7 datasets found
  1. Digital Bedrock Geologic-GIS Map of the Twin Bridges Quadrangle, Tennessee...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Bedrock Geologic-GIS Map of the Twin Bridges Quadrangle, Tennessee (NPS, GRD, GRI, OBED, TWBR_bedrock digital map) adapted from a Tennessee Division of Geology Geologic Quadrangle Map by Coker (1965) [Dataset]. https://catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-the-twin-bridges-quadrangle-tennessee-nps-grd-gri-obed
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Bedrock Geologic-GIS Map of the Twin Bridges Quadrangle, Tennessee is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (twbr_bedrock_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (twbr_bedrock_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (obed_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (obed_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (twbr_bedrock_geology_metadata_faq.pdf). Please read the obed_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Tennessee Division of Geology. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (twbr_bedrock_geology_metadata.txt or twbr_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  2. d

    Using LiDAR Data to Analyze the Habitat Suitability for Birds and Create the...

    • search.dataone.org
    • borealisdata.ca
    • +1more
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cheng, Yaxuan (2023). Using LiDAR Data to Analyze the Habitat Suitability for Birds and Create the Minetest Digital Twin Model of UBC Botanical Garden [Dataset]. http://doi.org/10.5683/SP3/VPXIEY
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Cheng, Yaxuan
    Description

    Urban green spaces are closely related to the abundance and biodiversity of birds by providing important habitats and together contribute to ecosystem health. This project aims to guide the University of British Columbia Botanical Garden to create Bird-friendly green spaces by using LiDAR data to analyze and map UBCBG's bird habitat suitability and create a 3D digital twin model of UBCBG in the open source game engine Minetest to increase 3D visualization and aid in landscape planning. By extracting the Canopy Height Model (CHM) using LiDAR data and performing individual tree segmentation, the derived metrics were used to identify trees with the highest bird habitat suitability index. The results showed that the suitability index ranges from -0.0016 to 0.5187, with a mean value of 0.2051. There are 68 trees with high suitability above the 0.4 intervals which have significance to bird populations and are worthy of being protected, accounting for only 3.38% of the total trees. They usually have a low vertical complexity index and foliage height diversity but are characterized by very tall trees with relatively large tree crowns. The Digital Elevation Model (DEM), Canopy Height Model (CHM) generated by LiDAR data were visualized in Minetest's UBCBG's 3D digital twin model using real terrain mod as topography and vegetation layers, while bird habitat suitability was used to symbolize the tree canopy layer. This study is highly relevant for landscape adaptation and planning in conjunction with other management considerations to support bird-friendly green spaces. The digital twin model can be used for educational and promotional purposes, and for landscape planning and aesthetic design with the consideration of bird conservation.

  3. Digital Geologic-GIS Map of the Twin Rocks 7.5' Quadrangle, Utah (NPS, GRD,...

    • catalog.data.gov
    Updated Jun 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of the Twin Rocks 7.5' Quadrangle, Utah (NPS, GRD, GRI, CARE, TWRO digital map) adapted from a Utah Geological Survey Miscellaneous Publication map by Sorber, Morris and Gillespie (2007) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-twin-rocks-7-5-quadrangle-utah-nps-grd-gri-care-twro-digit
    Explore at:
    Dataset updated
    Jun 1, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Utah
    Description

    The Digital Geologic-GIS Map of the Twin Rocks 7.5' Quadrangle, Utah is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (twro_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (twro_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (care_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (care_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (twro_geology_metadata_faq.pdf). Please read the care_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Utah Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (twro_geology_metadata.txt or twro_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  4. g

    Towards Digital Twinning on the Web: Heterogeneous 3D Data Fusion Based on...

