100+ datasets found
  1. KPMG Customer Demography Cleaned Dataset

    • kaggle.com
    zip
    Updated Sep 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HarishEdison (2022). KPMG Customer Demography Cleaned Dataset [Dataset]. https://www.kaggle.com/datasets/harishedison/kpmg-customer-demography-cleaned-dataset
    Explore at:
    zip(140162 bytes)Available download formats
    Dataset updated
    Sep 25, 2022
    Authors
    HarishEdison
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    This dataset was sourced from KPMG AU's Data Analytics virtual internship course on Forage

    Sprocket Pvt Ltd is a client of KPMG AU. Sprocket is a bike and bike accessories retail business. They need to find the right customer segment to target for marketing to boost revenue. The following dataset is of their customer demographics for the past 3 years.

    The original dataset of 3 separate sheets of Customer demographic, Transactions, and Customer Addresses was fully cleaned and merged using a power query. Data types of columns were changed, and values of certain columns which had illegal values were corrected using a standard approach. This final master dataset can be used for customer segmentation projects using clustering methods.

  2. Camden Demographics - Population Segmentation Supplementary Analysis 2015 -...

    • ckan.publishing.service.gov.uk
    Updated Nov 24, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2015). Camden Demographics - Population Segmentation Supplementary Analysis 2015 - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/camden-demographics-population-segmentation-supplementary-analysis-2015
    Explore at:
    Dataset updated
    Nov 24, 2015
    Dataset provided by
    CKANhttps://ckan.org/
    Area covered
    Camden Town
    Description

    This profile is designed to accompany the Joint Strategic Needs Assessment (JSNA) chapter on Demographics, which looks at segmenting the borough’s population by their most significant health and social care need. This supplement looks at adults (aged 18 and over) instead of the overall population, because the health and social care need segments covered in this section are more common in adults.

  3. User Demography Data

    • kaggle.com
    zip
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samrawit Guangul (2025). User Demography Data [Dataset]. https://www.kaggle.com/datasets/samrawitguangul/user-demography-data
    Explore at:
    zip(43514 bytes)Available download formats
    Dataset updated
    Apr 28, 2025
    Authors
    Samrawit Guangul
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Description: This dataset contains 1,000 anonymized records of individuals, capturing a mix of demographic, financial, health, and behavioral attributes. The data is structured to support analysis in areas such as market research, risk assessment, public health studies, and customer segmentation.

    Key Attributes: Personal Information

    Name: Full name of the individual (synthetic).

    Age: Age in years (range: 18–80).

    Gender: Binary classification (Male/Female).

    Financial Metrics

    Annual Income: Yearly earnings in USD (range: 20K–250K).

    Credit Score: FICO-like score (range: 300–850).

    Transaction Frequency: Monthly transactions (count).

    Health Indicators

    BMI: Body Mass Index (range: 15–45).

    Blood Pressure (Systolic): mmHg (range: 90–180).

    Geospatial Data

    Latitude: Approximate location (32.0°–42.0° N).

    Longitude: Approximate location (-120.0°–-75.0° W).

    Behavioral Data

    Monthly Data Usage: Internet consumption in GB.

    Potential Use Cases: Market Research: Segment customers by income, location, or spending habits.

    Health Analytics: Study correlations between age, BMI, and blood pressure.

    Financial Modeling: Assess credit risk based on income and transaction behavior.

    Geospatial Analysis: Map demographic trends across regions.

    Data Quality Notes: Contains 3% missing values (randomly distributed).

    Numeric values are rounded for readability (e.g., BMI to 1 decimal place).

  4. d

    Customer Attributes Dataset - Demographics, Devices & Locations APAC Data...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AI Keyboard, Customer Attributes Dataset - Demographics, Devices & Locations APAC Data (1st Party Data w/90M+ records) [Dataset]. https://datarade.ai/data-products/bobble-ai-demographic-data-apac-age-gender-1st-party-data-w-52m-records-bobble-ai
    Explore at:
    .json, .csv, .xls, .parquetAvailable download formats
    Dataset authored and provided by
    AI Keyboard
    Area covered
    United States of America, Nepal, India, Indonesia, Philippines, Saudi Arabia, Netherlands, Germany, United Arab Emirates, Pakistan
    Description

    The User Profile Data is a structured, anonymized dataset designed to help organizations understand who their users are, what devices they use, and where they are located. Each record provides privacy-compliant linkages between user IDs, demographic profiles, device intelligence, and geolocation data, offering deep context for analytics, segmentation, and personalization.

