7 datasets found
  1. Data from: Google Analytics & Twitter dataset from a movies, TV series and...

    • figshare.com
    • portalcientificovalencia.univeuropea.com
    txt
    Updated Feb 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Víctor Yeste (2024). Google Analytics & Twitter dataset from a movies, TV series and videogames website [Dataset]. http://doi.org/10.6084/m9.figshare.16553061.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 7, 2024
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Víctor Yeste
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio

  2. Apple / Google / Facebook Stock Price

    • kaggle.com
    Updated Sep 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olga Vainer (2022). Apple / Google / Facebook Stock Price [Dataset]. https://www.kaggle.com/datasets/vainero/google-apple-facebook-stock-price/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 11, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Olga Vainer
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Technology companies have become a dominant driver in recent years of economic growth, consumer tastes and the financial markets. The biggest tech stocks as a group, for example, have dramatically outpaced the broader market in the past decade.

    That's because technology has reshaped in a major way how people communicate, consume information, shop, socialize, and work.

    Broadly speaking, companies in the technology sector engage in the research, development, and manufacture of technologically based goods and services. They create software, and design and manufacture computers, mobile devices, and home appliances. They also provide products and services related to information technology.

    Content

    This dataset contains 3 files with the daily stock price and volume of the three companies: Google, Apple, and Facebook from 07/09/2017 to 07/09/2022. Source: Yahoo! Finance

    Profile

    Apple

    Apple Inc. (AAPL) One Apple Park Way Cupertino, CA 95014 United States 408 996 1010 https://www.apple.com

    Sector(s): Technology Industry: Consumer Electronics Full Time Employees: 154,000

    Total Revenue (2021): $365,817,000
    Net Income (2021):$94,680,000
    Exchange: Nasdaq

    Google

    Alphabet Inc. (GOOG) 1600 Amphitheatre Parkway Mountain View, CA 94043 United States 650 253 0000 https://www.abc.xyz

    Sector(s): Communication Services Industry: Internet Content & Information Full Time Employees: 174,014

    Total Revenue (2021): $257,637,000 Net Income (2021):$76,033,000 Exchange: Nasdaq

    Facebook

    Meta Platforms, Inc. (META) 1601 Willow Road Menlo Park, CA 94025 United States 650 543 4800 https://investor.fb.com

    Sector(s): Communication Services Industry: Internet Content & Information Full Time Employees: 83,553

    Total Revenue (2021): $117,929,000 Net Income (2021):$39,370,000 Exchange: Nasdaq

    Acknowledgements

    Yahoo! Finance Investopedia Nasdaq

    Start A New Notebook!

  3. IRS Form 990 Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    Internal Revenue Servicehttp://www.irs.gov/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Form 990 (officially, the "Return of Organization Exempt From Income Tax"1) is a United States Internal Revenue Service form that provides the public with financial information about a nonprofit organization. It is often the only source of such information. It is also used by government agencies to prevent organizations from abusing their tax-exempt status. Source: https://en.wikipedia.org/wiki/Form_990

    Content

    Form 990 is used by the United States Internal Revenue Service to gather financial information about nonprofit/exempt organizations. This BigQuery dataset can be used to perform research and analysis of organizations that have electronically filed Forms 990, 990-EZ and 990-PF. For a complete description of data variables available in this dataset, see the IRS’s extract documentation: https://www.irs.gov/uac/soi-tax-stats-annual-extract-of-tax-exempt-organization-financial-data.

    Update Frequency: Annual

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:irs_990

    https://cloud.google.com/bigquery/public-data/irs-990

    Dataset Source: U.S. Internal Revenue Service. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by @rawpixel from Unplash.

    Inspiration

    What organizations filed tax exempt status in 2015?

    What was the revenue of the American Red Cross in 2017?

