100+ datasets found
  1. Data from: COVID-19 Case Surveillance Public Use Data with Geography

    • catalog.data.gov
    • data.virginia.gov
    • +5more
    Updated May 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2021). COVID-19 Case Surveillance Public Use Data with Geography [Dataset]. https://catalog.data.gov/dataset/covid-19-case-surveillance-public-use-data-with-geography-0605b
    Explore at:
    Dataset updated
    May 8, 2021
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors. Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 32 data element restricted access dataset. The following apply to the public use datasets and the restricted access dataset: - Data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf. - Data are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. - Some data are suppressed to protect individual privacy. - Datasets will include all cases with the earliest date available in each record (date received by CDC or date related to illness/specimen collection) at least 14 days prior to the creation of the previously updated datasets. This 14-day lag allows case reporting to be stabilized and ensure that time-dependent outcome data are accurately captured. - Datasets are updated monthly. - Datasets are created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access and include protections designed to protect individual privacy. - For more information about data collection and reporting, please see wwwn.cdc.gov/nndss/data-collection.html. - For more information about the COVID-19 case surveillance data, please see www.cdc.gov/coronavirus/2019-ncov/covid-data/faq-surveillance.html. Overview The COVID-19 case surveillance database includes patient-level data reported by U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as "immediately notifiable, urgent (within 24 hours)" by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020 to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data collected by jurisdictions are shared voluntarily with CDC. For more information, visit: wwwn.cdc.gov/nndss/conditions/coronavirus-disease-2019-covid-19/case-definition/2020/08/05/. COVID-19 Case Reports COVID-19 case reports are routinely submitted to CDC by pu

  2. Federal Court Cases: Integrated Data Base, 2001

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Justice Statistics (2025). Federal Court Cases: Integrated Data Base, 2001 [Dataset]. https://catalog.data.gov/dataset/federal-court-cases-integrated-data-base-2001-d3183
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    Bureau of Justice Statisticshttp://bjs.ojp.gov/
    Description

    The purpose of this data collection is to provide an official public record of the business of the federal courts. The data originate from 94 district and 12 appellate court offices throughout the United States. Information was obtained at two points in the life of a case: filing and termination. The termination data contain information on both filing and terminations, while the pending data contain only filing information. For the appellate and civil data, the unit of analysis is a single case. The unit of analysis for the criminal data is a single defendant.

  3. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +3more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  4. COVID-19 Case Surveillance Public Use Data

    • catalog.data.gov
    • healthdata.gov
    • +6more
    Updated Mar 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2022). COVID-19 Case Surveillance Public Use Data [Dataset]. https://catalog.data.gov/dataset/covid-19-case-surveillance-public-use-data
    Explore at:
    Dataset updated
    Mar 3, 2022
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Beginning March 1, 2022, the "COVID-19 Case Surveillance Public Use Data" will be updated on a monthly basis. This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data. CDC has three COVID-19 case surveillance datasets: COVID-19 Case Surveillance Public Use Data with Geography: Public use, patient-level dataset with clinical data (including symptoms), demographics, and county and state of residence. (19 data elements) COVID-19 Case Surveillance Public Use Data: Public use, patient-level dataset with clinical and symptom data and demographics, with no geographic data. (12 data elements) COVID-19 Case Surveillance Restricted Access Detailed Data: Restricted access, patient-level dataset with clinical and symptom data, demographics, and state and county of residence. Access requires a registration process and a data use agreement. (32 data elements) The following apply to all three datasets: Data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf. Data are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. Some data cells are suppressed to protect individual privacy. The datasets will include all cases with the earliest date available in each record (date received by CDC or date related to illness/specimen collection) at least 14 days prior to the creation of the previously updated datasets. This 14-day lag allows case reporting to be stabilized and ensures that time-dependent outcome data are accurately captured. Datasets are updated monthly. Datasets are created using CDC’s operational Policy on Public Health Research and Nonresearch Data Management and Access and include protections designed to protect individual privacy. For more information about data collection and reporting, please see https://wwwn.cdc.gov/nndss/data-collection.html For more information about the COVID-19 case surveillance data, please see https://www.cdc.gov/coronavirus/2019-ncov/covid-data/faq-surveillance.html Overview The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020 to clarify the interpretation of antigen detection tests and serologic test results within the case classification. The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported volun