    Built for privacy-safe analytics, the dataset uses hashed identifiers like phone number and email and standardized formats, making it easy to integrate into big-data platforms, AI pipelines, and machine learning models for advanced analytics.

    Demographic insights include gender, age, and age group, essential for audience profiling, marketing optimization, and consumer intelligence. All gender data is user-declared and AI-verified through image-based avatar validation, ensuring data accuracy and authenticity.

    The dataset’s Device Intelligence Layer includes rich technical attributes such as device brand, model, OS version, user agent, RAM, language, and timezone, enabling technical segmentation, performance analytics, and targeted ad delivery across diverse device ecosystems.

    On the location and POI front, the dataset combines GPS-based and IP-based coordinates—including country, region, city, latitude, longitude —to provide high-precision geospatial insights. This enables mobility pattern analysis, market expansion planning, and POI clustering for advanced location intelligence.

    Each user record contains onboarding and lifecycle fields like unique IDs, and profile update timestamps, allowing accurate tracking of user acquisition trends, data freshness, and activity duration.

    🔍 Key Features • 1st-party, consent-based demographic & device data • AI-verified gender insights via avatar recognition • OS-level app data with 120+ daily sessions per user • Global coverage across APAC and emerging markets • GPS + IP-based geolocation & POI intelligence • Privacy-compliant, hashed identifiers for safe integration

    🚀 Use Cases • Audience segmentation & lookalike modeling • Ad-tech and mar-tech optimization • Geospatial & POI analytics • Fraud detection & risk scoring • Personalization & recommendation engines • App performance & device compatibility insights

    🏢 Industries Served Ad-Tech • Mar-Tech • FinTech • Telecom • Retail Analytics • Consumer Intelligence • AI & ML Platforms

  5. Camden Demographics - Population Segmentation 2015 - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Nov 24, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2015). Camden Demographics - Population Segmentation 2015 - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/camden-demographics-population-segmentation-2015
    Explore at:
    Dataset updated
    Nov 24, 2015
    Dataset provided by
    CKANhttps://ckan.org/
    Area covered
    Camden Town
    Description

    This factsheet breaks down Camden’s population by looking at health conditions, and then by their age, sex, ethnicity, and deprivation. Understanding the size and characteristics of each segment helps us plan healthcare resources and service delivery effectively for each group, as well as the population in general.

  6. D

    Police Reporting - demographics population estimates

    • data.sfgov.org
    csv, xlsx, xml
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    American Community Survey (2025). Police Reporting - demographics population estimates [Dataset]. https://data.sfgov.org/widgets/ecee-v8ud?mobile_redirect=true
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Mar 27, 2025
    Dataset authored and provided by
    American Community Survey
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This filtered view contains the population estimates for San Francisco demographic groups from the U.S. Census Bureau’s American Community Survey that are used by Controller's Office - City Performance Unit for reporting on Police Stops

    San Francisco Population and Demographic Census data dataset filtered on: "reporting_segment" = 'Police Reporting Demographic Categories'

    A. SUMMARY This dataset contains population and demographic estimates and associated margins of error obtained and derived from the US Census. The data is presented over multiple years and geographies. The data is sourced primarily from the American Community Survey.

    B. HOW THE DATASET IS CREATED The raw data is obtained from the census API. Some estimates as published as-is and some are derived.

    C. UPDATE PROCESS New estimates and years of data are appended to this dataset. To request additional census data for San Francisco, email support@datasf.org

    D. HOW TO USE THIS DATASET The dataset is long and contains multiple estimates, years and geographies. To use this dataset, you can filter by the overall segment which contains information about the source, years, geography, demographic category and reporting segment. For census data used in specific reports, you can filter to the reporting segment. To use a subset of the data, you can create a filtered view. More information of how to filter data and create a view can be found here

  7. Customer segmentation Db

    • kaggle.com
    zip
    Updated Nov 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mouncef Ikhoubi (2025). Customer segmentation Db [Dataset]. https://www.kaggle.com/datasets/mouncefikhoubi/customer-segmentation-db/code
    Explore at:
    zip(11336 bytes)Available download formats
    Dataset updated
    Nov 2, 2025
    Authors
    Mouncef Ikhoubi
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This simulated customer dataset provides a practical foundation for performing segmentation analysis and identifying distinct customer groups. The dataset encompasses a blend of demographic and behavioral information, equipping users with the necessary data to develop targeted marketing strategies, personalize customer experiences, and ultimately drive sales growth.

