28 datasets found
  1. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +1more
    csv, zip
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(463460), csv(164006), csv(4689434), zip, csv(16301), csv(200270), csv(5034), csv(2026589), csv(5401561), csv(419332), csv(300479)Available download formats
    Dataset updated
    Mar 25, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  2. D

    COVID-19 Deaths by Population Characteristics

    • data.sfgov.org
    application/rdfxml +5
    Updated Mar 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). COVID-19 Deaths by Population Characteristics [Dataset]. https://data.sfgov.org/w/kv9m-37qh/ikek-yizv?cur=Cz9wSjj1-K4&from=root
    Explore at:
    csv, application/rdfxml, xml, application/rssxml, tsv, jsonAvailable download formats
    Dataset updated
    Mar 6, 2025
    Description

    A. SUMMARY This dataset shows San Francisco COVID-19 deaths by population characteristics. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals may increase or decrease.

    Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how deaths have been distributed among different subgroups. This information can reveal trends and disparities among groups.

    B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national https://preparedness.cste.org/wp-content/uploads/2022/12/CSTE-Revised-Classification-of-COVID-19-associated-Deaths.Final_.11.22.22.pdf">Council of State and Territorial Epidemiologists. Death certificates are maintained by the California Department of Public Health.

    Data on the population characteristics of COVID-19 deaths are from: *Case reports *Medical records *Electronic lab reports *Death certificates

    Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths.

    To protect resident privacy, we summarize COVID-19 data by only one population characteristic at a time. Data are not shown until cumulative citywide deaths reach five or more.

    Data notes on select population characteristic types are listed below.

    Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases.

    Gender * The City collects information on gender identity using these guidelines.

    C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week.

    Dataset will not update on the business day following any federal holiday.

    D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a dataset based on the San Francisco Population and Demographic Census dataset.These population estimates are from the 2018-2022 5-year American Community Survey (ACS).

    This dataset includes several characteristic types. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cumulative deaths.

    Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.

    To explore data on the total number of deaths, use the COVID-19 Deaths Over Time dataset.

    E. CHANGE LOG

  3. n

    National Longitudinal Mortality Study

    • neuinfo.org
    • rrid.site
    • +2more
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). National Longitudinal Mortality Study [Dataset]. http://identifiers.org/RRID:SCR_008946
    Explore at:
    Dataset updated
    Mar 7, 2025
    Description

    A database based on a random sample of the noninstitutionalized population of the United States, developed for the purpose of studying the effects of demographic and socio-economic characteristics on differentials in mortality rates. It consists of data from 26 U.S. Current Population Surveys (CPS) cohorts, annual Social and Economic Supplements, and the 1980 Census cohort, combined with death certificate information to identify mortality status and cause of death covering the time interval, 1979 to 1998. The Current Population Surveys are March Supplements selected from the time period from March 1973 to March 1998. The NLMS routinely links geographical and demographic information from Census Bureau surveys and censuses to the NLMS database, and other available sources upon request. The Census Bureau and CMS have approved the linkage protocol and data acquisition is currently underway. The plan for the NLMS is to link information on mortality to the NLMS every two years from 1998 through 2006 with research on the resulting database to continue, at least, through 2009. The NLMS will continue to incorporate data from the yearly Annual Social and Economic Supplement into the study as the data become available. Based on the expected size of the Annual Social and Economic Supplements to be conducted, the expected number of deaths to be added to the NLMS through the updating process will increase the mortality content of the study to nearly 500,000 cases out of a total number of approximately 3.3 million records. This effort would also include expanding the NLMS population base by incorporating new March Supplement Current Population Survey data into the study as they become available. Linkages to the SEER and CMS datasets are also available. Data Availability: Due to the confidential nature of the data used in the NLMS, the public use dataset consists of a reduced number of CPS cohorts with a fixed follow-up period of five years. NIA does not make the data available directly. Research access to the entire NLMS database can be obtained through the NIA program contact listed. Interested investigators should email the NIA contact and send in a one page prospectus of the proposed project. NIA will approve projects based on their relevance to NIA/BSR''s areas of emphasis. Approved projects are then assigned to NLMS statisticians at the Census Bureau who work directly with the researcher to interface with the database. A modified version of the public use data files is available also through the Census restricted Data Centers. However, since the database is quite complex, many investigators have found that the most efficient way to access it is through the Census programmers. * Dates of Study: 1973-2009 * Study Features: Longitudinal * Sample Size: ~3.3 Million Link: *ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/00134