  5. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Mar 25, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  6. d

    Case Study Data Matrices - Dataset - data.govt.nz - discover and use data

    • catalogue.data.govt.nz
    Updated Feb 1, 2001
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2001). Case Study Data Matrices - Dataset - data.govt.nz - discover and use data [Dataset]. https://catalogue.data.govt.nz/dataset/oai-figshare-com-article-14572032
    Explore at:
    Dataset updated
    Feb 1, 2001
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Enclosed are case study qualitative and quantitative data used to populate fuzzy cognitive maps that provide a framework for analysis of drivers and barriers to implementation of coastal risk management projects.

  7. i

    Our World in Data COVID-19 Dataset

    • ieee-dataport.org
    Updated Aug 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lubna Altarawneh (2023). Our World in Data COVID-19 Dataset [Dataset]. http://doi.org/10.21227/2n61-4965
    Explore at:
    Dataset updated
    Aug 16, 2023
    Dataset provided by
    IEEE Dataport
    Authors
    Lubna Altarawneh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The complete COVID-19 dataset is a collection of the COVID-19 data maintained by Our World in Data that is updated throughout the duration of COVID-19. It includes information related to confirmed cases and deaths, hospitalization, intensive care unit admissions, testing for COVID-19, and vaccination for COVID-19.Confirmed cases and deaths: this data is collected from the World Health Organization Coronavirus Dashboard. The cases & deaths dataset is updated daily.Note 1: Time/date stamps reflect when the data was last updated by WHO. Due to the time required to process and validate the incoming data, there is a delay between reporting to WHO and the update of the dashboard.Note 2: Counts and corrections made after these times will be carried forward to the next reporting cycle for that specific region. Delayed reporting for any specific country, territory or area may result in pooled counts for multiple days being presented, with a retrospective update to counts on previous days to accurately reflect trends. Significant data errors detected or reported to WHO may be corrected at more frequent intervals.Hospitalizations and intensive care unit (ICU) admissions: our data is collected from official sources and collated by Our World in Data. The complete list of country-by-country sources is available here.Testing for COVID-19: this data is collected by the Our World in Data team from official reports; you can find further details in our post on COVID-19 testing, including our checklist of questions to understand testing data, information on geographical and temporal coverage, and detailed country-by-country source information. On 23 June 2022, we stopped adding new datapoints to our COVID-19 testing dataset. You can read more here.Vaccinations against COVID-19: this data is collected by the Our World in Data team from official reports.Other variables: this data is collected from a variety of sources (United Nations, World Bank, Global Burden of Disease, Blavatnik School of Government, etc.). More information is available in our codebook.

  8. o

    Caseload Aging

    • nccourts.opendatasoft.com
    • data.nccourts.gov
    csv, excel, json
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Caseload Aging [Dataset]. https://nccourts.opendatasoft.com/explore/dataset/caseload-aging/api/
    Explore at:
    json, csv, excelAvailable download formats
    Dataset updated
    Jul 11, 2024
    Description

    Caseload statistics for a given fiscal year (July 1 through June 30), including data on the number of days it took to dispose of a case and the number of days a case has been pending. The data is used to populate the Case Statistics dashboard at https://data.nccourts.gov/pages/dashboard

  9. O

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • data.ct.gov
    • datasets.ai
    • +1more
    application/rdfxml +5
    Updated Oct 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2020). COVID-19 case rate per 100,000 population and percent test positivity in the last 7 days by town - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd
    Explore at:
    application/rdfxml, json, csv, tsv, xml, application/rssxmlAvailable download formats
    Dataset updated
    Oct 8, 2020
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020.

    Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.

  10. m

    Data for: COVID-19 Dataset: Worldwide Spread Log Including Countries First...

    • data.mendeley.com
    Updated Jul 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hasmot Ali (2020). Data for: COVID-19 Dataset: Worldwide Spread Log Including Countries First Case And First Death [Dataset]. http://doi.org/10.17632/vw427wzzkk.4
    Explore at:
    Dataset updated
    Jul 20, 2020
    Authors
    Hasmot Ali
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Contain informative data related to COVID-19 pandemic. Specially, figure out about the First Case and First Death information for every single country. First Case information consist of Date of First Case(s), Number of confirm Case(s) at First Day, Age of the patient(s) of First Case, Last Visited Country and the First Death information consist of Date of First Death and Age of the Patient who died first for every Country mentioning corresponding Continent. The datasets also contain the Binary Matrix of spread chain among different country and region.

