Income statistics by economic family type and income source, annual.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1: Stata do-file to generate WIR and TWIR figures.
This dataset contains replication files for "The Fading American Dream: Trends in Absolute Income Mobility Since 1940" by Raj Chetty, David Grusky, Maximilian Hell, Nathaniel Hendren, Robert Manduca, and Jimmy Narang. For more information, see https://opportunityinsights.org/paper/the-fading-american-dream/. A summary of the related publication follows. One of the defining features of the “American Dream” is the ideal that children have a higher standard of living than their parents. We assess whether the U.S. is living up to this ideal by estimating rates of “absolute income mobility” – the fraction of children who earn more than their parents – since 1940. We measure absolute mobility by comparing children’s household incomes at age 30 (adjusted for inflation using the Consumer Price Index) with their parents’ household incomes at age 30. We find that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Absolute income mobility has fallen across the entire income distribution, with the largest declines for families in the middle class. These findings are unaffected by using alternative price indices to adjust for inflation, accounting for taxes and transfers, measuring income at later ages, and adjusting for changes in household size. Absolute mobility fell in all 50 states, although the rate of decline varied, with the largest declines concentrated in states in the industrial Midwest, such as Michigan and Illinois. The decline in absolute mobility is especially steep – from 95% for children born in 1940 to 41% for children born in 1984 – when we compare the sons’ earnings to their fathers’ earnings. Why have rates of upward income mobility fallen so sharply over the past half-century? There have been two important trends that have affected the incomes of children born in the 1980s relative to those born in the 1940s and 1950s: lower Gross Domestic Product (GDP) growth rates and greater inequality in the distribution of growth. We find that most of the decline in absolute mobility is driven by the more unequal distribution of economic growth rather than the slowdown in aggregate growth rates. When we simulate an economy that restores GDP growth to the levels experienced in the 1940s and 1950s but distributes that growth across income groups as it is distributed today, absolute mobility only increases to 62%. In contrast, maintaining GDP at its current level but distributing it more broadly across income groups – at it was distributed for children born in the 1940s – would increase absolute mobility to 80%, thereby reversing more than two-thirds of the decline in absolute mobility. These findings show that higher growth rates alone are insufficient to restore absolute mobility to the levels experienced in mid-century America. Under the current distribution of GDP, we would need real GDP growth rates above 6% per year to return to rates of absolute mobility in the 1940s. Intuitively, because a large fraction of GDP goes to a small fraction of high-income households today, higher GDP growth does not substantially increase the number of children who earn more than their parents. Of course, this does not mean that GDP growth does not matter: changing the distribution of growth naturally has smaller effects on absolute mobility when there is very little growth to be distributed. The key point is that increasing absolute mobility substantially would require more broad-based economic growth. We conclude that absolute mobility has declined sharply in America over the past half-century primarily because of the growth in inequality. If one wants to revive the “American Dream” of high rates of absolute mobility, one must have an interest in growth that is shared more broadly across the income distribution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kenya Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at -1.180 % in 2021. Kenya Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging -1.180 % from Dec 2021 (Median) to 2021, with 1 observations. The data reached an all-time high of -1.180 % in 2021 and a record low of -1.180 % in 2021. Kenya Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kenya – Table KE.World Bank.WDI: Social: Poverty and Inequality. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The coverage and quality of the 2017 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2017 exercise of the International Comparison Program. See the Poverty and Inequality Platform for detailed explanations.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.
Families of tax filers; Single-earner and dual-earner census families by number of children (final T1 Family File; T1FF).
This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.
We know that students at elite universities tend to be from high-income families, and that graduates are more likely to end up in high-status or high-income jobs. But very little public data has been available on university admissions practices. This dataset, collected by Opportunity Insights, gives extensive detail on college application and admission rates for 139 colleges and universities across the United States, including data on the incomes of students. How do admissions practices vary by institution, and are wealthy students overrepresented?
