100+ datasets found
  1. GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version...

    • zenodo.org
    tiff
    Updated Sep 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie (2024). GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version 2.0-test-alpha) [Dataset]. http://doi.org/10.5281/zenodo.11071249
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Sep 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Usage Notice

    This version is not recommended for download. Please check the newest version.

    We would like to inform you that the updated GlobPOP dataset (2021-2022) have been available in version 2.0. The GlobPOP dataset (2021-2022) in the current version is not recommended for your work. The GlobPOP dataset (1990-2020) in the current version is the same as version 1.0.

    Thank you for your continued support of the GlobPOP.

    If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.

    Introduction

    Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.

    Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.

    With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.

    Data description

    The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)

    Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:

    GlobPOP_Count_30arc_1990_I32

    Field 1: GlobPOP(Global gridded population)
    Field 2: Pixel unit is population "Count" or population "Density"
    Field 3: Spatial resolution is 30 arc seconds
    Field 4: Year "1990"
    Field 5: Data type is I32(Int 32) or F32(Float32)

    More information

    Please refer to the paper for detailed information:

    Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.

    The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.

  2. World Population & Health Data 2014 - 2024

    • kaggle.com
    Updated Jan 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Faizal Rosyid (2025). World Population & Health Data 2014 - 2024 [Dataset]. https://www.kaggle.com/datasets/faizalrosyid/world-population-and-health-data-2014-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 21, 2025
    Dataset provided by
    Kaggle
    Authors
    Faizal Rosyid
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    World
    Description

    This dataset provides an extensive view of global population statistics and health metrics across various countries from 2014 to 2024. It combines population data with vital health-related indicators, making it a valuable resource for understanding trends in population growth and health outcomes worldwide. Researchers, data scientists, and policymakers can utilize this dataset to analyze correlations between population dynamics and health performance at a global scale.

    Key Features: - Country: Name of the country. - Year: Year of the data (2014–2024). - Population: Total population for the respective year and country. - Country Code: ISO 3-letter country codes for easy identification. - Health Expenditure (health_exp): Percentage of GDP spent on healthcare. - Life Expectancy (life_expect): Average life expectancy at birth in years. - Maternal Mortality (maternal_mortality): Maternal deaths per 100,000 live births. - Infant Mortality (infant_mortality): Deaths of infants under 1 year per 1,000 live births. - Neonatal Mortality (neonatal_mortality): Deaths of newborns (0–28 days) per 1,000 live births. - Under-5 Mortality (under_5_mortality): Deaths of children under 5 years per 1,000 live births. - HIV Prevalence (prev_hiv): Percentage of the population living with HIV. - Tuberculosis Incidence (inci_tuberc): Estimated new and relapse TB cases per 100,000 people. - Undernourishment Prevalence (prev_undernourishment): Percentage of the population that is undernourished.

    Use Cases: - Health Policy Analysis: Understand trends in healthcare expenditure and its relationship to health outcomes. - Global Health Research: Investigate global or regional disparities in health and nutrition. - Population Studies: Analyze population growth trends alongside health indicators. - Data Visualization: Build visual dashboards for storytelling and impactful data representation.

  3. o

    Hybrid gridded demographic data for the world, 1950-2020

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Apr 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Chambers (2020). Hybrid gridded demographic data for the world, 1950-2020 [Dataset]. http://doi.org/10.5281/zenodo.3768002
    Explore at:
    Dataset updated
    Apr 27, 2020
    Authors
    Jonathan Chambers
    Area covered
    World
    Description