    Dataset Schema: Customer Demographics and Behavior

    This dataset is structured to provide a comprehensive view of each customer, combining demographic information with detailed purchasing behavior. The columns included are:

    • id: A unique identifier assigned to each customer.
    • age: The customer's age in years.
    • gender: The gender of the customer (e.g., Male, Female).
    • income: The customer's annual income, denominated in USD.
    • spending_score: A score ranging from 1 to 100 that reflects a customer's spending habits and loyalty.
    • membership_years: The total number of years the customer has held a membership.
    • purchase_frequency: The total number of purchases the customer has made in the last 12 months.
    • preferred_category: The shopping category most frequently chosen by the customer (e.g., Electronics, Clothing, Groceries, Home & Garden, Sports).
    • last_purchase_amount: The monetary value (in USD) of the customer's most recent transaction.

    Potential Applications and Use Cases

    The insights derived from this dataset can be applied to several key business areas:

    • Customer Segmentation: Group customers into distinct segments by analyzing their demographic and behavioral data to better understand the composition of your customer base.
    • Targeted Marketing: Craft and execute bespoke marketing campaigns tailored to the specific characteristics and preferences of each customer segment.
    • Customer Loyalty Programs: Develop and implement loyalty initiatives that are designed to reward desirable spending behaviors and align with customer preferences.
    • Sales Analysis: Examine sales data to identify purchasing patterns, understand trends, and forecast future sales performance.
  8. Consumer Marketing Data API | Tailored Consumer Insights | Target with...

    • datarade.ai
    Updated Oct 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2021). Consumer Marketing Data API | Tailored Consumer Insights | Target with Precision | Best Price Guarantee [Dataset]. https://datarade.ai/data-products/consumer-marketing-data-api-tailored-consumer-insights-ta-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Oct 27, 2021
    Dataset provided by
    Area covered
    Hong Kong, Senegal, Sweden, United Arab Emirates, Madagascar, Turkey, Estonia, Philippines, Vanuatu, Burundi
    Description

    Success.ai’s Consumer Marketing Data API empowers your marketing, analytics, and product teams with on-demand access to a vast and continuously updated dataset of consumer insights. Covering detailed demographics, behavioral patterns, and purchasing histories, this API enables you to go beyond generic outreach and craft tailored campaigns that truly resonate with your target audiences.

    With AI-validated accuracy and support for precise filtering, the Consumer Marketing Data API ensures you’re always equipped with the most relevant data. Backed by our Best Price Guarantee, this solution is essential for refining your strategies, improving conversion rates, and driving sustainable growth in today’s competitive consumer landscape.

    Why Choose Success.ai’s Consumer Marketing Data API?

    1. Tailored Consumer Insights for Precision Targeting

      • Access verified demographic, behavioral, and purchasing data to understand what consumers truly value.
      • AI-driven validation ensures 99% accuracy, minimizing wasted spend and improving engagement outcomes.
    2. Comprehensive Global Reach

      • Includes consumer profiles from diverse regions and markets, enabling you to scale campaigns and discover emerging opportunities.
      • Adapt swiftly to new markets, product launches, and shifting consumer preferences with real-time data at your fingertips.
    3. Continuously Updated and Real-Time Data

      • Receive ongoing updates that reflect evolving consumer behaviors, interests, and market trends.
      • Respond quickly to seasonal changes, competitor moves, and industry disruptions, ensuring your campaigns remain timely and relevant.
    4. Ethical and Compliant

      • Fully adheres to GDPR, CCPA, and other global data privacy regulations, guaranteeing responsible and lawful data usage.

