100+ datasets found
  1. c

    Meijer grocery store dataset

    • crawlfeeds.com
    csv, zip
    Updated May 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Meijer grocery store dataset [Dataset]. https://crawlfeeds.com/datasets/meijer-grocery-store-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    May 4, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Explore the Meijer Grocery Store Dataset, a comprehensive collection of data on products available at Meijer, a leading American grocery store chain. This dataset includes detailed information on a wide variety of grocery items such as fresh produce, dairy, meat, beverages, household essentials, and more. Each product entry provides essential details, including product names, categories, prices, brands, descriptions, and availability, offering valuable insights for researchers, data analysts, and retail professionals.

    Key Features:

    • Extensive Product Range: Contains a wide array of grocery items from Meijer, covering multiple categories like fresh produce, dairy, meat, beverages, household essentials, and more.
    • Detailed Product Information: Each entry includes key details such as product name, category, price, brand, description, and availability, allowing for in-depth analysis of retail trends and consumer preferences.
    • Ideal for Market Analysis: Perfect for researchers, data scientists, and retail professionals interested in analyzing consumer behavior, studying grocery market trends, or optimizing inventory strategies in the retail sector.
    • Rich Source of Retail Data: Provides a comprehensive overview of the grocery market at Meijer, helping professionals stay updated on the latest trends, popular products, and pricing strategies.

    Whether you're analyzing market trends in the grocery sector, researching consumer behavior, or developing new retail strategies, the Meijer Grocery Store Dataset is an invaluable resource that provides detailed insights and extensive coverage of products available at Meijer.

  2. Grocery Shelves Dataset

    • kaggle.com
    zip
    Updated Jun 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Unidata (2025). Grocery Shelves Dataset [Dataset]. https://www.kaggle.com/datasets/unidpro/grocery-shelves/code
    Explore at:
    zip(36611803 bytes)Available download formats
    Dataset updated
    Jun 16, 2025
    Authors
    Unidata
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Grocery Shelves Dataset

    Dataset comprises 5,000+ images of grocery shelves captured in various grocery stores and supermarkets under different lighting conditions. It is designed for research in object detection and product recognition, providing valuable insights into the retail industry for enhancing computer vision applications.

    By utilizing this dataset, users can improve their understanding of deep learning methods and develop more effective vision applications tailored to the retail sector. - Get the data

    Example of the data

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22059654%2F7e72fe74d53eeb40dc28e6a315bcf49b%2FFrame%20184%20(1).png?generation=1734837963888145&alt=media" alt=""> Each image is accompanied by an XML-annotation indicating the labeled types of product for each image in the dataset. Each image has an attribute of the product(boolean): facing, flipped, occluded.

    💵 Buy the Dataset: This is a limited preview of the data. To access the full dataset, please contact us at https://unidata.pro to discuss your requirements and pricing options.

    Researchers can leverage this dataset to advance their work in object detection and product recognition, ultimately contributing to the development of smarter grocery delivery systems and enhanced shopping experiences for consumers. It includes a diverse range of shelf images that reflect real-world grocery market environments, making it an invaluable resource for researchers and developers focused on image classification and computer vision tasks.

    🌐 UniData provides high-quality datasets, content moderation, data collection and annotation for your AI/ML projects

  3. Retail and Service Industries Dataset

    • kaggle.com
    zip
    Updated Sep 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Burak Ergene (2023). Retail and Service Industries Dataset [Dataset]. https://www.kaggle.com/datasets/burakergene/retail-and-service-industries-dataset
    Explore at:
    zip(49875 bytes)Available download formats
    Dataset updated
    Sep 12, 2023
    Authors
    Burak Ergene
    Description

    Features:

    Month: The month of data collection or reporting.

    Cafes, Restaurants, and Catering Services: Information related to establishments providing food and beverage services.

    Cafes, Restaurants, and Takeaway Food Services: Data concerning eateries offering both dine-in and takeaway food options.

    Clothing Retailing: Insights into retail establishments specializing in clothing merchandise.

    Clothing, Footwear, and Personal Accessory Retailing: Details about retail outlets offering clothing, footwear, and personal accessory items.

    Department Stores: Information about larger stores that carry a wide variety of product categories.

    Electrical and Electronic Goods Retailing: Data on retail businesses dealing in electrical and electronic products.

    Food Retailing: Information about retail establishments primarily focused on selling food items.

    Footwear and Other Personal Accessory Retailing: Insights into retail stores specializing in footwear and personal accessories.

    Furniture, Floor Coverings, Houseware, and Textile Goods Retailing: Details about retailers selling furniture, floor coverings, houseware, and textile goods.

    Hardware, Building, and Garden Supplies Retailing: Data on businesses retailing hardware, building materials, and garden supplies.

    Household Goods Retailing: Information about retail establishments specializing in household goods.

    Liquor Retailing: Insights into retailers specializing in alcoholic beverages.

    Newspaper and Book Retailing: Details about retail outlets selling newspapers and books.

    Other Recreational Goods Retailing: Data on retail businesses offering recreational and leisure products.

    Other Retailing: Information about various other retail establishments not covered by specific categories.

    Other Specialised Food Retailing: Insights into retail stores offering specialized food products.

    Pharmaceutical, Cosmetic, and Toiletry Goods Retailing: Details about retail outlets selling pharmaceutical, cosmetic, and toiletry goods.

    Supermarket and Grocery Stores: Data on supermarkets and stores primarily selling grocery items.

    Takeaway Food Services: Information about establishments providing takeaway food options.