Education equality is one of the most contested topics in society today. It can be defined and explored in many ways, from accessible education to disabled/low-income/rural students to the cross-generational influence of doctorate degrees and tenure track positions. One aspect of equality is the institutions students attend. Consider the “Ivy Plus” universities, which are all eight Ivy League schools plus MIT, Stanford, Duke, and Chicago. Although less than half of one percent of Americans attend Ivy-Plus colleges, they account for more than 10% of Fortune 500 CEOs, a quarter of U.S. Senators, half of all Rhodes scholars, and three-fourths of Supreme Court justices appointed in the last half-century.
A 2023 study (Chetty et al, 2023) tried to understand how these elite institutions affect educational equality:
Do highly selective private colleges amplify the persistence of privilege across generations by taking students from high-income families and helping them obtain high-status, high-paying leadership positions? Conversely, to what extent could such colleges diversify the socioeconomic backgrounds of society’s leaders by changing their admissions policies?
To answer these questions, they assembled a dataset documenting the admission and attendance rate for 13 different income bins for 139 selective universities around the country. They were able to access and link not only student SAT/ACT scores and high school grades, but also parents’ income through their tax records, students’ post-college graduate school enrollment or employment (including earnings, employers, and occupations), and also for some selected colleges, their internal admission ratings for each student. This dataset covers students in the entering classes of 2010–2015, or roughly 2.4 million domestic students.
They found that children from families in the top 1% (by income) are more than twice as likely to attend an Ivy-Plus college as those from middle-class families with comparable SAT/ACT scores, and two-thirds of this gap can be attributed to higher admission rates with similar scores, with the remaining third due to the differences in rates of application and matriculation (enrollment conditional on admission). This is not a shocking conclusion, but we can further explore elite college admissions by socioeconomic status to understand the differences between elite private colleges and public flagships admission practices, and to reflect on the privilege we have here and to envision what a fairer higher education system could look like.
The data has been aggregated by university and by parental income level, grouped into 13 income brackets. The income brackets are grouped by percentile relative to the US national income distribution, so for instance the 75.0 bin represents parents whose incomes are between the 70th and 80th percentile. The top two bins overlap: the 99.4 bin represents parents between the 99 and 99.9th percentiles, while the 99.5 bin represents parents in the top 1%.
Each row represents students’ admission and matriculation outcomes from one income bracket at a given university. There are 139 colleges covered in this dataset.
The variables include an array of different college-level-income-binned estimates for things including attendance rate (both raw and reweighted by SAT/ACT scores), application rate, and relative attendance rate conditional on application, also with respect to specific test score bands for each college and in/out-of state. Colleges are categorized into six tiers: Ivy Plus, other elite schools (public and private), highly selective public/private, and selective public/private, with selectivity generally in descending order. It also notes whether a college is public and/or flagship, where “flagship” means public flagship universities. Furthermore, they also report the relative application rate for each income bin within specific test bands, which are 50-point bands that had the most attendees in each school tier/category.
Several values are reported in “test-score-reweighted” form. These values control for SAT score: they are calculated separately for each SAT score value, then averaged with weights based on the distribution of SAT scores at the institution.
Note that since private schools typically don’t differentiate between in-...
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in North Carolina per the most current US Census data, including information on rank and average income.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The definition of urban and rural areas differs across countries, which is evident in household surveys conducted in low- and middle-income countries. This lack of consistency and variation poses challenges for comparative analyses of the relationship between urbanization and health outcomes. Additionally, the binary urban-rural dichotomy fails to acknowledge the existence of an urban-rural continuum, encompassing remote rural areas, semi-urban suburbs, and core urban areas. By utilizing satellite-based datasets, it is possible to employ objective and continuous measures that quantify the level of urbanization with high spatial resolution. We utilize geospatial techniques to derive alternative classifications of the urban continuum from satellite data across nine household surveys conducted from 2005 to 2019 in six African countries and provide the database here
Survey of Household Spending (SHS), average household spending, Canada, regions and provinces.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Income statistics by economic family type and income source, annual.