    This is a hybrid gridded dataset of demographic data for the world, given as 5-year population bands at a 0.5 degree grid resolution. This dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4) with the ISIMIP Histsoc gridded population data and the United Nations World Population Program (WPP) demographic modelling data. Demographic fractions are given for the time period covered by the UN WPP model (1950-2050) while demographic totals are given for the time period covered by the combination of GPWv4 and Histsoc (1950-2020) Method - demographic fractions Demographic breakdown of country population by grid cell is calculated by combining the GPWv4 demographic data given for 2010 with the yearly country breakdowns from the UN WPP. This combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP. This makes it possible to calculate exposure trends from 1980 to the present day. To combine the UN WPP demographics with the GPWv4 demographics, we calculate for each country the proportional change in fraction of demographic in each age band relative to 2010 as: (\delta_{year,\ country,age}^{\text{wpp}} = f_{year,\ country,age}^{\text{wpp}}/f_{2010,country,age}^{\text{wpp}}) Where: - (\delta_{year,\ country,age}^{\text{wpp}}) is the ratio of change in demographic for a given age and and country from the UN WPP dataset. - (f_{year,\ country,age}^{\text{wpp}}) is the fraction of population in the UN WPP dataset for a given age band, country, and year. - (f_{2010,country,age}^{\text{wpp}}) is the fraction of population in the UN WPP dataset for a given age band, country for the year 2020. The gridded demographic fraction is then calculated relative to the 2010 demographic data given by GPWv4. For each subset of cells corresponding to a given country c, the fraction of population in a given age band is calculated as: (f_{year,c,age}^{\text{gpw}} = \delta_{year,\ country,age}^{\text{wpp}}*f_{2010,c,\text{age}}^{\text{gpw}}) Where: - (f_{year,c,age}^{\text{gpw}}) is the fraction of the population in a given age band for given year, for the grid cell c. - (f_{2010,c,age}^{\text{gpw}}) is the fraction of the population in a given age band for 2010, for the grid cell c. The matching between grid cells and country codes is performed using the GPWv4 gridded country code lookup data and country name lookup table. The final dataset is assembled by combining the cells from all countries into a single gridded time series. This time series covers the whole period from 1950-2050, corresponding to the data available in the UN WPP model. Method - demographic totals Total population data from 1950 to 1999 is drawn from ISIMIP Histsoc, while data from 2000-2020 is drawn from GPWv4. These two gridded time series are simply joined at the cut-over date to give a single dataset covering 1950-2020. The total population per age band per cell is calculated by multiplying the population fractions by the population totals per grid cell. Note that as the total population data only covers until 2020, the time span covered by the demographic population totals data is 1950-2020 (not 1950-2050). Disclaimer This dataset is a hybrid of different datasets with independent methodologies. No guarantees are made about the spatial or temporal consistency across dataset boundaries. The dataset may contain outlier points (e.g single cells with demographic fractions >1). This dataset is produced on a 'best effort' basis and has been found to be broadly consistent with other approaches, but may contain inconsistencies which not been identified. {"references": ["UN. (2019). World Population Prospects 2019: Data Booklet. Retrieved from https://population.un.org/wpp/Publications/Files/WPP2019_DataBooklet.pdf", "NASA SEDAC, & CIESIN. (2016). Gridded Population of the World, Version 4 (GPWv4): Population Count. New York, New York, USA: Columbia University. Retrieved from http://dx.doi.org/10.7927/H4X63JVC", "ISIMIP. (2018). ISIMIP Project Design and Simulation Protocol. Retrieved from https://www.isimip.org/gettingstarted/input-data-bias-correction/details/31/"]}

  4. N

    Earth, TX Age Group Population Dataset: A Complete Breakdown of Earth Age...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Earth, TX Age Group Population Dataset: A Complete Breakdown of Earth Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/451f6711-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas, Earth
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Earth population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Earth. The dataset can be utilized to understand the population distribution of Earth by age. For example, using this dataset, we can identify the largest age group in Earth.

    Key observations

    The largest age group in Earth, TX was for the group of age 10 to 14 years years with a population of 102 (10.89%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Earth, TX was the 85 years and over years with a population of 4 (0.43%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Earth is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Earth total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Earth Population by Age. You can refer the same here

  5. International Database: Time Series International Database 5-Year Age Groups...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Aug 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). International Database: Time Series International Database 5-Year Age Groups and Sex and Other Demographic Variables [Dataset]. https://catalog.data.gov/dataset/international-data-base-time-series-international-data-base-by-5-year-age-groups-and-sex-i
    Explore at:
    Dataset updated
    Aug 26, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Midyear population estimates and projections for all countries and areas of the world with a population of 5,000 or more // Source: U.S. Census Bureau, Population Division, International Programs Center // Note: Total population available from 1950 to 2100 for 227 countries and areas. Other demographic variables available from base year to 2100. Base year varies by country and therefore data are not available for all years for all countries. For the United States, total population available from 1950-2060, and other demographic variables available from 1980-2060. See methodology at https://www.census.gov/programs-surveys/international-programs/about/idb.html

  6. M

    World Population Growth Rate

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Population Growth Rate [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/population-growth-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1961 - Dec 31, 2023
    Area covered
    World, World
    Description

    Historical chart and dataset showing World population growth rate by year from 1961 to 2023.