  4. Retail Data | Retail Sector in North America | Comprehensive Contact...

    • datarade.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai, Retail Data | Retail Sector in North America | Comprehensive Contact Profiles | Best Price Guaranteed [Dataset]. https://datarade.ai/data-products/retail-data-retail-sector-in-north-america-comprehensive-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset provided by
    Area covered
    United States
    Description

    Success.ai’s Retail Data for the Retail Sector in North America offers a comprehensive dataset designed to connect businesses with key players across the diverse retail industry. Covering everything from department stores and supermarkets to specialty shops and e-commerce platforms, this dataset provides verified contact details, business locations, and leadership profiles for retail companies in the United States, Canada, and Mexico.

    With access to over 170 million verified professional profiles and 30 million company profiles, Success.ai ensures your outreach, marketing, and business development efforts are powered by accurate, continuously updated, and AI-validated data.

    Backed by our Best Price Guarantee, this solution empowers businesses to thrive in North America’s competitive retail landscape.

    Why Choose Success.ai’s Retail Data for North America?

    1. Verified Contact Data for Precision Outreach

      • Access verified phone numbers, work emails, and LinkedIn profiles of retail executives, store managers, and decision-makers.
      • AI-driven validation ensures 99% accuracy, enabling confident communication and efficient campaign execution.
    2. Comprehensive Coverage Across Retail Segments

      • Includes profiles of retail businesses across major markets, from large department stores and grocery chains to boutique retailers and online platforms.
      • Gain insights into the operational dynamics of retail hubs in cities such as New York, Los Angeles, Toronto, and Mexico City.
    3. Continuously Updated Datasets

      • Real-time updates reflect leadership changes, new store openings, market expansions, and shifts in consumer preferences.
      • Stay aligned with evolving industry trends and emerging opportunities in the North American retail sector.
    4. Ethical and Compliant

      • Adheres to GDPR, CCPA, and other privacy regulations, ensuring responsible and lawful use of data in your campaigns.

    Data Highlights:

    • 170M+ Verified Professional Profiles: Engage with executives, marketing directors, and operations managers across the North American retail sector.
    • 30M Company Profiles: Access firmographic data, including revenue ranges, store counts, and geographic footprints.
    • Store Location Data: Pinpoint retail outlets, regional offices, and distribution centers to refine supply chain and marketing strategies.
    • Leadership Contact Details: Connect with CEOs, CMOs, and procurement officers influencing retail operations and vendor selections.

    Key Features of the Dataset:

    1. Retail Decision-Maker Profiles

      • Identify and engage with store owners, category managers, and marketing directors shaping customer experiences and product strategies.
      • Target professionals responsible for inventory planning, vendor contracts, and store performance.
    2. Advanced Filters for Precision Targeting

      • Filter companies by industry segment (luxury, grocery, e-commerce), geographic location, company size, or revenue range.
      • Tailor outreach to align with regional market trends, customer demographics, and operational priorities.
    3. Market Trends and Operational Insights

      • Analyze trends such as online shopping growth, sustainability practices, and supply chain optimization.
      • Leverage insights to refine product offerings, identify partnership opportunities, and design effective campaigns.
    4. AI-Driven Enrichment

      • Profiles enriched with actionable data enable personalized messaging, highlight unique value propositions, and enhance engagement outcomes.

    Strategic Use Cases:

    1. Sales and Lead Generation

      • Present products, services, or technology solutions to retail procurement teams, marketing departments, and operations managers.
      • Build relationships with retailers seeking innovative tools, efficient supply chain solutions, or unique product offerings.
    2. Market Research and Consumer Insights

      • Analyze retail trends, customer behaviors, and seasonal demands to inform marketing strategies and product launches.
      • Benchmark against competitors to identify gaps, emerging niches, and growth opportunities.
    3. E-Commerce and Digital Strategy Development

      • Target e-commerce managers and digital transformation teams driving online retail initiatives and omnichannel integration.
      • Offer solutions to enhance online shopping experiences, logistics, and customer loyalty programs.
    4. Recruitment and Workforce Solutions

      • Engage HR professionals and hiring managers in recruiting talent for store operations, customer service, or marketing roles.
      • Provide workforce optimization tools, training platforms, or staffing services tailored to retail environments.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality retail data at competitive prices, ensuring strong ROI for your marketing and outreach efforts in North America.
    2. Seamless Integration
      ...

  5. Grocery Data | Food Data | Food & Grocery Data | Industry Data | Grocery POI...

    • datarade.ai
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MealMe (2025). Grocery Data | Food Data | Food & Grocery Data | Industry Data | Grocery POI and SKU Level Product Data from 1M+ Locations with Prices [Dataset]. https://datarade.ai/data-products/grocery-data-food-data-food-grocery-data-industry-dat-mealme
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 23, 2025
    Dataset provided by
    MealMe, Inc.
    Authors
    MealMe
    Area covered
    Belarus, Kiribati, Tajikistan, Lesotho, Chile, Sao Tome and Principe, French Polynesia, India, Honduras, Tonga
    Description

    MealMe provides comprehensive grocery and retail SKU-level product data, including real-time pricing, from the top 100 retailers in the USA and Canada. Our proprietary technology ensures accurate and up-to-date insights, empowering businesses to excel in competitive intelligence, pricing strategies, and market analysis.

    Retailers Covered: MealMe’s database includes detailed SKU-level data and pricing from leading grocery and retail chains such as Walmart, Target, Costco, Kroger, Safeway, Publix, Whole Foods, Aldi, ShopRite, BJ’s Wholesale Club, Sprouts Farmers Market, Albertsons, Ralphs, Pavilions, Gelson’s, Vons, Shaw’s, Metro, and many more. Our coverage spans the most influential retailers across North America, ensuring businesses have the insights needed to stay competitive in dynamic markets.