  4. Death Profiles by County

    • data.ca.gov
    • data.chhs.ca.gov
    • +2more
    csv, zip
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  5. D

    Provisional COVID-19 Deaths by Sex and Age

    • data.cdc.gov
    • healthdata.gov
    • +2more
    application/rdfxml +5
    Updated Sep 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCHS/DVS (2023). Provisional COVID-19 Deaths by Sex and Age [Dataset]. https://data.cdc.gov/widgets/9bhg-hcku?mobile_redirect=true
    Explore at:
    csv, application/rdfxml, xml, json, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Sep 27, 2023
    Dataset authored and provided by
    NCHS/DVS
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.

    Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.

  6. Mortality rates, by age group

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Dec 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Mortality rates, by age group [Dataset]. http://doi.org/10.25318/1310071001-eng
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.

  7. C

    Death Profiles by ZIP Code

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, zip
    Updated Dec 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Death Profiles by ZIP Code [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-zip-code
    Explore at:
    csv(78958555), csv(4571), csv(40627562), csv(80055974), csv(80054609), zipAvailable download formats
    Dataset updated
    Dec 27, 2024
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California residents by ZIP Code based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths of California residents. The data tables include deaths of residents of California by ZIP Code of residence (by residence). The data are reported as totals, as well as stratified by age and gender. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  8. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +2more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  9. Deaths, by age group and sex

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Deaths, by age group and sex [Dataset]. http://doi.org/10.25318/1310070901-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number and percentage of deaths, by age group, sex, and place of residence, 1991 to most recent year.

  10. C

    Mortality indicators by cause of death; gender, region, 1996-2019

    • ckan.mobidatalab.eu
    Updated Jul 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OverheidNl (2023). Mortality indicators by cause of death; gender, region, 1996-2019 [Dataset]. https://ckan.mobidatalab.eu/dataset/25377-sterfte-indicatoren-naar-doodsoorzaak-geslacht-regio-1996-2019
    Explore at:
    http://publications.europa.eu/resource/authority/file-type/atom, http://publications.europa.eu/resource/authority/file-type/jsonAvailable download formats
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    OverheidNl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table contains mortality indicators based on the number of deaths by cause of death for the period 1996-2019. The table contains figures on mortality per 10,000 (non-standardised, directly standardized and indirectly standardised), the CMF and SMR indices of respectively direct and indirect standardized mortality and years of life lost (YPLL, Years of Potential Life lost) per 10,000. At municipality level, the figures are only available for total men and women, four-year periods and some main groups of causes of death (Total, 2.1 Malignant neoplasms, 7 Diseases of the cardiovascular system, 8 Diseases of the respiratory organs, 17 External causes of death and all other causes of death together in one group) . At the GGD and national level, the figures are available for gender, individual years (in addition to the four-year periods) and with a more detailed classification of causes of death. The regional classification of 2020 has been used for all years. The figures in this table are based on the cause of death statistics of Statistics Netherlands (CBS). Data available from: 1996 Status of the figures: The figures in this table are final. Changes as of 23-12-2021: None, this is a new table. When will new numbers come out? New figures are released every two years. These are published in separate tables.

  11. G

    Estimates of deaths, by age and gender, annual

    • open.canada.ca
    • www150.statcan.gc.ca
    • +1more
    csv, html, xml
    Updated Sep 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2024). Estimates of deaths, by age and gender, annual [Dataset]. https://open.canada.ca/data/en/dataset/505c3250-390f-4021-9390-0d1a684ecf4d
    Explore at:
    html, csv, xmlAvailable download formats
    Dataset updated
    Sep 26, 2024
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Estimated annual number of deaths by 5-year age groups and gender for Canada, provinces and territories.

