3 datasets found
  1. f

    Skin sc-RNASeq from seven body sites (face, scalp, axilla, palmoplantar,...

    • plus.figshare.com
    bin
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lam C Tsoi; Rachael Bogle; Johann Gudjonsson; Meri Oliva; Bridget Riley-Gillis (2025). Skin sc-RNASeq from seven body sites (face, scalp, axilla, palmoplantar, arm, leg, and back) [Dataset]. http://doi.org/10.25452/figshare.plus.25696620.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    Figshare+
    Authors
    Lam C Tsoi; Rachael Bogle; Johann Gudjonsson; Meri Oliva; Bridget Riley-Gillis
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This sc-RNAseq dataset is composed of disease-unaffected epidermal samples from 96 skin biopsies: 18 from published datasets - GSE173706, GSE249279 – and 78 newly generated ones. Biopsy sample and protocol details, and curated cell-type signature genes, are available in the scRNASeq_source_info_FigShare spreadsheet of this dataset. Processed Seurat object are provided herein. Raw data are available in SRA (id PRJNA1054546). Biopsies originated from seven body sites (face, scalp, axilla, palmoplantar, arm, leg, and back). The skin biopsies were separated into epidermis and dermis before dissociated and enriched for various cell fractions (keratinocytes, fibroblasts, and endothelial cells) and immune cells (myeloid and lymphoid cells) to up sample rare cell types. In total, across body sites, 274,834 cells were profiled, including 96,194 keratinocytes. Seurat v3.0. was utilized to normalize, scale, and reduce the dimensionality of the data. Low quality cells containing less than 200 genes per cell as well as greater than 5,000 genes per cell were filtered out. Cells containing more mitochondrial genes than the permitted quantile of 0.05 were removed. Ambient RNA was removed using R package SoupX v1.6.2. Doublets were removed using scDblFinder v1.12.0. Principal components (PC) were obtained from the topmost 2,000 variable genes, and the Uniform Manifold Approximation and Projection (UMAP) dimensional reduction technique was applied to the 30 topmost variable PC-reduced dataset. Batch effect correction was performed utilizing harmony v1.0, using donor as batch. After batch correction, cells were clustered using shared nearest neighbor modularity optimization-based clustering. Cluster marker genes were identified with FindAllMarkers; cluster corresponding cell type was identified by comparing marker genes to curated cell-type signature genes. Differential expression by keratinocyte subtype was performed with Seurat (v4.3.0) FindMarkers function by comparing keratinocyte subtype to non-keratinocyte clusters. The log fold-change of the average expression between a keratinocyte subtype cluster compared to the rest of clusters is utilized as keratinocyte-subtype gene expression statistic.

  2. Data from: Pre-ciliated tubal epithelial cells are prone to initiation of...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coulter Ralston; Alexander Nikitin; Benjamin Cosgrove (2024). Pre-ciliated tubal epithelial cells are prone to initiation of high-grade serous ovarian carcinoma [Dataset]. http://doi.org/10.5061/dryad.4mw6m90hm
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset provided by
    Cornell University
    Authors
    Coulter Ralston; Alexander Nikitin; Benjamin Cosgrove
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    The distal region of the uterine (Fallopian) tube is commonly associated with high-grade serous carcinoma (HGSC), the predominant and most aggressive form of ovarian or extra-uterine cancer. Specific cell states and lineage dynamics of the adult tubal epithelium (TE) remain insufficiently understood, hindering efforts to determine the cell of origin for HGSC. Here, we report a comprehensive census of cell types and states of the mouse uterine tube. We show that distal TE cells expressing the stem/progenitor cell marker Slc1a3 can differentiate into both secretory (Ovgp1+) and ciliated (Fam183b+) cells. Inactivation of Trp53 and Rb1, whose pathways are commonly altered in HGSC, leads to elimination of targeted Slc1a3+ cells by apoptosis, thereby preventing their malignant transformation. In contrast, pre-ciliated cells (Krt5+, Prom1+, Trp73+) remain cancer-prone and give rise to serous tubal intraepithelial carcinomas and overt HGSC. These findings identify transitional pre-ciliated cells as a previously unrecognized cancer-prone cell state and point to pre-ciliation mechanisms as novel diagnostic and therapeutic targets. Methods