    Data Highlights:

    • Detailed Demographics: Age, gender, location, and income levels to refine targeting and messaging.
    • Behavioral Insights: Interests, browsing patterns, and content consumption habits to anticipate consumer needs.
    • Purchasing History: Understand consumer spending, brand loyalty, and product preferences to tailor promotions effectively.
    • Real-Time Updates: Keep pace with evolving consumer tastes, ensuring your strategies remain forward-focused and competitive.

    Key Features of the Consumer Marketing Data API:

    1. Granular Targeting and Segmentation

      • Query the API to segment consumers by demographics, interests, past purchases, or engagement patterns.
      • Focus campaigns on the most receptive audiences, enhancing conversion rates and ROI.
    2. Flexible and Seamless Integration

      • Easily integrate the API into CRM systems, marketing automation tools, or analytics platforms.
      • Streamline workflows and eliminate manual data imports, freeing resources for strategic initiatives.
    3. Continuous Data Enrichment

      • Refresh consumer profiles with the latest data, ensuring every decision is backed by current insights.
      • Reduce data decay and maintain top-notch data hygiene to maximize long-term marketing effectiveness.
    4. AI-Driven Validation

      • Rely on advanced AI validation techniques to guarantee high-quality data accuracy and reliability.
      • Increase confidence in your campaigns and decrease budget wasted on irrelevant targets.

    Strategic Use Cases:

    1. Highly Personalized Marketing Campaigns

      • Deliver tailored offers, recommendations, and content that align with individual consumer preferences.
      • Boost engagement and loyalty by making every touchpoint relevant and meaningful.
    2. Market Expansion and Product Launches

      • Identify segments most receptive to new products or services, ensuring successful market entry.
      • Stay ahead of consumer demands, evolving your product line and marketing mix to meet changing preferences.
    3. Competitive Analysis and Trend Forecasting

      • Leverage consumer insights to anticipate emerging trends and outpace competitors in capturing new markets.
      • Adjust marketing strategies proactively to capitalize on seasonal, cultural, or economic shifts.
    4. Customer Retention and Loyalty Programs

      • Use historical purchase and engagement data to identify at-risk customers and implement retention strategies.
      • Cultivate brand advocates by delivering personalized offers and exclusive perks to loyal consumers.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality consumer marketing data at unmatched prices, ensuring maximum ROI for your outreach efforts.
    2. Seamless Integration

      • Easily incorporate the API into existing workflows, eliminating data silos and manual data management.
    3. Data Accuracy with AI Validation

      • Depend on 99% accuracy to guide data-driven decisions, refine targeting, and elevate your marketing initiatives.
    4. Customizable and Scalable Solutions

      • Tailor datasets to focus on specific demog...
  9. Census Tapestry Segmentation

    • chattadata.org
    csv, xlsx, xml
    Updated Dec 4, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hosted by the University of Tennessee at Chattanooga Open Geospatial Data Portal (2014). Census Tapestry Segmentation [Dataset]. https://www.chattadata.org/dataset/Census-Tapestry-Segmentation/kvr2-hdfg
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Dec 4, 2014
    Dataset provided by
    Open Geospatial Consortiumhttps://www.ogc.org/
    Authors
    Hosted by the University of Tennessee at Chattanooga Open Geospatial Data Portal
    Description

    Tapestry segment descriptions can be found here..http://www.esri.com/library/brochures/pdfs/tapestry-segmentation.pdf For more than 30 years, companies, agencies, and organizations have used segmentation to divide and group their consumer markets to more precisely target their best customers and prospects. This targeting method is superior to using “scattershot” methods that might attract these preferred groups. Segmentation explains customer diversity, simplifies marketing campaigns, describes lifestyle and lifestage, and incorporates a wide range of data. Segmentation systems operate on the theory that people with similar tastes, lifestyles, and behaviors seek others with the same tastes—“like seeks like.” These behaviors can be measured, predicted, and targeted. Esri’s Tapestry Segmentation system combines the “who” of lifestyle demography with the “where” of local neighborhood geography to create a model of various lifestyle classifications or segments of actual neighborhoods with addresses—distinct behavioral market segments. The tapestry segmentation is almost comical in the sense that it trys to describe such small details of individuals daily lives just by analyzing the data provided on your CENSUS form. These segements are not only ideal for marketing and targeting lifestyles within a geographic location, but they are fun to read. Take the time to find out which segment you live in!