  12. Mortality; key figures

    • cbs.nl
    • ckan.mobidatalab.eu
    • +3more
    xml
    Updated Dec 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (2024). Mortality; key figures [Dataset]. https://www.cbs.nl/en-gb/figures/detail/37979eng
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Dec 9, 2024
    Dataset provided by
    Statistics Netherlands
    Authors
    Centraal Bureau voor de Statistiek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1950 - 2023
    Area covered
    The Netherlands
    Description

    This table includes key figures on mortality in the Dutch population broken down by gender. The figures include totals and ratios of deceased persons, infant mortality, mortality in babies younger than 4 weeks and perinatal mortality (after a gestation period of 24 weeks or more and after a gestation period of 28 weeks or more). The table also presents figures on life expectancy at birth and average age at death.

    For additional information on Mortality the reader is referred to the Dutch tables.

    Data available from: 1950

    Status of the figures: All data recorded in this publication are final data. The 2023 figures on stillbirths and (multiple) births are provisional, the other figures in the table are final.

    Changes as of 9 December 2024: The provisional figures on the number of live births and stillbirths do not include children who were born at a gestational age that is unknown. These cases were included in the final figures for previous years. However, the 2023 data shows a larger number of children born at an unknown gestational age than in previous years. Based on an internal analysis for 2022, it appears that in the majority of cases involving an unknown gestational age, the child was born at less than 24 weeks. To ensure that the provisional 2023 figures do not overestimate the number of stillborn children born at a gestational age of over 24 weeks, children born at an unknown gestational age have now been excluded.

    When will new figures be published? Final 2023 figures on the number of stillbirths and the number of births are expected to be added to the table in de third quarter of 2025. In the third quarter of 2025 final figures of 2024 will be published in this publication.

  13. d

    Statistics table of age and gender of death cases by region - severe special...

    • data.gov.tw
    csv, json
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control, Statistics table of age and gender of death cases by region - severe special infectious pneumonia - statistics by death day (in months) [Dataset]. https://data.gov.tw/en/datasets/160835
    Explore at:
    json, csvAvailable download formats
    Dataset authored and provided by
    Centers for Disease Control
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    Statistical information on confirmed cases and deaths of severe special infectious pneumonia starting in 2020, with secondary statistical tables stratified by region, age group, and gender. This data set is updated once a day according to the system's fixed schedule. At present, there are more cases of severe special infectious pneumonia imported from overseas than those confirmed by tests at airports or centralized quarantine stations and immediately isolated and treated, so their county and city information is not marked.

  14. A

    ‘COVID-19 Cases by Population Characteristics Over Time’ analyzed by...

    • analyst-2.ai
    Updated Jul 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘COVID-19 Cases by Population Characteristics Over Time’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-covid-19-cases-by-population-characteristics-over-time-097d/latest
    Explore at:
    Dataset updated
    Jul 23, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 Cases by Population Characteristics Over Time’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/a3291d85-0076-43c5-a59c-df49480cdc6d on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Note: On January 22, 2022, system updates to improve the timeliness and accuracy of San Francisco COVID-19 cases and deaths data were implemented. You might see some fluctuations in historic data as a result of this change. Due to the changes, starting on January 22, 2022, the number of new cases reported daily will be higher than under the old system as cases that would have taken longer to process will be reported earlier.

    A. SUMMARY This dataset shows San Francisco COVID-19 cases by population characteristics and by specimen collection date. Cases are included on the date the positive test was collected.

    Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how cases have been distributed among different subgroups. This information can reveal trends and disparities among groups.

    Data is lagged by five days, meaning the most recent specimen collection date included is 5 days prior to today. Tests take time to process and report, so more recent data is less reliable.

    B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases and deaths are from: * Case interviews * Laboratories * Medical providers

    These multiple streams of data are merged, deduplicated, and undergo data verification processes. This data may not be immediately available for recently reported cases because of the time needed to process tests and validate cases. Daily case totals on previous days may increase or decrease. Learn more.

    Data are continually updated to maximize completeness of information and reporting on San Francisco residents with COVID-19.

    Data notes on each population characteristic type is listed below.

    Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups.

    Sexual orientation * Sexual orientation data is collected from individuals who are 18 years old or older. These individuals can choose whether to provide this information during case interviews. Learn more about our data collection guidelines. * The City began asking for this information on April 28, 2020.

