Kuppenbender, S. (2024). Animal communicator Book Scan [Data set]. Zenodo. DOI 10.5281/zenodo.15131964
Dataset #3: Directory of practicing ACs (1990-2011; n = 80 issues). To provide a snapshot of growth in numbers of practitioners over time, we compiled listings of ACs published in the Animal Communicator Directory from Species Link: The Journal of Interspecies Telepathic Communication. From 1990-2011, the publication included a directory of practicing ACs; after 2011, the directory went fully online, and data from each year is not available. CITE AS: Barrett, M.J. & Hoessler, C. (2022). Animal Communicator Directory. [Data set]. Zenodo. DOI 10.5281/zenodo.15131964
Dataset #4: Reference List of 15 Analyzed Animal Communicator Books with formal or informal “How-To” Sections. Compiled to identify and summarize the ways in which ACs were describing essential processes for conducting a successful intuitive communication session with animals, and thus provide an overview of what happens in an IIC session. Selection criteria: We were seeking succinct summaries from ACs. The intent was not to dig into and analyze processes in detail, but rather to summarize and synthesize the essential processes and steps as the ACs were reporting them. As such, it was beyond the scope of this study to analyze reported example communications or analyze processes in books where the entirety of the book was describing communications with animals. Publication date range: 1998-2019. Close to 300 pages were analyzed. The actual "how-to" excerpts are not included as they are subject to copyright. CITE AS: Barrett, M.J. & Kuppenbender, S. (2022). Reference List of 15 Analyzed Animal Communicator Books [Data set]. Zenodo. DOI 10.5281/zenodo.15131964
For further information on data collection and analysis details contact M.J. Barrett, PhD. mj.barrett@usask.ca
Funded by the Social Sciences and Humanities Research Council of Canada Insight Development Grant: Deepening Connection in Pursuit of Environmental Sustainability: Assessing a Promising Lever for Shifting Assumptions of Separation (Grant # 430-2019-01023).
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
We propose Safe Human dataset consisting of 17 different objects referred to as SH17 dataset. We scrapped images from the Pexels website, which offers "https://www.pexels.com/license/">clear usage rights for all its images, showcasing a range of human activities across diverse industrial operations.
To extract relevant images, we used multiple queries such as manufacturing worker, industrial worker, human worker, labor, etc. The tags associated with Pexels images proved reasonably accurate. After removing duplicate samples, we obtained a dataset of 8,099 images. The dataset exhibits significant diversity, representing manufacturing environments globally, thus minimizing potential regional or racial biases. Samples of the dataset are shown below.
The data consists of three folders, - images contains all images - labels contains labels in YOLO format for all images - voc_labels contains labels in VOC format for all images - train_files.txt contains list of all images we used for training - val_files.txt contains list of all images we used for validation
This dataset, scrapped through the Pexels website, is intended for educational, research, and analysis purposes only. You may be able to use the data for training of the Machine learning models only. Users are urged to use this data responsibly, ethically, and within the bounds of legal stipulations.
Legal Simplicity: All photos and videos on Pexels can be downloaded and used for free.
The dataset is provided "as is," without warranty, and the creator disclaims any legal liability for its use by others.
Users are encouraged to consider the ethical implications of their analyses and the potential impact on broader community.
https://github.com/ahmadmughees/SH17dataset
@misc{ahmad2024sh17datasethumansafety,
title={SH17: A Dataset for Human Safety and Personal Protective Equipment Detection in Manufacturing Industry},
author={Hafiz Mughees Ahmad and Afshin Rahimi},
year={2024},
eprint={2407.04590},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.04590},
}
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2806979%2F0a24bd8b9a3f281cf924a5171db28a40%2Fpexels-photo-3862627.jpeg?generation=1720104820503689&alt=media" alt="">
Facebook
TwitterMobility/Location data is gathered from location-aware mobile apps using an SDK-based implementation. All users explicitly consent to allow location data sharing using a clear opt-in process for our use cases and are given clear opt-out options. Factori ingests, cleans, validates, and exports all location data signals to ensure only the highest quality of data is made available for analysis.