  10. G

    Data from: Survey Respondents

    • gomask.ai
    csv, json
    Updated Nov 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GoMask.ai (2025). Survey Respondents [Dataset]. https://gomask.ai/marketplace/datasets/survey-respondents
    Explore at:
    json, csv(10 MB)Available download formats
    Dataset updated
    Nov 13, 2025
    Dataset provided by
    GoMask.ai
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024 - 2025
    Area covered
    Global
    Variables measured
    age, city, gender, region, country, ethnicity, survey_id, respondent_id, response_date, segment_label, and 7 more
    Description

    This dataset provides detailed records of survey respondents, including demographic information, completion rates, segmentation labels, and response quality metrics. It enables in-depth analysis of participant behavior, demographic trends, and survey effectiveness, making it ideal for market research, academic studies, and customer insights.

  11. d

    GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business...

    • datarade.ai
    .json, .csv
    Updated Aug 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business Decisions | Consumer Spending Data| Demographic Data [Dataset]. https://datarade.ai/data-products/gapmaps-premium-demographic-data-by-ags-usa-canada-gis-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Aug 13, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Canada, United States
    Description

    GapMaps GIS data for USA and Canada sourced from Applied Geographic Solutions (AGS) includes an extensive range of the highest quality demographic and lifestyle segmentation products. All databases are derived from superior source data and the most sophisticated, refined, and proven methodologies.

    GIS Data attributes include:

    1. Latest Estimates and Projections The estimates and projections database includes a wide range of core demographic data variables for the current year and 5- year projections, covering five broad topic areas: population, households, income, labor force, and dwellings.

    2. Crime Risk Crime Risk is the result of an extensive analysis of a rolling seven years of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, Crime Risk provides an accurate view of the relative risk of specific crime types (personal, property and total) at the block and block group level.

    3. Panorama Segmentation AGS has created a segmentation system for the United States called Panorama. Panorama has been coded with the MRI Survey data to bring you Consumer Behavior profiles associated with this segmentation system.

    4. Business Counts Business Counts is a geographic summary database of business establishments, employment, occupation and retail sales.

    5. Non-Resident Population The AGS non-resident population estimates utilize a wide range of data sources to model the factors which drive tourists to particular locations, and to match that demand with the supply of available accommodations.

    6. Consumer Expenditures AGS provides current year and 5-year projected expenditures for over 390 individual categories that collectively cover almost 95% of household spending.

    7. Retail Potential This tabulation utilizes the Census of Retail Trade tables which cross-tabulate store type by merchandise line.

    8. Environmental Risk The environmental suite of data consists of several separate database components including: -Weather Risks -Seismological Risks -Wildfire Risk -Climate -Air Quality -Elevation and terrain

    Primary Use Cases for GapMaps GIS Data:

    1. Retail (eg. Fast Food/ QSR, Cafe, Fitness, Supermarket/Grocery)
    2. Customer Profiling: get a detailed understanding of the demographic & segmentation profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular census block level using all the key metrics
    4. Site Selection: Identify optimal locations for future expansion and benchmark performance across existing locations.
    5. Target Marketing: Develop effective marketing strategies to acquire more customers.
    6. Integrate AGS demographic data with your existing GIS or BI platform to generate powerful visualizations.

    7. Finance / Insurance (eg. Hedge Funds, Investment Advisors, Investment Research, REITs, Private Equity, VC)

    8. Network Planning

    9. Customer (Risk) Profiling for insurance/loan approvals

    10. Target Marketing

    11. Competitive Analysis

    12. Market Optimization

    13. Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)

    14. Tenant Recruitment

    15. Target Marketing

    16. Market Potential / Gap Analysis

    17. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)

    18. Customer Profiling

    19. Target Marketing

    20. Market Share Analysis

  12. d

    Consumer Data | Global Population Data | Audience Targeting Data |...

    • datarade.ai
    .csv
    Updated Jul 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Consumer Data | Global Population Data | Audience Targeting Data | Segmentation data [Dataset]. https://datarade.ai/data-products/geopostcodes-consumer-data-population-data-audience-targe-geopostcodes
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Jul 11, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Uzbekistan, Sint Maarten (Dutch part), Cameroon, Nepal, Pitcairn, Guam, Guernsey, Malawi, Syrian Arab Republic, Algeria
    Description

    A global database of population segmentation data that provides an understanding of population distribution at administrative and zip code levels over 55 years, past, present, and future.