  4. d

    MLP-based Learnable Window Size Dataset for Bitcoin Market Price

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajabi, Shahab (2023). MLP-based Learnable Window Size Dataset for Bitcoin Market Price [Dataset]. http://doi.org/10.7910/DVN/5YBLKV
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Rajabi, Shahab
    Description

    The dataset of this paper is collected based on Google, Blockchain, and the Bitcoin market. Generally, there is a total of 26 features, however, a feature whose correlation rate is lower than 0.3 between the variations of price and the variations of feature has been eliminated. Hence, a total of 21 practical features including Market capitalization, Trade-volume, Transaction-fees USD, Average confirmation time, Difficulty, High price, Low price, Total hash rate, Block-size, Miners-revenue, N-transactions-total, Google searches, Open price, N-payments-per Block, Total circulating Bitcoin, Cost-per-transaction percent, Fees-USD-per transaction, N-unique-addresses, N-transactions-per block, and Output-volume have been selected. In addition to the values of these features, for each feature, a new one is created that includes the difference between the previous day and the day before the previous day as a supportive feature. From the point of view of the number and history of the dataset used, a total of 1275 training data were used in the proposed model to extract patterns of Bitcoin price and they were collected from 12 Nov 2018 to 4 Jun 2021.

  5. FDIC-Insured Banks and Branches

    • console.cloud.google.com
    • redivis.com
    Updated Jul 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:Federal%20Deposit%20Insurance%20Corporation%20(FDIC) (2020). FDIC-Insured Banks and Branches [Dataset]. https://console.cloud.google.com/marketplace/product/fdic/insured-institutions
    Explore at:
    Dataset updated
    Jul 16, 2020
    Dataset provided by
    Googlehttp://google.com/
    Federal Deposit Insurance Corporationhttp://fdic.gov/
    Description

    The FDIC's Institution Directory provides a list of all FDIC-insured institutions. The file includes demographic information related to the institution such as locational detail (name, city state, etc) and operating status (active, inactive, bank class, etc). The download file also contains key financial information reported by the FDIC-insured institution, such as total deposits, quarterly net income, and more. Additionally, the dataset includes data going back to 1996. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  6. d

    Firmographic Data US Company Insights with Revenue, Size & Industry...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Canaria Inc., Firmographic Data US Company Insights with Revenue, Size & Industry Matchable Firmographic Data with Google Maps for KYB, B2B Leads & Market Research [Dataset]. https://datarade.ai/data-products/canaria-firmographic-data-usa-300000-unique-companies-canaria-inc
    Explore at:
    .bin, .json, .xml, .csv, .xls, .txtAvailable download formats
    Dataset authored and provided by
    Canaria Inc.
    Area covered
    United States
    Description

    Firmographic Data for Company Intelligence, B2B Segmentation & KYB Firmographic data is the backbone of modern B2B decision-making, powering everything from lead scoring and segmentation to compliance, financial benchmarking, and market expansion planning. Canaria’s enriched Firmographic Data product delivers deep visibility into U.S. companies by combining standardized insights on revenue ranges, employee count, and business category with optional location verification through Google Maps metadata.

    This clean and analysis-ready firmographic dataset is built for precision. Every record is structured, normalized, and deduplicated to support automated workflows across CRMs, BI dashboards, compliance tools, financial models, and sales platforms. Updated weekly, our firmographic data ensures that teams stay ahead of organizational shifts, while providing the matchability and granularity required to fuel market intelligence at scale.

    If you're working with fragmented company information, incomplete lead lists, or outdated third-party data, Canaria’s Firmographic Data bridges the gap between surface-level signals and operational insight.

    Use Cases: What This Firmographic Data Solves Canaria’s firmographic data offering is used by sales, risk, finance, compliance, and strategy teams to strengthen daily operations, strategic planning, and automation initiatives.

    Company Analysis • Leverage firmographic data to assess a company’s size, structure, and potential impact within its industry • Identify organizational tiers using clean employee size brackets, location counts, and business hierarchy insights • Analyze firmographic profiles at the branch level, matched with Google Maps data to verify presence, operating hours, and reviews • Map the operational footprint of enterprises across ZIP codes, cities, and regions for trend tracking or competitive benchmarking

    Know Your Business (KYB) & Regulatory Compliance • Use firmographic signals such as company type, headquarters address, incorporation location, and estimated size for KYB verification • Identify shell entities or mismatched records using cross-source validation with Google Maps-matched firmographic data • Flag risk-prone entities based on abnormal size-revenue-industry patterns or gaps in metadata • Enhance onboarding pipelines and due diligence platforms by auto-enriching firmographic gaps at scale • Comply with local and international KYB regulations with standardized firmographic data structures