  11. c

    English Poor Law Cases, 1690-1815

    • datacatalogue.cessda.eu
    • beta.ukdataservice.ac.uk
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deakin, S; Shuku, L; Cheok, V (2025). English Poor Law Cases, 1690-1815 [Dataset]. http://doi.org/10.5255/UKDA-SN-856924
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    University of Cambridge
    Authors
    Deakin, S; Shuku, L; Cheok, V
    Time period covered
    Jan 1, 2020 - Jan 31, 2023
    Area covered
    United Kingdom
    Variables measured
    Text unit
    Measurement technique
    The cases were sourced from original texts of legal judgments. A text file was first created for each judgment and a separate word file was then created. The word files were annotated for subsequent use in computational analysis. In the current dataset the cases are ordered alphabetically in a single word document. The annotations (colour coding for words (yellow) and certain longer phrases (green) of interest) have been retained.
    Description

    This dataset of historical poor law cases was created as part of a project aiming to assess the implications of the introduction of Artificial Intelligence (AI) into legal systems in Japan and the United Kingdom. The project was jointly funded by the UK’s Economic and Social Research Council, part of UKRI, and the Japanese Society and Technology Agency (JST), and involved collaboration between Cambridge University (the Centre for Business Research, Department of Computer Science and Faculty of Law) and Hitotsubashi University, Tokyo (the Graduate Schools of Law and Business Administration). As part of the project, a dataset of historic poor law cases was created to facilitate the analysis of legal texts using natural language processing methods. The dataset contains judgments of cases which have been annotated to facilitate computational analysis. Specifically, they make it possible to see how legal terms have evolved over time in the area of disputes over the law governing settlement by hiring.

    A World Economic Forum meeting at Davos 2019 heralded the dawn of 'Society 5.0' in Japan. Its goal: creating a 'human-centred society that balances economic advancement with the resolution of social problems by a system that highly integrates cyberspace and physical space.' Using Artificial Intelligence (AI), robotics and data, 'Society 5.0' proposes to '...enable the provision of only those products and services that are needed to the people that need them at the time they are needed, thereby optimizing the entire social and organizational system.' The Japanese government accepts that realising this vision 'will not be without its difficulties,' but intends 'to face them head-on with the aim of being the first in the world as a country facing challenging issues to present a model future society.' The UK government is similarly committed to investing in AI and likewise views the AI as central to engineering a more profitable economy and prosperous society.

    This vision is, however, starting to crystallise in the rhetoric of LegalTech developers who have the data-intensive-and thus target-rich-environment of law in their sights. Buoyed by investment and claims of superior decision-making capabilities over human lawyers and judges, LegalTech is now being deputised to usher in a new era of 'smart' law built on AI and Big Data. While there are a number of bold claims made about the capabilities of these technologies, comparatively little attention has been directed to more fundamental questions about how we might assess the feasibility of using them to replicate core aspects of legal process, and ensuring the public has a meaningful say in the development and implementation.

    This innovative and timely research project intends to approach these questions from a number of vectors. At a theoretical level, we consider the likely consequences of this step using a Horizon Scanning methodology developed in collaboration with our Japanese partners and an innovative systemic-evolutionary model of law. Many aspects of legal reasoning have algorithmic features which could lend themselves to automation. However, an evolutionary perspective also points to features of legal reasoning which are inconsistent with ML: including the reflexivity of legal knowledge and the incompleteness of legal rules at the point where they encounter the 'chaotic' and unstructured data generated by other social sub-systems. We will test our theory by developing a hierarchical model (or ontology), derived from our legal expertise and public available datasets, for classifying employment relationships under UK law. This will let us probe the extent to which legal reasoning can be modelled using less computational-intensive methods such as Markov Models and Monte Carlo Trees.