    Key Features: SKU-Level Granularity: Access detailed product-level data, including product descriptions, categories, brands, and variations. Real-Time Pricing: Monitor current pricing trends across major retailers for comprehensive market comparisons. Regional Insights: Analyze geographic price variations and inventory availability to identify trends and opportunities. Customizable Solutions: Tailored data delivery options to meet the specific needs of your business or industry. Use Cases: Competitive Intelligence: Gain visibility into pricing, product availability, and assortment strategies of top retailers like Walmart, Costco, and Target. Pricing Optimization: Use real-time data to create dynamic pricing models that respond to market conditions. Market Research: Identify trends, gaps, and consumer preferences by analyzing SKU-level data across leading retailers. Inventory Management: Streamline operations with accurate, real-time inventory availability. Retail Execution: Ensure on-shelf product availability and compliance with merchandising strategies. Industries Benefiting from Our Data CPG (Consumer Packaged Goods): Optimize product positioning, pricing, and distribution strategies. E-commerce Platforms: Enhance online catalogs with precise pricing and inventory information. Market Research Firms: Conduct detailed analyses to uncover industry trends and opportunities. Retailers: Benchmark against competitors like Kroger and Aldi to refine assortments and pricing. AI & Analytics Companies: Fuel predictive models and business intelligence with reliable SKU-level data. Data Delivery and Integration MealMe offers flexible integration options, including APIs and custom data exports, for seamless access to real-time data. Whether you need large-scale analysis or continuous updates, our solutions scale with your business needs.

    Why Choose MealMe? Comprehensive Coverage: Data from the top 100 grocery and retail chains in North America, including Walmart, Target, and Costco. Real-Time Accuracy: Up-to-date pricing and product information ensures competitive edge. Customizable Insights: Tailored datasets align with your specific business objectives. Proven Expertise: Trusted by diverse industries for delivering actionable insights. MealMe empowers businesses to unlock their full potential with real-time, high-quality grocery and retail data. For more information or to schedule a demo, contact us today!

  6. g

    Grocery Store Locations | gimi9.com

    • gimi9.com
    Updated Aug 3, 2004
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2004). Grocery Store Locations | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_grocery-store-locations/
    Explore at:
    Dataset updated
    Aug 3, 2004
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Then, we reviewed the Office of Planning’s Food System Assessment (https://dcfoodpolicycouncilorg.files.wordpress.com/2019/06/2018-food-system-assessment-final-6.13.pdf) list in Appendix D, comparing that to the created from the ABCA definition, which led to the addition of a few more examples that meet or come very close to the full-service grocery store criteria. Here’s the explanation from OP regarding how they came to create their list:“To determine the number of grocery stores in the District, we analyzed existing business licenses in the Department of Consumer and Regulatory Affairs (2018) Business License Verification system (located at https://eservices.dcra.dc.gov/BBLV/Default.aspx). To distinguish grocery stores from convenience stores, we applied the Alcohol Beverage and Cannabis Administration’s (ABCA) definition of a full-service grocery store. This definition requires a store to be licensed as a grocery store, sell at least six different food categories, dedicate either 50% of the store’s total square feet or 6,000 square feet to selling food, and dedicate at least 5% of the selling area to each food category. This definition can be found at https://abca.dc.gov/page/full-service-grocery-store#gsc.tab=0. To distinguish small grocery stores from large grocery stores, we categorized large grocery stores as those 10,000 square feet or more. This analysis was conducted using data from the WDCEP’s Retail and Restaurants webpage (located at https://wdcep.com/dc-industries/retail/) and using ARCGIS Spatial Analysis tools when existing data was not available. Our final numbers differ slightly from existing reports like the DC Hunger Solutions’ Closing the Grocery Store Gap and WDCEP’s Grocery Store Opportunities Map; this difference likely comes from differences in our methodology and our exclusion of stores that have closed.”We also conducted a visual analysis of locations and relied on personal experience of visits to locations to determine whether they should be included in the list.

  7. a

    USA Grocery Store Market Opportunity

    • arcgishub.hub.arcgis.com
    Updated Oct 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Hub (2017). USA Grocery Store Market Opportunity [Dataset]. https://arcgishub.hub.arcgis.com/maps/arcgishub::zip-code/about
    Explore at:
    Dataset updated
    Oct 31, 2017
    Dataset authored and provided by
    ArcGIS Hub
    Area covered
    Description

    This layer shows the market opportunity for grocery stores in the U.S. in 2017 in a multiscale map (by country, state, county, ZIP Code, tract, and block group). The map uses the Leakage/Surplus Factor, an indexed value that represents opportunity (leakage), saturation (surplus), or balance within a market. This map focuses on the opportunity for grocery stores (NAICS 4451). The pop-up is configured to include the following information for each geography level:Count of grocery stores - NAICS 4451Total annual NAICS 4451 sales (supply)Total annual NAICS 4451 sales potential (demand)Market Opportunity for NAICS 4451 (expressed as an index)Total annual supply and demand for various food industriesFood and Beverage Stores - NAICS 445Specialty Food Stores - NAICS 4452Beer/Wine/Liquor Stores - NAICS 4453Esri's Leakage/Surplus Factor measures the balance between the volume of retail sales (supply) generated by retail businesses and the volume of retail potential (demand) produced by household spending on retail goods within the same industry. The factor enables a one-step comparison of supply against demand, and a simple way to identify business opportunity. Leakage implies that potential sales are "leaking" from an area, while surplus implies a saturation within a given area. The values range from -100 to +100, with a value of 0 representing a balanced market. See the Leakage/Surplus Factor Data Note for more information. Esri's 2017 Retail MarketPlace (RMP) database provides a direct comparison between retail sales and consumer spending by industry and measures the gap between supply and demand. This database includes retail sales by industry to households and retail potential or spending by households. The Retail MarketPlace data helps organizations accurately measure retail activity by trade area and compare retail sales to consumer spending by NAICS industry classification. See Retail MarketPlace Database to view the methodology statement, supported geography levels, and complete variable list. Additional Esri Resources:Esri DemographicsU.S. 2017/2022 Esri Updated DemographicsEssential demographic vocabularyEsri's arcgis.com demographic map layers