    Single-cell RNA-sequencing library preparation For TE single cell expression and transcriptome analysis we isolated TE from C57BL6 adult estrous female mice. In 3 independent experiments a total of 62 uterine tubes were collected. Each uterine tube was placed in sterile PBS containing 100 IU ml-1 of penicillin and 100 µg ml-1 streptomycin (Corning, 30-002-Cl), and separated in distal and proximal regions. Tissues from the same region were combined in a 40 µl drop of the same PBS solution, cut open lengthwise, and minced into 1.5-2.5 mm pieces with 25G needles. Minced tissues were transferred with help of a sterile wide bore 200 µl pipette tip into a 1.8 ml cryo vial containing 1.2 ml A-mTE-D1 (300 IU ml-1 collagenase IV mixed with 100 IU ml-1 hyaluronidase; Stem Cell Technologies, 07912, in DMEM Ham’s F12, Hyclone, SH30023.FS). Tissues were incubated with loose cap for 1 h at 37°C in a 5% CO2 incubator. During the incubation tubes were taken out 4 times and tissues suspended with a wide bore 200 µl pipette tip. At the end of incubation, the tissue-cell suspension from each tube was transferred into 1 ml TrypLE (Invitrogen, 12604013) pre-warmed to 37°C, suspended 70 times with a 1000 µl pipette tip, 5 ml A-SM [DMEM Ham’s F12 containing 2% fetal bovine serum (FBS)] were added to the mix, and TE cells were pelleted by centrifugation 300x g for 10 minutes at 25°C. Pellets were then suspended with 1 ml pre-warmed to 37°C A-mTE-D2 (7 mg ml-1 Dispase II, Worthington NPRO2, and 10 µg ml-1 Deoxyribonuclease I, Stem Cell Technologies, 07900), and mixed 70 times with a 1000 µl pipette tip. 5 ml A-mTE-D2 was added and samples were passed through a 40 µm cell strainer, and pelleted by centrifugation at 300x g for 7 minutes at +4°C. Pellets were suspended in 100 µl microbeads per 107 total cells or fewer, and dead cells were removed with the Dead Cell Removal Kit (Miltenyi Biotec, 130-090-101) according to the manufacturer’s protocol. Pelleted live cell fractions were collected in 1.5 ml low binding centrifuge tubes, kept on ice, and suspended in ice cold 50 µl A-Ri-Buffer (5% FBS, 1% GlutaMAX-I, Invitrogen, 35050-079, 9 µM Y-27632, Millipore, 688000, and 100 IU ml-1 penicillin 100 μg ml-1 streptomycin in DMEM Ham’s F12). Cell aliquots were stained with trypan blue for live and dead cell calculation. Live cell preparations with a target cell recovery of 5,000-6,000 were loaded on Chromium controller (10X Genomics, Single Cell 3’ v2 chemistry) to perform single cell partitioning and barcoding using the microfluidic platform device. After preparation of barcoded, next-generation sequencing cDNA libraries samples were sequenced on Illumina NextSeq500 System.

    Download and alignment of single-cell RNA sequencing data For sequence alignment, a custom reference for mm39 was built using the cellranger (v6.1.2, 10x Genomics) mkref function. The mm39.fa soft-masked assembly sequence and the mm39.ncbiRefSeq.gtf (release 109) genome annotation last updated 2020-10-27 were used to form the custom reference. The raw sequencing reads were aligned to the custom reference and quantified using the cellranger count function.