    Building upon these theoretical innovations, we will then turn our attention from modelling a legal domain using historical data to exploring whether the outcome of legal cases can be reliably predicted using various technique for optimising datasets. For this we will use a data set comprised of 24,179 cases from the High Court of England and Wales. This will allow us to harness Natural Language Processing (NLP) techniques such as named entity recognition (to identify relevant parties) and sentiment analysis (to analyse opinions and determine the disposition of a party) in addition to identifying the main legal and factual points of the dispute, remedies, costs, and trial durations. By trailing various predictive heuristics and ML techniques against this dataset we hope to develop a more granular understanding as to the feasibility of predicting dispute outcomes and insight to what factors are relevant for legal decision-making. This will allow us to then undertake a comparative analysis with the results of existing studies and shed light on the legal contexts and questions where AI can and cannot be used to produce accurate and repeatable results.

  12. d

    DOHMH Covid-19 Milestone Data: New Cases of Covid-19 (7 Day Average)

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Sep 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). DOHMH Covid-19 Milestone Data: New Cases of Covid-19 (7 Day Average) [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-milestone-data-new-cases-of-covid-19-7-day-average
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Description

    This dataset shows daily confirmed and probable cases of COVID-19 in New York City by date of specimen collection. Total cases has been calculated as the sum of daily confirmed and probable cases. Seven-day averages of confirmed, probable, and total cases are also included in the dataset. A person is classified as a confirmed COVID-19 case if they test positive with a nucleic acid amplification test (NAAT, also known as a molecular test; e.g. a PCR test). A probable case is a person who meets the following criteria with no positive molecular test on record: a) test positive with an antigen test, b) have symptoms and an exposure to a confirmed COVID-19 case, or c) died and their cause of death is listed as COVID-19 or similar. As of June 9, 2021, people who meet the definition of a confirmed or probable COVID-19 case >90 days after a previous positive test (date of first positive test) or probable COVID-19 onset date will be counted as a new case. Prior to June 9, 2021, new cases were counted ≥365 days after the first date of specimen collection or clinical diagnosis. Any person with a residence outside of NYC is not included in counts. Data is sourced from electronic laboratory reporting from the New York State Electronic Clinical Laboratory Reporting System to the NYC Health Department. All identifying health information is excluded from the dataset. These data are used to evaluate the overall number of confirmed and probable cases by day (seven day average) to track the trajectory of the pandemic. Cases are classified by the date that the case occurred. NYC COVID-19 data include people who live in NYC. Any person with a residence outside of NYC is not included.

  13. Case Mix Index

    • data.chhs.ca.gov
    • data.ca.gov
    • +1more
    docx, pdf, xlsx, zip
    Updated Nov 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2024). Case Mix Index [Dataset]. https://data.chhs.ca.gov/dataset/case-mix-index
    Explore at:
    xlsx(185114), zip, pdf, docxAvailable download formats
    Dataset updated
    Nov 13, 2024
    Dataset authored and provided by
    Department of Health Care Access and Information
    Description

    The Case Mix Index (CMI) is the average relative DRG weight of a hospital’s inpatient discharges, calculated by summing the Medicare Severity-Diagnosis Related Group (MS-DRG) weight for each discharge and dividing the total by the number of discharges. The CMI reflects the diversity, clinical complexity, and resource needs of all the patients in the hospital. A higher CMI indicates a more complex and resource-intensive case load. Although the MS-DRG weights, provided by the Centers for Medicare & Medicaid Services (CMS), were designed for the Medicare population, they are applied here to all discharges regardless of payer. Note: It is not meaningful to add the CMI values together.

  14. d

    Federal Court Data | State Court Record Data | legal data scraping | PACER...

    • datarade.ai
    Updated Oct 18, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2022). Federal Court Data | State Court Record Data | legal data scraping | PACER Data | Scrape All Publicly Available Legal Related Data | 100M+ Records [Dataset]. https://datarade.ai/data-products/federal-court-data-state-court-record-data-legal-data-scr-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Oct 18, 2022
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Slovakia, Australia, Andorra, Croatia, Czech Republic, Slovenia, Ireland, Greenland, Latvia, Liechtenstein
    Description

    Note:- Only publicly available Legal data can be worked upon.