  8. p

    Industrial supermarkets Business Data for United States

    • poidata.io
    csv, json
    Updated Nov 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business Data Provider (2025). Industrial supermarkets Business Data for United States [Dataset]. https://www.poidata.io/report/industrial-supermarket/united-states
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Nov 17, 2025
    Dataset authored and provided by
    Business Data Provider
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Variables measured
    Website URL, Phone Number, Review Count, Business Name, Email Address, Business Hours, Customer Rating, Business Address, Business Categories, Geographic Coordinates
    Description

    Comprehensive dataset containing 115 verified Industrial supermarket businesses in United States with complete contact information, ratings, reviews, and location data.

  9. p

    Industrial supermarkets Business Data for Switzerland

    • poidata.io
    csv, json
    Updated Nov 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business Data Provider (2025). Industrial supermarkets Business Data for Switzerland [Dataset]. https://poidata.io/report/industrial-supermarket/switzerland
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Nov 30, 2025
    Dataset authored and provided by
    Business Data Provider
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Switzerland
    Variables measured
    Website URL, Phone Number, Review Count, Business Name, Email Address, Business Hours, Customer Rating, Business Address, Business Categories, Geographic Coordinates
    Description

    Comprehensive dataset containing 32 verified Industrial supermarket businesses in Switzerland with complete contact information, ratings, reviews, and location data.

  10. A

    Australia Retail Sales: sa: Northern Territory: Food Retailing: Supermarkets...

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Australia Retail Sales: sa: Northern Territory: Food Retailing: Supermarkets and Grocery Stores [Dataset]. https://www.ceicdata.com/en/australia/retail-sales-anzsic-2006-by-industry-and-state-sa/retail-sales-sa-northern-territory-food-retailing-supermarkets-and-grocery-stores
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 1, 2024 - Jan 1, 2025
    Area covered
    Australia
    Variables measured
    Domestic Trade
    Description

    Australia Retail Sales: sa: Northern Territory: Food Retailing: Supermarkets and Grocery Stores data was reported at 148.400 AUD mn in Mar 2025. This records an increase from the previous number of 146.600 AUD mn for Feb 2025. Australia Retail Sales: sa: Northern Territory: Food Retailing: Supermarkets and Grocery Stores data is updated monthly, averaging 71.700 AUD mn from Apr 1988 (Median) to Mar 2025, with 444 observations. The data reached an all-time high of 148.400 AUD mn in Mar 2025 and a record low of 25.300 AUD mn in May 1988. Australia Retail Sales: sa: Northern Territory: Food Retailing: Supermarkets and Grocery Stores data remains active status in CEIC and is reported by Australian Bureau of Statistics. The data is categorized under Global Database’s Australia – Table AU.H015: Retail Sales: ANZSIC 2006: by Industry and State: sa. [COVID-19-IMPACT]

  11. C

    China CN: Chain: Supermarket: No of Store

    • ceicdata.com
    Updated Sep 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). China CN: Chain: Supermarket: No of Store [Dataset]. https://www.ceicdata.com/en/china/supermarket/cn-chain-supermarket-no-of-store
    Explore at:
    Dataset updated
    Sep 15, 2020
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    China
    Variables measured
    Domestic Trade
    Description

    China Chain: Supermarket: Number of Store data was reported at 26,622.000 Unit in 2023. This records a decrease from the previous number of 32,513.000 Unit for 2022. China Chain: Supermarket: Number of Store data is updated yearly, averaging 29,587.000 Unit from Dec 2003 (Median) to 2023, with 21 observations. The data reached an all-time high of 37,090.000 Unit in 2010 and a record low of 13,494.000 Unit in 2003. China Chain: Supermarket: Number of Store data remains active status in CEIC and is reported by Ministry of Commerce, China General Chamber of Commerce. The data is categorized under China Premium Database’s Wholesale, Retail and Catering Sector – Table CN.CRAD: Supermarket.

  12. d

    Warehouse and Retail Sales

    • catalog.data.gov
    • data.montgomerycountymd.gov
    • +4more
    Updated Nov 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.montgomerycountymd.gov (2025). Warehouse and Retail Sales [Dataset]. https://catalog.data.gov/dataset/warehouse-and-retail-sales
    Explore at:
    Dataset updated
    Nov 8, 2025
    Dataset provided by
    data.montgomerycountymd.gov
    Description

    This dataset contains a list of sales and movement data by item and department appended monthly. Update Frequency : Monthly

  13. d

    Review Dataset [Supermarkets and Malls] – Public consumer feedback for...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WiserBrand.com, Review Dataset [Supermarkets and Malls] – Public consumer feedback for sentiment and experience [Dataset]. https://datarade.ai/data-products/review-dataset-supermarkets-and-malls-public-consumer-fee-wiserbrand-com
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset provided by
    WiserBrand
    Area covered
    Norway, Slovakia, Poland, Åland Islands, Costa Rica, Netherlands, Ukraine, Portugal, Bulgaria, Greenland
    Description

    "This dataset includes consumer-submitted reviews from over 1162 companies, covering both product- and service-based businesses. It’s built to support CX, AI, and analytics teams seeking structured insight into what real customers say, feel, and expect — across Supermarkets and Malls.

    Each review includes:

    • Authentic customer reviews (text, rating, pros and cons)
    • Labeled sentiment and tone (positive, neutral, negative)
    • Service context across industries: purchase, delivery, support, return, usage
    • Industry and company filters (fully customizable per buyer request)
    • Optional metadata: platform, review length, timestamp, geo-location

    The list may vary based on the industry and can be customized as per your request.