    Leverage up-to-date audience targeting data trends for market research, audience targeting, and sales territory mapping.

    Self-hosted consumer data curated based on trusted sources such as the United Nations or the European Commission, with a 99% match accuracy. The Consumer Data is standardized, unified, and ready to use.

    Use cases for the Global Population Database (Consumer Data Data/Segmentation data)

    • Ad targeting

    • B2B Market Intelligence

    • Customer analytics

    • Marketing campaign analysis

    • Demand forecasting

    • Sales territory mapping

    • Retail site selection

    • Reporting

    • Audience targeting

    Segmentation data export methodology

    Our location data packages are offered in CSV format. All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Product Features

    • Historical population data (55 years)

    • Changes in population density

    • Urbanization Patterns

    • Accurate at zip code and administrative level

    • Optimized for easy integration

    • Easy customization

    • Global coverage

    • Updated yearly

    • Standardized and reliable

    • Self-hosted delivery

    • Fully aggregated (ready to use)

    • Rich attributes

    Why do companies choose our Population Databases

    • Standardized and unified demographic data structure

    • Seamless integration in your system

    • Dedicated location data expert

    Note: Custom population data packages are available. Please submit a request via the above contact button for more details.

  13. g

    San Francisco Population and Demographic Census Data | gimi9.com

    • gimi9.com
    Updated Aug 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). San Francisco Population and Demographic Census Data | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_san-francisco-population-and-demographic-census-data/
    Explore at:
    Dataset updated
    Aug 24, 2022
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    San Francisco
    Description

    A. SUMMARY This dataset contains population and demographic estimates and associated margins of error obtained and derived from the US Census. The data is presented over multiple years and geographies. The data is sourced primarily from the American Community Survey. B. HOW THE DATASET IS CREATED The raw data is obtained from the census API. Some estimates as published as-is and some are derived. C. UPDATE PROCESS New estimates and years of data are appended to this dataset. To request additional census data for San Francisco, email support@datasf.org D. HOW TO USE THIS DATASET The dataset is long and contains multiple estimates, years and geographies. To use this dataset, you can filter by the overall segment which contains information about the source, years, geography, demographic category and reporting segment. For census data used in specific reports, you can filter to the reporting segment. To use a subset of the data, you can create a filtered view. More information of how to filter data and create a view can be found here

  14. m

    Lisbon, Portugal, hotel’s customer dataset with three years of personal,...

    • data.mendeley.com
    Updated Nov 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nuno Antonio (2020). Lisbon, Portugal, hotel’s customer dataset with three years of personal, behavioral, demographic, and geographic information [Dataset]. http://doi.org/10.17632/j83f5fsh6c.1
    Explore at:
    Dataset updated
    Nov 18, 2020
    Authors
    Nuno Antonio
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Lisbon, Portugal
    Description

    Hotel customer dataset with 31 variables describing a total of 83,590 instances (customers). It comprehends three full years of customer behavioral data. In addition to personal and behavioral information, the dataset also contains demographic and geographical information. This dataset contributes to reducing the lack of real-world business data that can be used for educational and research purposes. The dataset can be used in data mining, machine learning, and other analytical field problems in the scope of data science. Due to its unit of analysis, it is a dataset especially suitable for building customer segmentation models, including clustering and RFM (Recency, Frequency, and Monetary value) models, but also be used in classification and regression problems.

  15. d

    Demographic Data | USA & Canada | Latest Estimates & Projections To Inform...

    • datarade.ai
    .json, .csv
    Updated Jun 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). Demographic Data | USA & Canada | Latest Estimates & Projections To Inform Business Decisions | GIS Data | Map Data [Dataset]. https://datarade.ai/data-products/gapmaps-ags-usa-demographics-data-40k-variables-trusted-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jun 24, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Canada, United States
    Description

    GapMaps premium demographic data for USA and Canada sourced from Applied Geographic Solutions (AGS) includes an extensive range of the highest quality demographic and lifestyle segmentation products. All databases are derived from superior source data and the most sophisticated, refined, and proven methodologies.

    Demographic Data attributes include:

    Latest Estimates and Projections The estimates and projections database includes a wide range of core demographic data variables for the current year and 5- year projections, covering five broad topic areas: population, households, income, labor force, and dwellings.