    Unlock a world of legal information with APISCRAPY's user-friendly services – Federal Court Data, State Court Record Data, legal data scraping, and PACER Data. We've made it simple for anyone, from legal professionals to researchers and businesses, to access over 100 million publicly available legal records.

    Our Federal Court Data service provides details on federal legal matters, while State Court Record Data gives insights into state-level legal proceedings. With our legal data scraping capabilities, we ensure you have access to the information you need without any hassle. Plus, our integration with PACER Data ensures a comprehensive and reliable source for legal records.

    Key Features:

    Federal Court Data: Get insights into legal matters at the federal level, all at your fingertips.

    State Court Record Data: Access information on legal proceedings at the state level, tailored to your specific needs.

    Legal Data Scraping Made Easy: We've simplified the process of gathering legal data, making it accessible for everyone.

    PACER Data Integration: Our platform integrates seamlessly with PACER Data, ensuring a reliable and complete source of legal records.

    Over 100 Million Records: APISCRAPY provides access to a vast database of over 100 million publicly available legal records, offering unparalleled insights.

    Whether you're a legal professional, researcher, or business looking for easy access to legal information, APISCRAPY's services cater to your needs. Choose us for straightforward and comprehensive legal data services, where simplicity and accessibility meet for your convenience.

    [ Related Tags: public court records, online court records, federal court cases, Federal court case number search, find Federal court cases, court case by state, court Datasets, state court data, supreme court data, USA court datasets, Federal Court Data API , Litigation Data, Legal Data, Legal API, Legal Law, Legal Court records, Crime records, County court Datasets, All county court Datasets, Legal Analytics, Legal Intelligence, Legal Research, Attorney Data, Legal Parties Data, Judge Data, Case Research, Data Integration, US legal Data API, pacer case locator, pacer court records, free pacer search, pacer criminal case search, federal courts pacer, pacer API , pacer case locator free ]

  15. d

    The 101st Fair Trade Commission's case statistics - classified according to...

    • data.gov.tw
    csv
    Updated May 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fair Trade Commission, EY (2024). The 101st Fair Trade Commission's case statistics - classified according to the type of illegal behavior [Dataset]. https://data.gov.tw/en/datasets/6605
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 17, 2024
    Dataset authored and provided by
    Fair Trade Commission, EY
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    This dataset mainly provides statistics on reported cases and fair trade cases investigated by the commission according to its authority, as well as statistics on the patterns of conduct as stated in the disposition.

  16. z

    Counts of Influenza reported in UNITED STATES OF AMERICA: 1919-1951

    • zenodo.org
    • data.niaid.nih.gov
    json, xml, zip
    Updated Jun 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Willem Van Panhuis; Willem Van Panhuis; Anne Cross; Anne Cross; Donald Burke; Donald Burke (2024). Counts of Influenza reported in UNITED STATES OF AMERICA: 1919-1951 [Dataset]. http://doi.org/10.25337/t7/ptycho.v2.0/us.6142004
    Explore at:
    json, xml, zipAvailable download formats
    Dataset updated
    Jun 3, 2024
    Dataset provided by
    Project Tycho
    Authors
    Willem Van Panhuis; Willem Van Panhuis; Anne Cross; Anne Cross; Donald Burke; Donald Burke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 26, 1919 - Dec 8, 1951
    Area covered
    United States
    Description

    Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format.

    Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.

    Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:

    • Analyze missing data: Project Tycho datasets do not inlcude time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported.
    • Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exxclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".

  17. Public Health Infobase - Data on COVID-19 in Canada

    • open.canada.ca
    • datasets.ai
    • +1more
    csv
    Updated Nov 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public Health Agency of Canada (2024). Public Health Infobase - Data on COVID-19 in Canada [Dataset]. https://open.canada.ca/data/en/dataset/261c32ab-4cfd-4f81-9dea-7b64065690dc
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 21, 2024
    Dataset provided by
    Public Health Agency Of Canadahttp://www.phac-aspc.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    The data contained in the table describes COVID-19 in Canada in terms of number of cases and deaths at the provincial and national levels from January 31, 2020 to present time. It also describes the number of tests performed and the number of people recovered. The values displayed in the table are provided by the Public Health Infobase, managed by the Health Promotion and Chronic Disease Prevention Branch (HPCDPB) of the Public Health Agency of Canada (PHAC). The values are updated daily.