    Use this dataset to:

    • Track public perception trends across specific brands or verticals
    • Segment sentiment insights by industry, region, or company
    • Power NLP pipelines that require diverse tone, emotion, and domain specificity
    • Build dashboards or LLM prompts grounded in real user language
    • Train review summarization, classification, or escalation engines

    This dataset offers flexibility for custom delivery-by industry, domain, or company, making it ideal for teams needing scalable consumer voice data tailored to specific strategic goals."

  14. Store Transaction data

    • kaggle.com
    zip
    Updated Mar 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prateek Gupta (2020). Store Transaction data [Dataset]. https://www.kaggle.com/iamprateek/store-transaction-data
    Explore at:
    zip(525590 bytes)Available download formats
    Dataset updated
    Mar 18, 2020
    Authors
    Prateek Gupta
    Description

    Context

    Nielsen receives transaction level scanning data (POS Data) from its partner stores on a regular basis. Stores sharing POS data include bigger format store types such as supermarkets, hypermarkets as well as smaller traditional trade grocery stores (Kirana stores), medical stores etc. using a POS machine.

    While in a bigger format store, all items for all transactions are scanned using a POS machine, smaller and more localized shops do not have a 100% compliance rate in terms of scanning and inputting information into the POS machine for all transactions.

    A transaction involving a single packet of chips or a single piece of candy may not be scanned and recorded to spare customer the inconvenience or during rush hours when the store is crowded with customers.

    Thus, the data received from such stores is often incomplete and lacks complete information of all transactions completed within a day.

    Additionally, apart from incomplete transaction data in a day, it is observed that certain stores do not share data for all active days. Stores share data ranging from 2 to 28 days in a month. While it is possible to impute/extrapolate data for 2 days of a month using 28 days of actual historical data, the vice versa is not recommended.

    Nielsen encourages you to create a model which can help impute/extrapolate data to fill in the missing data gaps in the store level POS data currently received.

    Content

    You are provided with the dataset that contains store level data by brands and categories for select stores-

    Hackathon_ Ideal_Data - The file contains brand level data for 10 stores for the last 3 months. This can be referred to as the ideal data.

    Hackathon_Working_Data - This contains data for selected stores which are missing and/or incomplete.

    Hackathon_Mapping_File - This file is provided to help understand the column names in the data set.

    Hackathon_Validation_Data - This file contains the data stores and product groups for which you have to predict the Total_VALUE.

    Sample Submission - This file represents what needs to be uploaded as output by candidate in the same format. The sample data is provided in the file to help understand the columns and values required.

    Acknowledgements

    Nielsen Holdings plc (NYSE: NLSN) is a global measurement and data analytics company that provides the most complete and trusted view available of consumers and markets worldwide. Nielsen is divided into two business units. Nielsen Global Media, the arbiter of truth for media markets, provides media and advertising industries with unbiased and reliable metrics that create a shared understanding of the industry required for markets to function. Nielsen Global Connect provides consumer packaged goods manufacturers and retailers with accurate, actionable information and insights and a complete picture of the complex and changing marketplace that companies need to innovate and grow. Our approach marries proprietary Nielsen data with other data sources to help clients around the world understand what’s happening now, what’s happening next, and how to best act on this knowledge. An S&P 500 company, Nielsen has operations in over 100 countries, covering more than 90% of the world’s population.

    Know more: https://www.nielsen.com/us/en/

    Inspiration

    Build an imputation and/or extrapolation model to fill the missing data gaps for select stores by analyzing the data and determine which factors/variables/features can help best predict the store sales.

  15. m

    Tootsie Roll Industries Inc - Operating-Income

    • macro-rankings.com
    csv, excel
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Tootsie Roll Industries Inc - Operating-Income [Dataset]. https://www.macro-rankings.com/markets/stocks/tr-nyse/income-statement/operating-income
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Aug 23, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    united states
    Description

    Operating-Income Time Series for Tootsie Roll Industries Inc. Tootsie Roll Industries, Inc., together with its subsidiaries, manufactures and sells confectionery products in the United States, Canada, Mexico, and internationally. The company sells its products under the Tootsie Roll, Tootsie Fruit Rolls, Frooties, Tootsie Pops, Tootsie Mini Pops, Child's Play, Caramel Apple Pops, Charms, Blow-Pop, Charms Mini Pops, Cella's, Dots, Junior Mints, Charleston Chew, Sugar Daddy, Sugar Babies, Andes, Fluffy Stuff, Dubble Bubble, Razzles, Cry Baby, NIK-L-NIP, and Tutsi Pop trademarks. It sells its products directly to wholesale distributors of candy, and food and groceries; and supermarkets, variety stores, dollar stores, chain grocers, drug chains, discount chains, cooperative grocery associations, mass merchandisers, warehouse and membership club stores, vending machine operators, e-commerce merchants, the United States military, and fund-raising charitable organizations, as well as through food and grocery brokers. Tootsie Roll Industries, Inc. was founded in 1896 and is headquartered in Chicago, Illinois.

  16. p

    Industrial supermarkets Business Data for Nevada, United States

    • poidata.io
    csv, json
    Updated Nov 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business Data Provider (2025). Industrial supermarkets Business Data for Nevada, United States [Dataset]. https://www.poidata.io/report/industrial-supermarket/united-states/nevada
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Nov 15, 2025
    Dataset authored and provided by
    Business Data Provider
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Nevada
    Variables measured
    Website URL, Phone Number, Review Count, Business Name, Email Address, Business Hours, Customer Rating, Business Address, Business Categories, Geographic Coordinates
    Description

    Comprehensive dataset containing 2 verified Industrial supermarket businesses in Nevada, United States with complete contact information, ratings, reviews, and location data.