  7. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  8. Global 1 km-grid population distributions dataset from 2020 to 2100

    • figshare.com
    zip
    Updated Aug 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xinyu Wang; Xiangfeng Meng; Ying Long (2022). Global 1 km-grid population distributions dataset from 2020 to 2100 [Dataset]. http://doi.org/10.6084/m9.figshare.19609356.v3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 29, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Xinyu Wang; Xiangfeng Meng; Ying Long
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Spatially explicit population grid can play an important role in climate change, resource management, sustainable development and other fields. Several gridded datasets already exist, but global data, especially high-resolution data on future populations are largely lacking. Based on the WorldPop dataset, we present a global gridded population dataset covering 248 countries or areas at 30 arc-seconds (approximately 1 km) spatial resolution with 5-year intervals for the period 2020–2100 by implementing Random Forest (RF) algorithm. Our dataset is quantitatively consistent with the Shared Socioeconomic Pathways’ (SSPs) national population. The spatially explicit population grid we predicted in this research is validated by comparing it with the WorldPop dataset both at the sub-national level and grid level. 3569 provinces (almost all provinces on the globe) and more than 480 thousand grids are taken into verification, and the results show that our dataset can serve as an input for predictive research in various fields.

  9. N

    Globe, AZ Age Group Population Dataset: A complete breakdown of Globe age...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Globe, AZ Age Group Population Dataset: A complete breakdown of Globe age demographics from 0 to 85 years, distributed across 18 age groups [Dataset]. https://www.neilsberg.com/research/datasets/705d7e68-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Globe
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Globe population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Globe. The dataset can be utilized to understand the population distribution of Globe by age. For example, using this dataset, we can identify the largest age group in Globe.

    Key observations

    The largest age group in Globe, AZ was for the group of age 50-54 years with a population of 738 (10.27%), according to the 2021 American Community Survey. At the same time, the smallest age group in Globe, AZ was the 85+ years with a population of 85 (1.18%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Globe is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Globe total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Globe Population by Age. You can refer the same here

  10. k

    Population Projection

    • datasource.kapsarc.org
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Population Projection [Dataset]. https://datasource.kapsarc.org/explore/dataset/population-projection/
    Explore at:
    Dataset updated
    Mar 10, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Explore population projections for China on this dataset webpage. Get valuable insights into the future demographic trends of one of the world's most populous countries.

    Population, China, projections ChinaFollow data.kapsarc.org for timely data to advance energy economics research..Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimatesSource: (1) United Nations Population Division. World Population Prospects: 2019 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.

  11. w

    Dataset of land area, number of countries, number of regions and population...

    • workwithdata.com
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of land area, number of countries, number of regions and population of continents [Dataset]. https://www.workwithdata.com/datasets/continents?col=continent%2Ccountries%2Cland_area%2Cpopulation%2Cregions
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about continents. It has 5 rows. It features 5 columns: number of countries, number of regions, population, and land area. It is 100% filled with non-null values.

  12. N

    Black Earth, WI Age Group Population Dataset: A Complete Breakdown of Black...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Black Earth, WI Age Group Population Dataset: A Complete Breakdown of Black Earth Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/45117c28-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Black Earth, Wisconsin
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Black Earth population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Black Earth. The dataset can be utilized to understand the population distribution of Black Earth by age. For example, using this dataset, we can identify the largest age group in Black Earth.