    Preprocessing and batch correction All preprocessing and data analysis was conducted in R (v.4.1.1 (2021-08-10)). The cellranger count outs were first modified with the autoEstCont and adjustCounts functions from SoupX (v.1.6.1) to output a corrected matrix with the ambient RNA signal (soup) removed (https://github.com/constantAmateur/SoupX). To preprocess the corrected matrices, the Seurat (v.4.1.1) NormalizeData, FindVariableFeatures, ScaleData, RunPCA, FindNeighbors, and RunUMAP functions were used to create a Seurat object for each sample (https://github.com/satijalab/seurat). The number of principal components used to construct a shared nearest-neighbor graph were chosen to account for 95% of the total variance. To detect possible doublets, we used the package DoubletFinder (v.2.0.3) with inputs specific to each Seurat object. DoubletFinder creates artificial doublets and calculates the proportion of artificial k nearest neighbors (pANN) for each cell from a merged dataset of the artificial and actual data. To maximize DoubletFinder’s predictive power, mean-variance normalized bimodality coefficient (BCMVN) was used to determine the optimal pK value for each dataset. To establish a threshold for pANN values to distinguish between singlets and doublets, the estimated multiplet rates for each sample were calculated by interpolating between the target cell recovery values according to the 10x Chromium user manual. Homotypic doublets were identified using unannotated Seurat clusters in each dataset with the modelHomotypic function. After doublets were identified, all distal and proximal samples were merged separately. Cells with greater than 30% mitochondrial genes, cells with fewer than 750 nCount RNA, and cells with fewer than 200 nFeature RNA were removed from the merged datasets. To correct for any batch defects between sample runs, we used the harmony (v.0.1.0) integration method (github.com/immunogenomics/harmony).

    Clustering parameters and annotations After merging the datasets and batch-correction, the dimensions reflecting 95% of the total variance were input into Seurat’s FindNeighbors function with a k.param of 70. Louvain clustering was then conducted using Seurat’s FindClusters with a resolution of 0.7. The resulting 19 clusters were annotated based on the expression of canonical genes and the results of differential gene expression (Wilcoxon Rank Sum test) analysis. One cluster expressing lymphatic and epithelial markers was omitted from later analysis as it only contained 2 cells suspected to be doublets. To better understand the epithelial populations, we reclustered 6 epithelial populations and reapplied harmony batch correction. The clustering parameters from FindNeighbors was a k.param of 50, and a resolution of 0.7 was used for FindClusters. The resulting 9 clusters within the epithelial subset were further annotated using differential expression analysis and canonical markers.

    Pseudotime analysis Potential of heat diffusion for affinity-based transition embedding (PHATE) is dimensional reduction method to more accurately visualize continual progressions found in biological data 35. A modified version of Seurat (v4.1.1) was developed to include the ‘RunPHATE’ function for converting a Seurat Object to a PHATE embedding. This was built on the phateR package (v.1.0.7) (https://github.com/scottgigante/seurat/tree/patch/add-PHATE-again). In addition to PHATE, pseudotime values were calculated with Monocle3 (v.1.2.7), which computes trajectories with an origin set by the user 36,55–57. The origin was set to be a progenitor cell state confirmed with lineage tracing experiments. 35. Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat Biotechnol 37, 1482–1492 (2019). doi:10.1038/s41587-019-0336-3 36. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019). doi:10.1038/s41586-019-0969-x 55. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology 32, 381–386 (2014). doi:10.1038/nbt.2859 56. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nature Methods 14, 309–315 (2017). doi:10.1038/nmeth.4150 57. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14, 979–982 (2017). doi:10.1038/nmeth.4402

  3. f

    EPI-Clone dataset: Human CD34+ cells (A.1-A.7, B.1-B.5)