  17. Retail Data | Retail Professionals in APAC | Verified Work Emails from 700M+...

    • datarade.ai
    Updated Jan 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2018). Retail Data | Retail Professionals in APAC | Verified Work Emails from 700M+ Profiles | Best Price Guarantee [Dataset]. https://datarade.ai/data-products/retail-data-retail-professionals-in-apac-verified-work-em-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 1, 2018
    Dataset provided by
    Area covered
    Nauru, Indonesia, Maldives, Sri Lanka, Vietnam, Japan, Israel, Korea (Republic of), Cyprus, Tokelau
    Description

    Success.ai’s Retail Data for Retail Professionals in APAC offers a comprehensive and accurate dataset tailored for businesses and organizations aiming to connect with key players in the retail industry across the Asia-Pacific region. Covering roles such as retail managers, merchandisers, supply chain specialists, and executives, this dataset provides verified LinkedIn profiles, work emails, and professional histories.

    With access to over 700 million verified global profiles, Success.ai ensures your outreach, marketing, and collaboration strategies are powered by continuously updated, AI-validated data. Backed by our Best Price Guarantee, this solution empowers you to excel in the dynamic and competitive APAC retail market.

    Why Choose Success.ai’s Retail Data?

    1. Verified Contact Data for Precision Outreach

      • Access verified work emails, phone numbers, and LinkedIn profiles of retail professionals across APAC.
      • AI-driven validation ensures 99% accuracy, reducing inefficiencies and boosting engagement outcomes.
    2. Comprehensive Coverage of APAC’s Retail Sector

      • Includes professionals from key retail hubs such as China, Japan, South Korea, India, Australia, and Southeast Asia.
      • Gain insights into market trends, consumer behavior, and retail innovations unique to the APAC region.
    3. Continuously Updated Datasets

      • Real-time updates capture changes in roles, organizations, and industry dynamics.
      • Stay aligned with evolving trends and capitalize on emerging opportunities in the retail sector.
    4. Ethical and Compliant

      • Fully adheres to GDPR, CCPA, and other global data privacy regulations, ensuring responsible and lawful data usage.

    Data Highlights:

    • 700M+ Verified Global Profiles: Access detailed retail data for professionals and organizations across the APAC region.
    • Verified Contact Details: Gain work emails, phone numbers, and LinkedIn profiles for precise targeting.
    • Professional Histories: Understand career trajectories, areas of expertise, and contributions to the retail sector.
    • Regional Insights: Leverage actionable data on consumer preferences, supply chain challenges, and market trends.

    Key Features of the Dataset:

    1. Comprehensive Retail Professional Profiles

      • Identify and connect with professionals managing retail operations, merchandising, supply chains, and customer engagement strategies.
      • Target decision-makers involved in e-commerce, brick-and-mortar retail, and omnichannel strategies.
    2. Advanced Filters for Precision Campaigns

      • Filter professionals by industry focus (fashion, electronics, grocery), geographic location, or job function.
      • Tailor campaigns to align with specific business needs, such as technology adoption, marketing strategies, or vendor partnerships.
    3. Regional and Industry-specific Insights

      • Leverage data on APAC’s retail trends, consumer purchasing patterns, and logistics challenges.
      • Refine strategies to align with unique market dynamics and customer expectations.
    4. AI-Driven Enrichment

      • Profiles enriched with actionable data allow for personalized messaging, highlight unique value propositions, and improve engagement outcomes.

    Strategic Use Cases:

    1. Marketing Campaigns and Outreach

      • Promote retail technology solutions, marketing tools, or supply chain services to retail professionals in the APAC region.
      • Use verified contact data for multi-channel outreach, including email, phone, and LinkedIn campaigns.
    2. Partnership Development and Collaboration

      • Build relationships with retail chains, e-commerce platforms, and logistics providers seeking strategic partnerships.
      • Foster collaborations that enhance customer experiences, expand distribution networks, or improve operational efficiencies.
    3. Market Research and Competitive Analysis

      • Analyze regional retail trends, consumer behavior, and supply chain innovations to refine product offerings and business strategies.
      • Benchmark against competitors to identify growth opportunities and high-demand solutions.
    4. Recruitment and Talent Acquisition

      • Target HR professionals and hiring managers in the retail industry recruiting for roles in merchandising, operations, and digital transformation.
      • Provide workforce optimization platforms or training solutions tailored to the retail sector.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality retail data at competitive prices, ensuring strong ROI for your marketing, sales, and business outreach efforts.
    2. Seamless Integration

      • Integrate verified retail data into CRM systems, analytics platforms, or marketing tools via APIs or downloadable formats, streamlining workflows and enhancing productivity.
    3. Data Accuracy with AI Validation

      • Trust in 99% accuracy to guide data-driven decisions, refine targeting, and boost conv...
  18. d

    Global Grocery Location Data | Global Retail Location Data Location | Global...

    • datarade.ai
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MealMe (2025). Global Grocery Location Data | Global Retail Location Data Location | Global Point of Interest (POI) Data | Global Places Data on 1M+ stores [Dataset]. https://datarade.ai/data-products/global-grocery-location-data-global-retail-location-data-lo-mealme
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    MealMe
    Area covered
    Western Sahara, Slovenia, El Salvador, United Republic of, Thailand, Finland, Chile, Marshall Islands, Peru, Spain
    Description

    MealMe provides comprehensive grocery and retail POI and SKU-level product data, including real-time pricing, from the top 100 retailers in the USA and Canada. Our proprietary technology ensures accurate and up-to-date insights, empowering businesses to excel in competitive intelligence, pricing strategies, and market analysis.