    Financial Intelligence & Private Market Benchmarking • Use estimated firmographic variables like annual revenue range, employee count, and industry focus to model private market behavior • Benchmark companies against similar-sized peers within the same vertical, region, or revenue bracket • Replace missing financials with proxy signals from enriched firmographic datasets for internal modeling and client analysis • Feed investor signals and fund models with data on size trends, regional density, and revenue tier shifts • Correlate firmographic data with job postings, hiring behavior, and sentiment for growth prediction models

    Market Research, TAM/SAM Modeling & Industry Intelligence • Conduct high-resolution market mapping by combining industry codes, company counts, and firm size across specific geographies • Map sector saturation and whitespace using city, ZIP code, or state-level firmographic intelligence • Analyze shifts in vertical presence, workforce concentration, and mid-market vs. enterprise distribution • Tailor customer segmentation models using clean and consistent firmographic fields • Build TAM/SAM datasets using industry, employee size, revenue tier, and location granularity

    B2B Lead Generation & RevOps Segmentation • Score and segment inbound leads using enriched firmographic attributes such as company size, region, industry, and revenue • Eliminate low-value or unqualified leads from prospecting databases by applying firmographic filters • Route leads to the right sales reps or vertical pods based on company headcount, location, and category • Enrich lead records automatically with up-to-date firmographic data pulled from verified external sources • Build ABM lists using revenue-based tiers, industry verticals, and mapped branch data via Google Maps enrichment

    What Makes This Firmographic Data Unique Deep Enrichment with Verified Firmographic Attributes • Our firmographic data includes revenue range, employee size bracket, industry classification, company type, and regional identifiers — all normalized to enable aggregation, filtering, and modeling.

    Matchable with Google Maps for Accuracy and Context • Match your firmographic records with Google Maps to verify physical branch presence, exact addresses, latitude/longitude, phone numbers, and ratings. This adds a real-world signal layer to abstract company data and supports KYB, lead scoring, and risk assessment.

    Continuously Updated and Scalable • Weekly refreshes ensure your firmographi...

  7. Global net revenue of Amazon 2014-2024, by product group

    • statista.com
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global net revenue of Amazon 2014-2024, by product group [Dataset]. https://www.statista.com/statistics/672747/amazons-consolidated-net-revenue-by-segment/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In 2024, Amazon's net revenue from subscription services segment amounted to 44.37 billion U.S. dollars. Subscription services include Amazon Prime, for which Amazon reported 200 million paying members worldwide at the end of 2020. The AWS category generated 107.56 billion U.S. dollars in annual sales. During the most recently reported fiscal year, the company’s net revenue amounted to 638 billion U.S. dollars. Amazon revenue segments Amazon is one of the biggest online companies worldwide. In 2019, the company’s revenue increased by 21 percent, compared to Google’s revenue growth during the same fiscal period, which was just 18 percent. The majority of Amazon’s net sales are generated through its North American business segment, which accounted for 236.3 billion U.S. dollars in 2020. The United States are the company’s leading market, followed by Germany and the United Kingdom. Business segment: Amazon Web Services Amazon Web Services, commonly referred to as AWS, is one of the strongest-growing business segments of Amazon. AWS is a cloud computing service that provides individuals, companies and governments with a wide range of computing, networking, storage, database, analytics and application services, among many others. As of the third quarter of 2020, AWS accounted for approximately 32 percent of the global cloud infrastructure services vendor market.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Víctor Yeste (2024). Google Analytics & Twitter dataset from a movies, TV series and videogames website [Dataset]. http://doi.org/10.6084/m9.figshare.16553061.v4
Organization logoOrganization logo

Data from: Google Analytics & Twitter dataset from a movies, TV series and videogames website

Related Article
Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
txtAvailable download formats
Dataset updated
Feb 7, 2024
Dataset provided by
figshare
Figsharehttp://figshare.com/
Authors
Víctor Yeste
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio

Search
Clear search
Close search
Google apps
Main menu