Record Count:90 Billion+ Capturing Frequency: Once per Event Delivering Frequency: Once per Day Updated: Daily
Mobility Data Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings.
Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited interval (daily/weekly/monthly/quarterly).
Business Needs: Consumer Insight: Gain a comprehensive 360-degree perspective of the customer to spot behavioral changes, analyze trends and predict business outcomes. Market Intelligence: Study various market areas, the proximity of points or interests, and the competitive landscape. Advertising: Create campaigns and customize your messaging depending on your target audience's online and offline activity. Retail Analytics Analyze footfall trends in various locations and gain understanding of customer personas.
Here's the data attributes: maid latitude longtitude horizontal_accuracy timestamp id_type ipv4 ipv6 user_agent country state_hasc city_hasc hex8 hex9 carrier
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This application is intended for informational purposes only and is not an operational product. The tool provides the capability to access, view and interact with satellite imagery, and shows the latest view of Earth as it appears from space.For additional imagery from NOAA's GOES East and GOES West satellites, please visit our Imagery and Data page or our cooperative institute partners at CIRA and CIMSS.This website should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. In addition, we do not provide weather forecasts on this site — that is the mission of the National Weather Service. Please contact them for any forecast questions or issues. Using the MapsWhat does the Layering Options icon mean?The Layering Options widget provides a list of operational layers and their symbols, and allows you to turn individual layers on and off. The order in which layers appear in this widget corresponds to the layer order in the map. The top layer ‘checked’ will indicate what you are viewing in the map, and you may be unable to view the layers below.Layers with expansion arrows indicate that they contain sublayers or subtypes.What does the Time Slider icon do?The Time Slider widget enables you to view temporal layers in a map, and play the animation to see how the data changes over time. Using this widget, you can control the animation of the data with buttons to play and pause, go to the previous time period, and go to the next time period.Do these maps work on mobile devices and different browsers?Yes!Why are there black stripes / missing data on the map?NOAA Satellite Maps is for informational purposes only and is not an operational product; there are times when data is not available.Why does the imagery load slowly?This map viewer does not load pre-generated web-ready graphics and animations like many satellite imagery apps you may be used to seeing. Instead, it downloads geospatial data from our data servers through a Map Service, and the app in your browser renders the imagery in real-time. Each pixel needs to be rendered and geolocated on the web map for it to load.How can I get the raw data and download the GIS World File for the images I choose?The geospatial data Map Service for the NOAA Satellite Maps GOES satellite imagery is located on our Satellite Maps ArcGIS REST Web Service ( available here ).We support open information sharing and integration through this RESTful Service, which can be used by a multitude of GIS software packages and web map applications (both open and licensed).Data is for display purposes only, and should not be used operationally.Are there any restrictions on using this imagery?NOAA supports an open data policy and we encourage publication of imagery from NOAA Satellite Maps; when doing so, please cite it as "NOAA" and also consider including a permalink (such as this one) to allow others to explore the imagery.For acknowledgment in scientific journals, please use:We acknowledge the use of imagery from the NOAA Satellite Maps application: LINKThis imagery is not copyrighted. You may use this material for educational or informational purposes, including photo collections, textbooks, public exhibits, computer graphical simulations and internet web pages. This general permission extends to personal web pages. About this satellite imageryWhat am I looking at in these maps?In this map you are seeing the past 24 hours (updated approximately every 10 minutes) of the Western Hemisphere and Pacific Ocean, as seen by the NOAA GOES East (GOES-16) and GOES West (GOES-18) satellites. In this map you can also view four different ‘layers’. The views show ‘GeoColor’, ‘infrared’, and ‘water vapor’.This maps shows the coverage area of the GOES East and GOES West satellites. GOES East, which orbits the Earth from 75.2 degrees west longitude, provides a continuous view of the Western Hemisphere, from the West Coast of Africa to North and South America. GOES West, which orbits the Earth at 137.2 degrees west longitude, sees western North and South America