    Retailers Covered: MealMe’s database includes detailed SKU-level data and pricing from leading grocery and retail chains such as Walmart, Target, Costco, Kroger, Safeway, Publix, Whole Foods, Aldi, ShopRite, BJ’s Wholesale Club, Sprouts Farmers Market, Albertsons, Ralphs, Pavilions, Gelson’s, Vons, Shaw’s, Metro, and many more. Our coverage spans the most influential retailers across North America, ensuring businesses have the insights needed to stay competitive in dynamic markets.

    Key Features: SKU-Level Granularity: Access detailed product-level data, including product descriptions, categories, brands, and variations. Real-Time Pricing: Monitor current pricing trends across major retailers for comprehensive market comparisons. Regional Insights: Analyze geographic price variations and inventory availability to identify trends and opportunities. Customizable Solutions: Tailored data delivery options to meet the specific needs of your business or industry. Use Cases: Competitive Intelligence: Gain visibility into pricing, product availability, and assortment strategies of top retailers like Walmart, Costco, and Target. Pricing Optimization: Use real-time data to create dynamic pricing models that respond to market conditions. Market Research: Identify trends, gaps, and consumer preferences by analyzing SKU-level data across leading retailers. Inventory Management: Streamline operations with accurate, real-time inventory availability. Retail Execution: Ensure on-shelf product availability and compliance with merchandising strategies. Industries Benefiting from Our Data CPG (Consumer Packaged Goods): Optimize product positioning, pricing, and distribution strategies. E-commerce Platforms: Enhance online catalogs with precise pricing and inventory information. Market Research Firms: Conduct detailed analyses to uncover industry trends and opportunities. Retailers: Benchmark against competitors like Kroger and Aldi to refine assortments and pricing. AI & Analytics Companies: Fuel predictive models and business intelligence with reliable SKU-level data. Data Delivery and Integration MealMe offers flexible integration options, including APIs and custom data exports, for seamless access to real-time data. Whether you need large-scale analysis or continuous updates, our solutions scale with your business needs.

    Why Choose MealMe? Comprehensive Coverage: Data from the top 100 grocery and retail chains in North America, including Walmart, Target, and Costco. Real-Time Accuracy: Up-to-date pricing and product information ensures competitive edge. Customizable Insights: Tailored datasets align with your specific business objectives. Proven Expertise: Trusted by diverse industries for delivering actionable insights. MealMe empowers businesses to unlock their full potential with real-time, high-quality grocery and retail data. For more information or to schedule a demo, contact us today!

  19. US Retail Sales Data from 1992 to 2024

    • kaggle.com
    zip
    Updated Nov 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anjali Hansda (2024). US Retail Sales Data from 1992 to 2024 [Dataset]. https://www.kaggle.com/datasets/anjalihansda16/us-retail-sales-data-from-1992-to-2024
    Explore at:
    zip(1221599 bytes)Available download formats
    Dataset updated
    Nov 20, 2024
    Authors
    Anjali Hansda
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Data Overview

    • Scale: All sales figures are reported in millions of dollars.
    • Size: The dataset contains 40,479 rows and 5 columns.
    • Time Frame: January 1992 - September 2024.
    • Industries Covered: Over 60 industries, including food, clothing, footwear, office supplies, automobiles, electronics, books, beverages, furniture, grocery and many more.
    • Attributes:
      • naics_code
      • kind_of_business
      • sales_month
      • sales
      • estimate_type
    • Source: This dataset was sourced from the publicly available U.S. Census Bureau retail sales data.

    Cleaning & Preprocessing

    • Missing Values:
      Some entries contained (NA) and (S) values, which were converted to null values.
      • (S): Estimate does not meet publication standards due to high sampling variability (coefficient of variation greater than 30%) or poor response quality (low total quantity response rate).
    • Formatting:
      The downloaded data included headings, subheadings, and notes embedded within the tables. These extraneous elements were removed to ensure a clean and consistent dataset.
    • Data Compilation:
      The original dataset was spread across multiple sheets, with each sheet containing data for a specific year. These sheets were consolidated into a single, unified table.
    • Feature Engineering:
      A new column was created to provide both seasonally adjusted and non-seasonally adjusted sales values, enabling more nuanced analysis. Estimates are adjusted for seasonal variations, as well as holiday and trading-day differences, but not for price changes.

    Use Cases

    This dataset can be applied to a variety of analytical and machine learning tasks, including:

    • Data Cleaning: Practice handling missing values, stray entries, and working with datetime data.
    • Time Series Analysis: Perform trend analysis, seasonality detection, and forecasting.
    • Exploratory Data Analysis (EDA): Gain insights into industry-specific trends and patterns.
    • Machine Learning: Use it for predictive modeling and classification tasks.
    • Market Research: Analyze industry performance to inform business strategies.
  20. d

    Retail Data | Retail Sector in Asia | Verified Business Profiles & Insights...

    • datarade.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai, Retail Data | Retail Sector in Asia | Verified Business Profiles & Insights | Best Price Guaranteed [Dataset]. https://datarade.ai/data-products/retail-data-retail-sector-in-asia-verified-business-profi-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset provided by
    Success.ai
    Area covered
    Asia, Myanmar, Qatar, India, Turkmenistan, Lao People's Democratic Republic, Uzbekistan, Indonesia, State of, Cambodia, Saudi Arabia
    Description

    Success.ai’s Retail Data for the Retail Sector in Asia enables businesses to navigate dynamic consumer markets, evolving retail landscapes, and rapidly changing consumer behavior across the region. Leveraging over 170 million verified professional profiles and 30 million company profiles, this dataset delivers comprehensive firmographic details, verified contact information, and decision-maker insights for retailers ranging from boutique shops and e-commerce platforms to large department store chains and multinational franchises.