    Gender * The City collects information on gender identity using these guidelines.

    Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.

    Transmission type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.

    Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation
    * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures.
    These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.

    Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing

    --- Original source retains full ownership of the source dataset ---

  15. d

    Vital Statistics for England and Wales, 1999; DVS1, DVS2, DVS3, DVS4, DVS4d,...

    • b2find.dkrz.de
    Updated Nov 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Vital Statistics for England and Wales, 1999; DVS1, DVS2, DVS3, DVS4, DVS4d, DVS5 - Dataset - B2FIND [Dataset]. https://b2find.dkrz.de/dataset/e0b068c9-801b-52d6-82b1-5d5f381a3307
    Explore at:
    Dataset updated
    Nov 19, 2023
    Area covered
    England
    Description

    Abstract copyright UK Data Service and data collection copyright owner.The purpose of the Vital Statistics for England and Wales data is to record the numbers of conceptions, live births, stillbirths, deaths and causes of death for persons in England and Wales, by gender and age. Data are available at local authority, health authority and ward level. Individual studies in the series record various parts of these data. Changes have been made over time to the way in which the Office for National Statistics (ONS) collects vital statistics data, resulting in some variation in the content of later studies in the series. Further information may be found in the Key Population and Vital Statistics reports available from the ONS web site. During 2006, Sam Smith and colleagues at ESDS Government carried out work on various studies in the series prior to 2002, to improve the data format. The resulting files have been redeposited at the UKDA. More information is available in the documentation for the studies concerned. The data cover mainly local and health authority level data for 1999: births and deaths summary data, births data, mortality data by cause, infant and perinatal mortality data. Some data at ward level are also included: births and deaths by wards and deaths by selected causes by wards. For the second edition (2006), work was carried out on parts of the data by ESDS Government to produce more user-friendly tab-delimited ASCII files. For the third edition (October 2008), the files from DVS1 and DVS3 were added to complete the dataset. The data are also available in Excel and ONS ITELite format.

  16. A

    ‘Stroke Data’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Stroke Data’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-stroke-data-4f18/latest
    Explore at:
    Dataset updated
    Jan 30, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Stroke Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/redwan1010/stroke-data on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    According to the World Health Organization (WHO) stroke is the 2nd leading cause of death globally, responsible for approximately 11% of total deaths. This dataset is used to predict whether a patient is likely to get stroke based on the input parameters like gender, age, various diseases, and smoking status. Each row in the data provides relevant information about the patient.

    Content

    1) id: unique identifier 2) gender: "Male", "Female" or "Other" 3) age: age of the patient 4) hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension 5) heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease 6) ever_married: "No" or "Yes" 7) work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed" 8) Residence_type: "Rural" or "Urban" 9) avg_glucose_level: average glucose level in blood 10) bmi: body mass index 11) smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"* 12) stroke: 1 if the patient had a stroke or 0 if not *Note: "Unknown" in smoking_status means that the information is unavailable for this patient

    Acknowledgements

    We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

    --- Original source retains full ownership of the source dataset ---

  17. a

    U.S Stroke Mortality Rates 2018 - 2020

    • hub.arcgis.com
    • data-isdh.opendata.arcgis.com
    Updated Aug 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2022). U.S Stroke Mortality Rates 2018 - 2020 [Dataset]. https://hub.arcgis.com/maps/cdcarcgis::u-s-stroke-mortality-rates-2018-2020
    Explore at:
    Dataset updated
    Aug 25, 2022
    Dataset authored and provided by
    Centers for Disease Control and Prevention
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    2018 - 2020, county-level U.S. stroke death rates. Dataset developed by the Centers for Disease Control and Prevention, Division for Heart Disease and Stroke Prevention.Create maps of U.S. stroke death rates by county. Data can be stratified by age, race/ethnicity, and gender.Visit the CDC/DHDSP Atlas of Heart Disease and Stroke for additional data and maps. Atlas of Heart Disease and StrokeData SourceMortality data were obtained from the National Vital Statistics System. Bridged-Race Postcensal Population Estimates were obtained from the National Center for Health Statistics. International Classification of Diseases, 10th Revision (ICD-10) codes: I60-I69; underlying cause of death.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC/DHDSP excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.'Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., API_M_35UP)  RRR: 3 digits represent race/ethnicity    All - Overall    AIA - American Indian and Alaska Native, non-Hispanic    API - Asian and Pacific Islander, non-Hispanic    BLK - Black, non-Hispanic    HIS - Hispanic    WHT - White, non-Hispanic  S: 1 digit represents sex/gender    A - All    F - Female    M - Male  aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound. Example: The column 'BLK_M_65UP' displays rates per 100,000 black men aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 100,000 population. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and gender).At least one of the following 3 criteria:At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods

  18. w

    Artists with more than 2 artworks

    • workwithdata.com
    Updated Dec 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Artists with more than 2 artworks [Dataset]. https://www.workwithdata.com/datasets/artists?f=1&fcol0=artworks_nb&fop0=%3E&fval0=2
    Explore at:
    Dataset updated
    Dec 1, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about artists and is filtered where the number of artworks is greater than 2, featuring 6 columns including artist, birth date, country, death date, and gender. The preview is ordered by number of artworks (descending).

  19. Number, percentage and rate of homicide victims, by racialized identity...

    • www150.statcan.gc.ca
    • data.urbandatacentre.ca
    • +2more
    Updated Jul 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Number, percentage and rate of homicide victims, by racialized identity group, gender and region [Dataset]. http://doi.org/10.25318/3510020601-eng
    Explore at:
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number, percentage and rate (per 100,000 population) of homicide victims, by racialized identity group (total, by racialized identity group; racialized identity group; South Asian; Chinese; Black; Filipino; Arab; Latin American; Southeast Asian; West Asian; Korean; Japanese; other racialized identity group; multiple racialized identity; racialized identity, but racialized identity group is unknown; rest of the population; unknown racialized identity group), gender (all genders; male; female; gender unknown) and region (Canada; Atlantic region; Quebec; Ontario; Prairies region; British Columbia; territories), 2019 to 2023.

  20. MDCOVID19 ProbableDeathsByGenderDistribution

    • data.imap.maryland.gov
    • coronavirus.maryland.gov
    • +4more
    Updated May 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2020). MDCOVID19 ProbableDeathsByGenderDistribution [Dataset]. https://data.imap.maryland.gov/datasets/1f4b0ea340b64158b56faf3ee7db8cb8
    Explore at:
    Dataset updated
    May 22, 2020
    Dataset provided by
    https://arcgis.com/
    Authors
    ArcGIS Online for Maryland
    Description

    SummaryThe cumulative number of probable COVID-19 deaths among Maryland residents by gender: Female; Male; Unknown.DescriptionThe MD COVID-19 - Probable Deaths by Gender Distribution data layer is a collection of the statewide confirmed and probable COVID-19 related deaths that have been reported each day by the Vital Statistics Administration by gender. A death is classified as probable if the person's death certificate notes COVID-19 to be a probable, suspect or presumed cause or condition. Probable deaths are not yet been confirmed by a laboratory test. Some data on deaths may be unavailable due to the time lag between the death, typically reported by a hospital or other facility, and the submission of the complete death certificate. Confirmed deaths are available from the MD COVID-19 - Confirmed Deaths by Gender Distribution data layer.COVID-19 is a disease caused by a respiratory virus first identified in Wuhan, Hubei Province, China in December 2019. COVID-19 is a new virus that hasn't caused illness in humans before. Worldwide, COVID-19 has resulted in thousands of infections, causing illness and in some cases death. Cases have spread to countries throughout the world, with more cases reported daily. The Maryland Department of Health reports daily on COVID-19 cases by county.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
Organization logo

Statewide Death Profiles

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
csv(463460), csv(164006), csv(4689434), zip, csv(16301), csv(200270), csv(5034), csv(2026589), csv(5401561), csv(419332), csv(300479)Available download formats
Dataset updated
Mar 25, 2025
Dataset authored and provided by
California Department of Public Healthhttps://www.cdph.ca.gov/
Description

This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

Search
Clear search
Close search
Google apps
Main menu