    Key observations

    The largest age group in Black Earth, WI was for the group of age 65 to 69 years years with a population of 340 (19.72%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Black Earth, WI was the 80 to 84 years years with a population of 34 (1.97%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Black Earth is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Black Earth total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Black Earth Population by Age. You can refer the same here

  13. P

    Percentage of Population within 1 5 & 10km Coastal Buffers

    • pacificdata.org
    csv, gpkg +1
    Updated Aug 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC Statistics for Development Division (SDD) (2019). Percentage of Population within 1 5 & 10km Coastal Buffers [Dataset]. https://pacificdata.org/data/dataset/percentage-of-population-within-1-5-10km-coastal-buffers
    Explore at:
    gpkg(278528), zipped shapefile(146506), csv(846)Available download formats
    Dataset updated
    Aug 12, 2019
    Dataset provided by
    SPC Statistics for Development Division (SDD)
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    A collaborative project between SPC, the World Fish Centre and the University of Wollongong has produced the first detailed population estimates of people living close to the coast in the 22 Pacific Island Countries and Territories (PICTs). These estimates are stratified into 1, 5, and 10km zones. More information about this dataset: https://sdd.spc.int/mapping-coastal

  14. U

    The Extended Global Lake area, Climate, and Population Dataset (GLCP)

    • data.usgs.gov
    • portal.edirepository.org
    • +1more
    Updated Feb 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Meyer; Matthew Brousil; Salvatore Virdis; Xiao Yang; Alli Cramer; Ryan McClure; Stephen Katz; Stephanie Hampton (2025). The Extended Global Lake area, Climate, and Population Dataset (GLCP) [Dataset]. http://doi.org/10.6073/pasta/e0bf4571ca6cbfb81c3ed7caefc85fc6
    Explore at:
    Dataset updated
    Feb 13, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Michael Meyer; Matthew Brousil; Salvatore Virdis; Xiao Yang; Alli Cramer; Ryan McClure; Stephen Katz; Stephanie Hampton
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jan 1, 1995 - Dec 31, 2020
    Description

    A changing climate and increasing human population necessitate understanding global freshwater availability and temporal variability. To examine lake freshwater availability from local-to-global and monthly-to-decadal scales, we created the Global Lake area, Climate, and Population (GLCP) dataset, which contains annual lake surface area for 1.42 million lakes with paired annual basin-level climate and population data. Building off an existing data product infrastructure, the next generation of the GLCP includes monthly lake ice area, snow basin area, and more climate variables including specific humidity, longwave and shortwave radiation, as well as cloud cover. The new generation of the GLCP continues previous FAIR data efforts by expanding its scripting repository and maintaining unique relational keys for merging with external data products. Compared to the original version, the new GLCP contains an even richer suite of variables capable of addressing disparate analyses of lake ...

  15. n

    Gridded Population of the World, Version 4 (GPWv4): Basic Demographic...

    • earthdata.nasa.gov
    • s.cnmilf.com
    • +3more
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (2025). Gridded Population of the World, Version 4 (GPWv4): Basic Demographic Characteristics, Revision 11 [Dataset]. http://doi.org/10.7927/H46M34XX
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    ESDIS
    Area covered
    Earth, World
    Description

    The Gridded Population of the World, Version 4 (GPWv4): Basic Demographic Characteristics, Revision 11 consists of estimates of human population by age and sex as counts (number of persons per pixel) and densities (number of persons per square kilometer), consistent with national censuses and population registers, for the year 2010. To estimate the male and female populations by age in 2010, the proportions of males and females in each 5-year age group from ages 0-4 to ages 85+ for the given census year were calculated. These proportions were then applied to the 2010 estimates of the total population to obtain 2010 estimates of male and female populations by age. In some cases, the spatial resolution of the age and sex proportions was coarser than the resolution of the total population estimates to which they were applied. The population density rasters were created by dividing the population count rasters by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions.

  16. T

    Global population survey data set (1950-2018)

    • data.tpdc.ac.cn
    • tpdc.ac.cn
    zip
    Updated Sep 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wen DONG (2020). Global population survey data set (1950-2018) [Dataset]. https://data.tpdc.ac.cn/en/data/ece5509f-2a2c-4a11-976e-8d939a419a6c
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 3, 2020
    Dataset provided by
    TPDC
    Authors
    Wen DONG
    Area covered
    Description