    Crime Risk Crime Risk is the result of an extensive analysis of a rolling seven years of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, Crime Risk provides an accurate view of the relative risk of specific crime types (personal, property and total) at the block and block group level.

    Panorama Segmentation AGS has created a segmentation system for the United States called Panorama. Panorama has been coded with the MRI Survey data to bring you Consumer Behavior profiles associated with this segmentation system.

    Business Counts Business Counts is a geographic summary database of business establishments, employment, occupation and retail sales.

    Non-Resident Population The AGS non-resident population estimates utilize a wide range of data sources to model the factors which drive tourists to particular locations, and to match that demand with the supply of available accommodations.

    Consumer Expenditures AGS provides current year and 5-year projected expenditures for over 390 individual categories that collectively cover almost 95% of household spending.

    Retail Potential This tabulation utilizes the Census of Retail Trade tables which cross-tabulate store type by merchandise line.

    Environmental Risk The environmental suite of data consists of several separate database components including: -Weather Risks -Seismological Risks -Wildfire Risk -Climate -Air Quality -Elevation and terrain

    Primary Use Cases for AGS Demographic Data:

    1. Retail (eg. Fast Food/ QSR, Cafe, Fitness, Supermarket/Grocery)
    2. Customer Profiling: get a detailed understanding of the demographic & segmentation profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular census block level using all the key metrics
    4. Site Selection: Identify optimal locations for future expansion and benchmark performance across existing locations.
    5. Target Marketing: Develop effective marketing strategies to acquire more customers.
    6. Integrate AGS demographic data with your existing GIS or BI platform to generate powerful visualizations.

    7. Finance / Insurance (eg. Hedge Funds, Investment Advisors, Investment Research, REITs, Private Equity, VC)

    8. Network Planning

    9. Customer (Risk) Profiling for insurance/loan approvals

    10. Target Marketing

    11. Competitive Analysis

    12. Market Optimization

    13. Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)

    14. Tenant Recruitment

    15. Target Marketing

    16. Market Potential / Gap Analysis

    17. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)

    18. Customer Profiling

    19. Target Marketing

    20. Market Share Analysis

  16. RGB Image Pine-seedling Dataset: Three Population with half-sib structure,...

    • figshare.com
    zip
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jiri Chuchlík; Jaroslav Čepl; Eva Neuwirthová; Jan Stejskal; Jiří Korecký (2025). RGB Image Pine-seedling Dataset: Three Population with half-sib structure, dataset for segmentation model training and data of mean seedlings' color [Dataset]. http://doi.org/10.6084/m9.figshare.28239326.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Jiri Chuchlík; Jaroslav Čepl; Eva Neuwirthová; Jan Stejskal; Jiří Korecký
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The datasets contain RGB photos of Scots pine seedlings of three populations from two different ecotypes originating in the Czech Republic:Plasy - lowland ecotype,Trebon - lowland ecotype,Decin - upland ecotype.These photos were taken in three different periods (September 10th 2021, October 23rd 2021, January 22nd 2022).File dataset_for_YOLOv7_training.zip contains image data with annotations for training YOLOv7 segmentation model (training and validation sets)The dataset also contains a table with information on individual Scots pine seedlings:affiliation to parent tree (mum)affiliation to population (site)row and column in which the seedling was grown (row, col)affiliation to the planter in which the seedling was grown (box)mean RGB values of pine seedling in three different periods (B_september, G_september, R_september B_october, G_october, R_october, B_january, G_january, R_january)mean HSV values of pine seedling in three different periods (H_september, S_september, V_september, H_october, S_october, V_october, H_january, S_january, V_january)

  17. 1

    1datapipe | Demographic Data | Asia | 417M Verified Identity & Lifestyle...

    • market.1datapipe.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    1datapipe, 1datapipe | Demographic Data | Asia | 417M Verified Identity & Lifestyle Records Across 7 Markets [Dataset]. https://market.1datapipe.com/products/identity-lifestyle-data-southeast-asia-401m-dataset-m-1datapipe-ee97
    Explore at:
    Dataset authored and provided by
    1datapipe
    Area covered
    Indonesia, Philippines, Thailand, Vietnam, Myanmar, Malaysia, Bangladesh, Asia
    Description

    Uncover lifestyle patterns with geo-precision: 401M verified profiles across 7 Asian countries for segmentation and KYC. Our demographic datasets include rich geo-spatial attributes that power hyper-local segmentation, regional risk scoring, and location-driven behavioral insights.