    Whether you’re launching new products, entering emerging markets, or optimizing supply chain strategies, Success.ai’s continuously updated and AI-validated data ensures you engage the right stakeholders at the right time, all backed by our Best Price Guarantee.

    Why Choose Success.ai’s Retail Data in Asia?

    1. Comprehensive Company Information

      • Access verified work emails, phone numbers, and LinkedIn profiles of retail decision-makers, buyers, and merchandising managers across Asia.
      • AI-driven validation ensures 99% accuracy, enabling confident communication and minimizing wasted outreach efforts.
    2. Regional Focus on Asian Markets

      • Includes profiles of small specialty retailers, large department stores, convenience chains, online marketplaces, and luxury brands spanning regions like East Asia, Southeast Asia, and South Asia.
      • Understand region-specific consumer preferences, product trends, and competitive dynamics to guide targeted campaigns and market entries.
    3. Continuously Updated Datasets

      • Real-time updates reflect leadership changes, store expansions, new franchise agreements, and shifts in inventory sourcing.
      • Stay aligned with evolving market conditions, shopper behaviors, and regulatory environments impacting the Asian retail sector.
    4. Ethical and Compliant

      • Adheres to GDPR, CCPA, and global privacy regulations, ensuring that your data usage remains compliant and your outreach respects personal boundaries.

    Data Highlights:

    • 170M+ Verified Professional Profiles: Engage with executives, buyers, store managers, and e-commerce directors shaping retail landscapes in Asia.
    • 30M Company Profiles: Gain insights into brand portfolios, store counts, revenue ranges, and distribution networks.
    • Firmographic & Demographic Data: Understand retail categories, merchandising strategies, supply chain partners, and consumer demographics influencing local markets.
    • Verified Decision-Maker Contacts: Connect directly with key stakeholders responsible for purchasing decisions, vendor selection, category management, and brand partnerships.

    Key Features of the Dataset:

    1. Retail Decision-Maker Profiles
      • Identify and connect with CEOs, CFOs, category buyers, inventory planners, marketing directors, and store operations leaders.
    2. Target professionals who determine product assortments, vendor negotiations, store layouts, pricing strategies, and promotional campaigns.

    3. Advanced Filters for Precision Targeting

      • Filter by retail segment (fashion, electronics, groceries, cosmetics), country of operation, store format, or omnichannel strategies.
      • Tailor campaigns to align with unique cultural preferences, local consumer spending habits, and regulatory frameworks.
    4. AI-Driven Enrichment

      • Profiles are enriched with actionable data, enabling personalized messaging, highlighting market-entry value propositions, and improving engagement outcomes in diverse Asian markets.

    Strategic Use Cases:

    1. Market Entry & Expansion

      • Identify suitable partners, franchisees, or distribution channels when entering new Asian markets.
      • Benchmark against established players, adapt offerings to local tastes, and secure placements in prime retail locations.
    2. Supplier and Vendor Relations

    3. Connect with procurement managers and inventory planners evaluating new suppliers or seeking innovative products.

    4. Present packaging solutions, POS technology, or loyalty programs to retailers aiming to enhance the shopping experience.

    5. Omnichannel and E-Commerce Growth

      • Engage e-commerce managers and digital marketing teams embracing online retail, click-and-collect services, and mobile payment integrations.
      • Align technology solutions with growing demand for contactless shopping, personalized recommendations, and seamless customer journeys.
    6. Seasonal and Cultural Campaigns

      • Leverage local holidays, shopping festivals, and cultural events by reaching marketing directors and store managers who coordinate merchandise rotations, promotional deals, and experiential activations.
      • Adapt messaging to align with regional festivities and peak shopping periods.

    Why Choose Success.ai?

    1. Best Price Guarantee
    2. Access top-quality verified data at competitive prices, ensuring strong ROI for product launches, brand expansions, and supply chain optimizations.

    3. Sea...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Crawl Feeds (2025). Meijer grocery store dataset [Dataset]. https://crawlfeeds.com/datasets/meijer-grocery-store-dataset

Meijer grocery store dataset

Meijer grocery store dataset from meijer.com

Explore at:
16 scholarly articles cite this dataset (View in Google Scholar)
zip, csvAvailable download formats
Dataset updated
May 4, 2025
Dataset authored and provided by
Crawl Feeds
License

https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

Description

Explore the Meijer Grocery Store Dataset, a comprehensive collection of data on products available at Meijer, a leading American grocery store chain. This dataset includes detailed information on a wide variety of grocery items such as fresh produce, dairy, meat, beverages, household essentials, and more. Each product entry provides essential details, including product names, categories, prices, brands, descriptions, and availability, offering valuable insights for researchers, data analysts, and retail professionals.

Key Features:

  • Extensive Product Range: Contains a wide array of grocery items from Meijer, covering multiple categories like fresh produce, dairy, meat, beverages, household essentials, and more.
  • Detailed Product Information: Each entry includes key details such as product name, category, price, brand, description, and availability, allowing for in-depth analysis of retail trends and consumer preferences.
  • Ideal for Market Analysis: Perfect for researchers, data scientists, and retail professionals interested in analyzing consumer behavior, studying grocery market trends, or optimizing inventory strategies in the retail sector.
  • Rich Source of Retail Data: Provides a comprehensive overview of the grocery market at Meijer, helping professionals stay updated on the latest trends, popular products, and pricing strategies.

Whether you're analyzing market trends in the grocery sector, researching consumer behavior, or developing new retail strategies, the Meijer Grocery Store Dataset is an invaluable resource that provides detailed insights and extensive coverage of products available at Meijer.

Search
Clear search
Close search
Google apps
Main menu