    "Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.This dataset includes demographic data of 22 countries from 1960 to 2018, including Sri Lanka, Bangladesh, Pakistan, India, Maldives, etc. Data fields include: country, year, population ratio, male ratio, female ratio, population density (km). Source: ( 1 ) United Nations Population Division. World Population Prospects: 2019 Revision. ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations Statistical Division. Population and Vital Statistics Reprot ( various years ), ( 5 ) U.S. Census Bureau: International Database, and ( 6 ) Secretariat of the Pacific Community: Statistics and Demography Programme. Periodicity: Annual Statistical Concept and Methodology: Population estimates are usually based on national population censuses. Estimates for the years before and after the census are interpolations or extrapolations based on demographic models. Errors and undercounting occur even in high-income countries. In developing countries errors may be substantial because of limits in the transport, communications, and other resources required to conduct and analyze a full census. The quality and reliability of official demographic data are also affected by public trust in the government, government commitment to full and accurate enumeration, confidentiality and protection against misuse of census data, and census agencies' independence from political influence. Moreover, comparability of population indicators is limited by differences in the concepts, definitions, collection procedures, and estimation methods used by national statistical agencies and other organizations that collect the data. The currentness of a census and the availability of complementary data from surveys or registration systems are objective ways to judge demographic data quality. Some European countries' registration systems offer complete information on population in the absence of a census. The United Nations Statistics Division monitors the completeness of vital registration systems. Some developing countries have made progress over the last 60 years, but others still have deficiencies in civil registration systems. International migration is the only other factor besides birth and death rates that directly determines a country's population growth. Estimating migration is difficult. At any time many people are located outside their home country as tourists, workers, or refugees or for other reasons. Standards for the duration and purpose of international moves that qualify as migration vary, and estimates require information on flows into and out of countries that is difficult to collect. Population projections, starting from a base year are projected forward using assumptions of mortality, fertility, and migration by age and sex through 2050, based on the UN Population Division's World Population Prospects database medium variant."

  17. GlobPOP: A 31-year (1990-2020) global gridded population dataset generated...

    • zenodo.org
    tiff
    Updated Apr 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie (2025). GlobPOP: A 31-year (1990-2020) global gridded population dataset generated by cluster analysis and statistical learning [Dataset]. http://doi.org/10.5281/zenodo.10088105
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Apr 18, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Update Notice 数据更新通知

    We are pleased to announce that the GlobPOP dataset for the years 2021-2022 has undergone a comprehensive quality check and has now been updated accordingly. Following the established methodology that ensures the high precision and reliability, these latest updates allow for even more comprehensive time-series analysis. The updated GlobPOP dataset remains available in GeoTIFF format for easy integration into your existing workflows.

    2021-2022 年的 GlobPOP 数据集经过全面的质量检查,现已进行相应更新。 遵循确保高精度和可靠性的原有方法,本次更新允许进行更全面的时间序列分析。 更新后的 GlobPOP 数据集仍以 GeoTIFF 格式提供,以便轻松集成到您现有的工作流中。

    To reflect these updates, our interactive web application has also been refreshed. Users can now explore the updated national population time-series curves from 1990 to 2022. This can be accessed via the same link: https://globpop.shinyapps.io/GlobPOP/. Thank you for your continued support of the GlobPOP, and we hope that the updated data will further enhance your research and policy analysis endeavors.

    交互式网页反映了人口最新动态,用户现在可以探索感兴趣的国家1990 年至 2022 年人口时间序列曲线,并将其与人口普查数据进行比较。感谢您对 GlobPOP 的支持,我们希望更新的数据将进一步加强您的研究和政策分析工作。

    If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.

    如果您遇到任何问题,请通过电子邮件联系我们。

    Introduction

    Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.

    Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.

    With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.

    Data description

    The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)

    Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:

    GlobPOP_Count_30arc_1990_I32

    Field 1: GlobPOP(Global gridded population)
    Field 2: Pixel unit is population "Count" or population "Density"
    Field 3: Spatial resolution is 30 arc seconds
    Field 4: Year "1990"
    Field 5: Data type is I32(Int 32) or F32(Float32)

    More information

    Please refer to the paper for detailed information:

    Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.

    The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.