  18. E-Commerce Customer Segmentation Dataset

    • kaggle.com
    zip
    Updated Aug 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zeynep Üstün (2025). E-Commerce Customer Segmentation Dataset [Dataset]. https://www.kaggle.com/datasets/zeynepustun/e-commerce-customer-segmentation-dataset
    Explore at:
    zip(517 bytes)Available download formats
    Dataset updated
    Aug 2, 2025
    Authors
    Zeynep Üstün
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    E-Commerce Customer Segmentation Dataset This synthetic dataset contains information about 20 customers of an e-commerce platform, designed for customer segmentation and classification tasks.

    Dataset Overview Each record represents a unique customer with demographic and behavioral features that help classify them into different customer segments.

    Features: customer_id: Unique identifier for each customer

    age: Age of the customer (years)

    annual_income_k$: Annual income in thousands of dollars

    spending_score: A score between 0 and 100 indicating customer spending habits (higher means more spending)

    membership_years: Length of membership in years

    segment: Customer segment label; possible values are:

    Low (low-value customers)

    Medium (medium-value customers)

    High (high-value customers)

    Potential Use Cases Customer segmentation

    Targeted marketing campaigns

    Customer lifetime value prediction

    Behavioral analytics and profiling

    Clustering and classification algorithm testing

    Dataset Size 20 samples

    6 columns

    License This dataset is provided under the Apache 2.0 License.

  19. d

    PLOS ONE Population Segmentation Paper Dataset

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Low, Lian Leng (2023). PLOS ONE Population Segmentation Paper Dataset [Dataset]. http://doi.org/10.7910/DVN/XTXCYD
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Low, Lian Leng
    Description

    Data-driven segmentation methods for population segmentation based on healthcare utilization

  20. h

    wanfall

    • huggingface.co
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Schneider (2025). wanfall [Dataset]. https://huggingface.co/datasets/simplexsigil2/wanfall
    Explore at:
    Dataset updated
    Nov 6, 2025
    Authors
    David Schneider
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    WanFall is a large-scale synthetic activity recognition dataset designed for fall detection and activities of daily living research. The dataset features computer-generated videos of human actors performing various activities in controlled virtual environments.

    Key Features: - 12,000 video clips with dense temporal annotations - 16 activity classes including falls, posture transitions, and static states - 19,228 temporal segments with frame-level precision - 5.0625 seconds per video clip (81 frames @ 16 fps) - Rich demographic metadata (soft labels): age, gender, ethnicity, body type, height, skin tone - Scene attributes: environment, camera angle, frame rate - Multiple evaluation splits: random (80/10/10) and cross-demographic (age, ethnicity, BMI)

    Use Cases: - Fall detection research - Activity recognition with temporal segmentation - Bias and fairness analysis across demographics - Cross-demographic generalization studies

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
HarishEdison (2022). KPMG Customer Demography Cleaned Dataset [Dataset]. https://www.kaggle.com/datasets/harishedison/kpmg-customer-demography-cleaned-dataset
Organization logo

KPMG Customer Demography Cleaned Dataset

Customer Dempography dataset of KMPG AU's client, Sprocket Pvt Ltd.

Explore at:
zip(140162 bytes)Available download formats
Dataset updated
Sep 25, 2022
Authors
HarishEdison
License

https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

Description

This dataset was sourced from KPMG AU's Data Analytics virtual internship course on Forage

Sprocket Pvt Ltd is a client of KPMG AU. Sprocket is a bike and bike accessories retail business. They need to find the right customer segment to target for marketing to boost revenue. The following dataset is of their customer demographics for the past 3 years.

The original dataset of 3 separate sheets of Customer demographic, Transactions, and Customer Addresses was fully cleaned and merged using a power query. Data types of columns were changed, and values of certain columns which had illegal values were corrected using a standard approach. This final master dataset can be used for customer segmentation projects using clustering methods.

Search
Clear search
Close search
Google apps
Main menu