  18. O

    Moovit Case Study

    • data.act.gov.au
    • data.gov.au
    application/rdfxml +5
    Updated Jul 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TCCS (2020). Moovit Case Study [Dataset]. https://www.data.act.gov.au/Transport/Moovit-Case-Study/inxh-vdgb
    Explore at:
    json, application/rssxml, xml, application/rdfxml, tsv, csvAvailable download formats
    Dataset updated
    Jul 28, 2020
    Dataset authored and provided by
    TCCS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This case study document provides information on how Moovit (app) is using our open datasets and articulates citizen benefits.

  19. p

    Counts of Dengue hemorrhagic fever reported in COLOMBIA: 1985-2012

    • tycho.pitt.edu
    Updated Apr 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Willem G Van Panhuis; Anne L Cross; Donald S Burke (2018). Counts of Dengue hemorrhagic fever reported in COLOMBIA: 1985-2012 [Dataset]. https://www.tycho.pitt.edu/dataset/CO.20927009
    Explore at:
    Dataset updated
    Apr 1, 2018
    Dataset provided by
    Project Tycho, University of Pittsburgh
    Authors
    Willem G Van Panhuis; Anne L Cross; Donald S Burke
    Time period covered
    1985 - 2012
    Area covered
    Colombia
    Description

    Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretability. We also formatted the data into a standard data format.

    Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datasets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of acquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.

    Depending on the intended use of a dataset, we recommend a few data processing steps before analysis: - Analyze missing data: Project Tycho datasets do not include time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported. - Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".

  20. s

    COVID-19 cases in Pacific Island Countries and Territories

    • pacific-data.sprep.org
    • pacificdata.org
    • +1more
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC (2025). COVID-19 cases in Pacific Island Countries and Territories [Dataset]. https://pacific-data.sprep.org/dataset/covid-19-cases-pacific-island-countries-and-territories
    Explore at:
    application/vnd.sdmx.data+csv; labels=name; version=2; charset=utf-8Available download formats
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    Pacific Data Hub
    Authors
    SPC
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    [135.55075917519616, [145.2148808223921, [210.56388888886144, [165.50902632210722, 15.726687346843647], -19.123740708466755], [154.5786207439524, 0.647280195324868], -10.111897222222069], -7.496644800517004], Tokelau, Palau, Nauru, Niue, Marshall Islands, Micronesia, Samoa, Kiribati
    Description

    Statistics from SPC's Public Health Division (PHD) on the number of cases of COVID-19 and the number of deaths attributed to COVID-19 in Pacific Island Countries and Territories.

    Find more Pacific data on PDH.stat.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2021). COVID-19 Case Surveillance Public Use Data with Geography [Dataset]. https://catalog.data.gov/dataset/covid-19-case-surveillance-public-use-data-with-geography-0605b
Organization logo

Data from: COVID-19 Case Surveillance Public Use Data with Geography

Related Article
Explore at:
Dataset updated
May 8, 2021
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Description

This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors. Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 32 data element restricted access dataset. The following apply to the public use datasets and the restricted access dataset: - Data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf. - Data are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. - Some data are suppressed to protect individual privacy. - Datasets will include all cases with the earliest date available in each record (date received by CDC or date related to illness/specimen collection) at least 14 days prior to the creation of the previously updated datasets. This 14-day lag allows case reporting to be stabilized and ensure that time-dependent outcome data are accurately captured. - Datasets are updated monthly. - Datasets are created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access and include protections designed to protect individual privacy. - For more information about data collection and reporting, please see wwwn.cdc.gov/nndss/data-collection.html. - For more information about the COVID-19 case surveillance data, please see www.cdc.gov/coronavirus/2019-ncov/covid-data/faq-surveillance.html. Overview The COVID-19 case surveillance database includes patient-level data reported by U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as "immediately notifiable, urgent (within 24 hours)" by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020 to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data collected by jurisdictions are shared voluntarily with CDC. For more information, visit: wwwn.cdc.gov/nndss/conditions/coronavirus-disease-2019-covid-19/case-definition/2020/08/05/. COVID-19 Case Reports COVID-19 case reports are routinely submitted to CDC by pu

Search
Clear search
Close search
Google apps
Main menu