3 datasets found
  1. Trends in COVID-19 Cases and Deaths in the United States, by County-level...

    • data.cdc.gov
    • healthdata.gov
    • +1more
    application/rdfxml +5
    Updated Jun 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://data.cdc.gov/w/njmz-dpbc/tdwk-ruhb?cur=K0_qEbFad0O&from=gspC_chSyVH
    Explore at:
    tsv, xml, csv, json, application/rssxml, application/rdfxmlAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
    • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • County level data were aggregated to obtain state- and territory- specific totals.
    • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

    Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

    Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

    Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.

    Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas

    Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:

    1 Large Central Metro
    2 Large Fringe Metro 3 Medium Metro 4 Small Metro 5 Micropolitan 6 Non-Core (Rural)

    American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:

    Age 65 - “Age65”

    1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)

    Non-Hispanic, Asian - “NHAA”

    1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)

    Non-Hispanic, American Indian/Alaskan Native - “NHIA”

    1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)

    Non-Hispanic, Black - “NHBA”

    1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)

    Hispanic - “HISP”

    1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)

    Population in Poverty - “Pov”

    1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)

    Population Uninsured- “Unins”

    1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)

    Average Household Size - “HH”

    1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)

    Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:

    1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)

    Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:

    1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)

  2. d

    Postal Code Conversion File [Canada], November 2020, Census of Canada 2016

    • dataone.org
    • borealisdata.ca
    • +1more
    Updated Oct 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2024). Postal Code Conversion File [Canada], November 2020, Census of Canada 2016 [Dataset]. http://doi.org/10.5683/SP3/ULVZKO
    Explore at:
    Dataset updated
    Oct 2, 2024
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    Description

    The Postal Code Conversion File (PCCF) is a digital file which provides a correspondence between the Canada Post Corporation (CPC) six-character postal code and Statistics Canada's standard geographic areas for which census data and other statistics are produced. Through the link between postal codes and standard geographic areas, the PCCF permits the integration of data from various sources. The Single Link Indicator provides one best link for every postal code, as there are multiple records for many postal codes. Getting started guide To obtain the postal code conversion file or for questions, consult the DLI contact at your educational institution. The geographic coordinates attached to each postal code on the PCCF are commonly used to map the distribution of data for spatial analysis (e.g., clients, activities). The location information is a powerful tool for planning, or research purposes. The geographic coordinates, which represent the standard geostatistical areas linked to each postal codeOM on the PCCF, are commonly used to map the distribution of data for spatial analysis (e.g., clients, activities). The location information is a powerful tool for marketing, planning, or research purposes. In April 1983, the Statistical Registers and Geography Division released the first version of the PCCF, which linked postal codesOM to 1981 Census geographic areas and included geographic coordinates. Since then, the file has been updated on a regular basis to reflect changes. For this release of the PCCF, the vast majority of the postal codesOM are directly geocoded to 2016 Census geography while others are linked via various conversion processes. A quality indicator for the confidence of this linkage is available in the PCCF.

  3. d

    Postal Code Conversion File [Canada], June 2022, Census of Canada 2021

    • search.dataone.org
    • dataone.org
    Updated Dec 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada. Geography Division (2024). Postal Code Conversion File [Canada], June 2022, Census of Canada 2021 [Dataset]. http://doi.org/10.5683/SP3/VUSYDJ
    Explore at:
    Dataset updated
    Dec 11, 2024
    Dataset provided by
    Borealis
    Authors
    Statistics Canada. Geography Division
    Area covered
    Canada
    Description

    The Postal Code Conversion File (PCCF) is a digital file which provides a correspondence between the Canada Post Corporation (CPC) six-character postal code and Statistics Canada's standard geographic areas for which census data and other statistics are produced. Through the link between postal codes and standard geographic areas, the PCCF permits the integration of data from various sources. The Single Link Indicator provides one best link for every postal code, as there are multiple records for many postal codes. To obtain the postal code conversion file or for questions, consult the DLI contact at your educational institution. New to the June 2022 version, a separate data file is available for retired postal codes. The retired file uses the same record layout as the PCCF file. The same syntax file can be used for both the PCCF data file and the retired data file. The geographic coordinates attached to each postal code on the PCCF are commonly used to map the distribution of data for spatial analysis (e.g., clients, activities). The location information is a powerful tool for planning, or research purposes. The geographic coordinates, which represent the standard geostatistical areas linked to each postal codeOM on the PCCF, are commonly used to map the distribution of data for spatial analysis (e.g., clients, activities). The location information is a powerful tool for marketing, planning, or research purposes. In April 1983, the Statistical Registers and Geography Division released the first version of the PCCF, which linked postal codesOM to 1981 Census geographic areas and included geographic coordinates. Since then, the file has been updated on a regular basis to reflect changes. For this release of the PCCF, the vast majority of the postal codesOM are directly geocoded to 2016 Census geography while others are linked via various conversion processes. A quality indicator for the confidence of this linkage is available in the PCCF.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CDC COVID-19 Response (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://data.cdc.gov/w/njmz-dpbc/tdwk-ruhb?cur=K0_qEbFad0O&from=gspC_chSyVH
Organization logo

Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED

Explore at:
tsv, xml, csv, json, application/rssxml, application/rdfxmlAvailable download formats
Dataset updated
Jun 6, 2023
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Authors
CDC COVID-19 Response
Area covered
United States
Description

Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

  • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
  • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
  • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
  • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
  • County level data were aggregated to obtain state- and territory- specific totals.
  • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
  • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.

Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas

Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:

1 Large Central Metro
2 Large Fringe Metro 3 Medium Metro 4 Small Metro 5 Micropolitan 6 Non-Core (Rural)

American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:

Age 65 - “Age65”

1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)

Non-Hispanic, Asian - “NHAA”

1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)

Non-Hispanic, American Indian/Alaskan Native - “NHIA”

1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)

Non-Hispanic, Black - “NHBA”

1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)

Hispanic - “HISP”

1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)

Population in Poverty - “Pov”

1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)

Population Uninsured- “Unins”

1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)

Average Household Size - “HH”

1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)

Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:

1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)

Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:

1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)

Search
Clear search
Close search
Google apps
Main menu