and the central and eastern Pacific Ocean all the way to New Zealand.What does the GOES GeoColor imagery show?The 'Merged GeoColor’ map shows the coverage area of the GOES East and GOES West satellites and includes the entire Western Hemisphere and most of the Pacific Ocean. This imagery uses a combination of visible and infrared channels and is updated approximately every 15 minutes in real time. GeoColor imagery approximates how the human eye would see Earth from space during daylight hours, and is created by combining several of the spectral channels from the Advanced Baseline Imager (ABI) – the primary instrument on the GOES satellites. The wavelengths of reflected sunlight from the red and blue portions of the spectrum are merged with a simulated green wavelength component, creating RGB (red-green-blue) imagery. At night, infrared imagery shows high clouds as white and low clouds and fog as light blue. The static city lights background basemap is derived from a single composite image from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band. For example, temporary power outages will not be visible. Learn more.What does the GOES infrared map show?The 'GOES infrared' map displays heat radiating off of clouds and the surface of the Earth and is updated every 15 minutes in near real time. Higher clouds colorized in orange often correspond to more active weather systems. This infrared band is one of 12 channels on the Advanced Baseline Imager, the primary instrument on both the GOES East and West satellites. on the GOES the multiple GOES East ABI sensor’s infrared bands, and is updated every 15 minutes in real time. Infrared satellite imagery can be "colorized" or "color-enhanced" to bring out details in cloud patterns. These color enhancements are useful to meteorologists because they signify “brightness temperatures,” which are approximately the temperature of the radiating body, whether it be a cloud or the Earth’s surface. In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are usually “clear sky,” while pale white areas typically indicate low-level clouds. During a hurricane, cloud top temperatures will be higher (and colder), and therefore appear dark red. This imagery is derived from band #13 on the GOES East and GOES West Advanced Baseline Imager.How does infrared satellite imagery work?The infrared (IR) band detects radiation that is emitted by the Earth’s surface, atmosphere and clouds, in the “infrared window” portion of the spectrum. The radiation has a wavelength near 10.3 micrometers, and the term “window” means that it passes through the atmosphere with relatively little absorption by gases such as water vapor. It is useful for estimating the emitting temperature of the Earth’s surface and cloud tops. A major advantage of the IR band is that it can sense energy at night, so this imagery is available 24 hours a day.What do the colors on the infrared map represent?In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are clear sky, while pale white areas indicate low-level clouds, or potentially frozen surfaces. Learn more about this weather imagery.What does the GOES water vapor map layer show?The GOES ‘water vapor’ map displays the concentration and location of clouds and water vapor in the atmosphere and shows data from both the GOES East and GOES West satellites. Imagery is updated approximately every 15 minutes in real time. Water vapor imagery, which is useful for determining locations of moisture and atmospheric circulations, is created using a wavelength of energy sensitive to the content of water vapor in the atmosphere. In this imagery, green-blue and white areas indicate the presence of high water vapor or moisture content, whereas dark orange and brown areas indicate little or no moisture present. This imagery is derived from band #10 on the GOES East and GOES West Advanced Baseline Imager.What do the colors on the water vapor map represent?In this imagery, green-blue and white areas indicate the presence of high water vapor or moisture content, whereas dark orange and brown areas indicate less moisture present. Learn more about this water vapor imagery.About the satellitesWhat are the GOES satellites?NOAA’s most sophisticated Geostationary Operational Environmental Satellites (GOES), known as the GOES-R Series, provide advanced imagery and atmospheric measurements of Earth’s Western Hemisphere, real-time mapping of lightning activity, and improved monitoring of solar activity and space weather.The first satellite in the series, GOES-R, now known as GOES-16, was launched in 2016 and is currently operational as NOAA’s GOES East satellite. In 2018, NOAA launched another satellite in the series, GOES-T, which joined GOES-16 in orbit as GOES-18. GOES-17 became operational as GOES West in January 2023.Together, GOES East and GOES West provide coverage of the Western Hemisphere and most of the Pacific Ocean, from the west coast of Africa all the way to New Zealand. Each satellite orbits the Earth from about 22,200 miles away.