    • figshare.com
    application/gzip
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lars Velten (2025). EPI-Clone dataset: Human CD34+ cells (A.1-A.7, B.1-B.5) [Dataset]. http://doi.org/10.6084/m9.figshare.28082048.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset provided by
    figshare
    Authors
    Lars Velten
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the dataset supporting the EPI-Clone manuscript: Targeted single cell methylation profiling of bone marrow was performed with the scTAMseq method. BM from seven donors was analyzed Donor characteristics are described in full in Table S1. This seurat object includes CD34+ cells from all donors A.1-A.7, B.1-B.5. For EPI-Clone analysis, only donors with >1000 CD34+ cells covered were included.Dataset is an R Data File (RDS) with an integrated Seurat object across donorsASSAYS:AB: Antibody expression dataDNAm: DNA methylation data, containing binary observations (0: amplicon not observed, i.e. dropout or absence of DNA methylation, 1: amplicon observed, i.e. DNA methylation). See the paper on scTAMseqDIMENSIONALITY REDUCTIONscanorama: scanorama performed on the DNAm+AB dataumap: UMAP computed on scanoramaTo create donor-specific static CpGs UMAPs, follow the vignette at https://github.com/veltenlab/EPI-cloneMETADATAsample: Donor (A.1 - A.7)age: Donor agecelltype: Cell type annotationNonHhaI: Performance of the control amplicons in that celllog_ChrY: Log number of reads on the ChromosomeY ampliconsEPIClone_id: Cluster annotation computed by EPI-Clonemutation: CH mutation called in each cell. N/A means dropout.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Lam C Tsoi; Rachael Bogle; Johann Gudjonsson; Meri Oliva; Bridget Riley-Gillis (2025). Skin sc-RNASeq from seven body sites (face, scalp, axilla, palmoplantar, arm, leg, and back) [Dataset]. http://doi.org/10.25452/figshare.plus.25696620.v2

Skin sc-RNASeq from seven body sites (face, scalp, axilla, palmoplantar, arm, leg, and back)

Explore at:
binAvailable download formats
Dataset updated
Mar 11, 2025
Dataset provided by
Figshare+
Authors
Lam C Tsoi; Rachael Bogle; Johann Gudjonsson; Meri Oliva; Bridget Riley-Gillis
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

This sc-RNAseq dataset is composed of disease-unaffected epidermal samples from 96 skin biopsies: 18 from published datasets - GSE173706, GSE249279 – and 78 newly generated ones. Biopsy sample and protocol details, and curated cell-type signature genes, are available in the scRNASeq_source_info_FigShare spreadsheet of this dataset. Processed Seurat object are provided herein. Raw data are available in SRA (id PRJNA1054546). Biopsies originated from seven body sites (face, scalp, axilla, palmoplantar, arm, leg, and back). The skin biopsies were separated into epidermis and dermis before dissociated and enriched for various cell fractions (keratinocytes, fibroblasts, and endothelial cells) and immune cells (myeloid and lymphoid cells) to up sample rare cell types. In total, across body sites, 274,834 cells were profiled, including 96,194 keratinocytes. Seurat v3.0. was utilized to normalize, scale, and reduce the dimensionality of the data. Low quality cells containing less than 200 genes per cell as well as greater than 5,000 genes per cell were filtered out. Cells containing more mitochondrial genes than the permitted quantile of 0.05 were removed. Ambient RNA was removed using R package SoupX v1.6.2. Doublets were removed using scDblFinder v1.12.0. Principal components (PC) were obtained from the topmost 2,000 variable genes, and the Uniform Manifold Approximation and Projection (UMAP) dimensional reduction technique was applied to the 30 topmost variable PC-reduced dataset. Batch effect correction was performed utilizing harmony v1.0, using donor as batch. After batch correction, cells were clustered using shared nearest neighbor modularity optimization-based clustering. Cluster marker genes were identified with FindAllMarkers; cluster corresponding cell type was identified by comparing marker genes to curated cell-type signature genes. Differential expression by keratinocyte subtype was performed with Seurat (v4.3.0) FindMarkers function by comparing keratinocyte subtype to non-keratinocyte clusters. The log fold-change of the average expression between a keratinocyte subtype cluster compared to the rest of clusters is utilized as keratinocyte-subtype gene expression statistic.

Search
Clear search
Close search
Google apps
Main menu