  18. n

    PBL IMAGE SSP scenarios - Population Density (5 arcmin)

    • nationaalgeoregister.nl
    • ckan.mobidatalab.eu
    • +2more
    landingpage
    Updated Aug 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Koninklijk Nederlands Meteorologisch Instituut (KNMI) (2017). PBL IMAGE SSP scenarios - Population Density (5 arcmin) [Dataset]. https://www.nationaalgeoregister.nl/geonetwork/srv/api/records/3411fdee-a810-49fc-bf72-c6fe58194b6b
    Explore at:
    landingpageAvailable download formats
    Dataset updated
    Aug 22, 2017
    Dataset authored and provided by
    Koninklijk Nederlands Meteorologisch Instituut (KNMI)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 1, 1970 - Jul 1, 2100
    Area covered
    Description

    Global population density from 1970 to 2100 per land grid cell. The data is licensed under CC-BY. The IMAGE-team would appreciate cooperation when data is used.

  19. Population of the world 10,000BCE-2100

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the world 10,000BCE-2100 [Dataset]. https://www.statista.com/statistics/1006502/global-population-ten-thousand-bc-to-2050/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.

  20. S

    National and provincial population and economy projection databases under...

    • scidb.cn
    Updated Apr 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tong Jiang; Buda Su; Cheng Jing; Yanjun Wang; Jinlong Huang; Huanhuan Guo; Yuming Yang; Guojie Wang; Yong Luo (2022). National and provincial population and economy projection databases under Shared Socioeconomic Pathways(SSP1-5)_v2 [Dataset]. http://doi.org/10.57760/sciencedb.01683
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 18, 2022
    Dataset provided by
    Science Data Bank
    Authors
    Tong Jiang; Buda Su; Cheng Jing; Yanjun Wang; Jinlong Huang; Huanhuan Guo; Yuming Yang; Guojie Wang; Yong Luo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    V1 dataset:Under the global framework of Shared Socioeconomic Pathways (SSPs), based on localized population and economic parameters, a Population Development Environment (PDE) model is adopted to construct population grid data for SSPs from 2020 to 2100; Using the Cobb Douglas model, construct economic data for SSPs from 2020 to 2100.The v1 dataset includes:Population grid data of the world, The Belt and Road region, and China, with a spatial resolution of 0.5°GDP grid data of the world, The Belt and Road region, and China, with a spatial resolution of 0.5 °Grid data on the output value of three industries in the Chinese region, with a spatial resolution of 0.1 °V2 dataset:Based on the data from the 7th National Population Census of China, starting from 2020, the parameters such as fertility rate, mortality rate, migration rate, and education level in the Population Development Environment (PDE) model were updated. Under the Shared Socioeconomic Pathways (SSP1-5), a new version (v2) of the total population and age and gender specific population projection dataset for China and its provinces from 2020 to 2100 was created. Based on the data from the 7th National Population Census and the 4th Economic Census of China, with 2020 as the starting year, the parameters of total factor productivity, capital stock, labor input, and capital elasticity coefficient in the Cobb Douglas model were updated. Under the shared SSP1-5, a new version (v2) of China and its provincial GDP projectiondataset from 2020 to 2100 was created.The v2 (2024 version) dataset includes:Total Population Data of China and Provinces (2020-2100)Population data by age and gender in China (2020-2100)China and Provincial GDP Data (2020-2100)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie (2024). GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version 2.0-test-alpha) [Dataset]. http://doi.org/10.5281/zenodo.11071249
Organization logo

GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version 2.0-test-alpha)

Explore at:
tiffAvailable download formats
Dataset updated
Sep 4, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Data Usage Notice

This version is not recommended for download. Please check the newest version.

We would like to inform you that the updated GlobPOP dataset (2021-2022) have been available in version 2.0. The GlobPOP dataset (2021-2022) in the current version is not recommended for your work. The GlobPOP dataset (1990-2020) in the current version is the same as version 1.0.

Thank you for your continued support of the GlobPOP.

If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.

Introduction

Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.

Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.

With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.

Data description

The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)

Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:

GlobPOP_Count_30arc_1990_I32

Field 1: GlobPOP(Global gridded population)
Field 2: Pixel unit is population "Count" or population "Density"
Field 3: Spatial resolution is 30 arc seconds
Field 4: Year "1990"
Field 5: Data type is I32(Int 32) or F32(Float32)

More information

Please refer to the paper for detailed information:

Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.

The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.

Search
Clear search
Close search
Google apps
Main menu