    • eleonasrepo.getmap.gr
    Updated Jan 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Towards Digital Twinning on the Web: Heterogeneous 3D Data Fusion Based on Open-Source Structure - Datasets - eLeonas Data Hub [Dataset]. https://eleonasrepo.getmap.gr/dataset/towards-digital-twinning-on-the-web-heterogeneous-3d-data-fusion-based-on-open-source-structure
    Explore at:
    Dataset updated
    Jan 26, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Recent advances in Computer Science and the spread of internet connection have allowed specialists to virtualize complex environments on the web and offer further information with realistic exploration experiences. At the same time, the fruition of complex geospatial datasets (point clouds, Building Information Modelling (BIM) models, 2D and 3D models) on the web is still a challenge, because usually it involves the usage of different proprietary software solutions, and the input data need further simplification for computational effort reduction. Moreover, integrating geospatial datasets acquired in different ways with various sensors remains a challenge. An interesting question, in that respect, is how to integrate 3D information in a 3D GIS (Geographic Information System) environment and manage different scales of information in the same application. Integrating a multiscale level of information is currently the first step when it comes to digital twinning. It is needed to properly manage complex urban datasets in digital twins related to the management of the buildings (cadastral management, prevention of natural and anthropogenic hazards, structure monitoring, etc.). Therefore, the current research shows the development of a freely accessible 3D Web navigation model based on open-source technology that allows the visualization of heterogeneous complex geospatial datasets in the same virtual environment. This solution employs JavaScript libraries based on WebGL technology. The model is accessible through web browsers and does not need software installation from the user side. The case study is the new building of the University of Twente-Faculty of Geo-Information (ITC), located in Enschede (the Netherlands). The developed solution allows switching between heterogeneous datasets (point clouds, BIM, 2D and 3D models) at different scales and visualization (indoor first-person navigation, outdoor navigation, urban navigation). This solution could be employed by governmental stakeholders or the private sector to remotely visualize complex datasets on the web in a unique visualization, and take decisions only based on open-source solutions. Furthermore, this system can incorporate underground data or real-time sensor data from the IoT (Internet of Things) for digital twinning tasks.

  5. Digital Geologic-GIS Map of parts of the Twin Peaks and Blanco Peak...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Feb 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of parts of the Twin Peaks and Blanco Peak Quadrangles, Colorado (NPS, GRD, GRI, GRSA, TPBP digital map) adapted from a U.S. Geological Survey Miscellaneous Field Studies Map by Johnson and Bruce (1991) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geologic-gis-map-of-parts-of-the-twin-peaks-and-blanco-peak-quadrangles-colorado-n
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Blanca Peak, Colorado
    Description

    The Digital Geologic-GIS Map of parts of the Twin Peaks and Blanco Peak Quadrangles, Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (tpbp_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (tpbp_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (grsa_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (grsa_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (tpbp_geology_metadata_faq.pdf). Please read the grsa_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (tpbp_geology_metadata.txt or tpbp_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  6. i

    Mainstreaming biodiversity in transport infrastructure management in the...

    • pre.iepnb.es
    Updated May 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Mainstreaming biodiversity in transport infrastructure management in the digital model: the GIS, BIM, Digital Twin continuum for biodiversity data management and representation. [Dataset]. https://pre.iepnb.es/catalogo/dataset/mainstreaming-biodiversity-in-transport-infrastructure-management-in-the-digital-model-the-gis1
    Explore at:
    Dataset updated
    May 23, 2025
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Biodiversity objects are to date almost absent from the BIM world. Developing the biodiversity theme in the BIM environment offers unexplored research opportunities with strong impact at the same time for biodiversity and transport infrastructure management. Efficient mainstreaming of biodiversity in transport infrastructure would require the GIS, BIM, Digital Twin dedicated software interoperability.

  7. A

    Digital Geologic Map of the Twin Rocks 7.5' Quadrangle, Utah (NPS, GRD, GRI,...

    • data.amerigeoss.org
    • datadiscoverystudio.org
    xml, zip
    Updated Jul 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Digital Geologic Map of the Twin Rocks 7.5' Quadrangle, Utah (NPS, GRD, GRI, CARE, TWRO digital map) [Dataset]. https://data.amerigeoss.org/dataset/04e233f3-4477-4a22-a8d4-c11a19035ab5
    Explore at:
    zip, xmlAvailable download formats
    Dataset updated
    Jul 25, 2019
    Dataset provided by
    United States[old]
    Area covered
    Utah
    Description

    The Digital Geologic Map of the Twin Rocks 7.5' Quadrangle, Utah is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Utah Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (twro_metadata.txt; available at http://nrdata.nps.gov/care/nrdata/geology/gis/twro_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (twro_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 12N. The data is within the area of interest of Capitol Reef National Park.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2024). Digital Bedrock Geologic-GIS Map of the Twin Bridges Quadrangle, Tennessee (NPS, GRD, GRI, OBED, TWBR_bedrock digital map) adapted from a Tennessee Division of Geology Geologic Quadrangle Map by Coker (1965) [Dataset]. https://catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-the-twin-bridges-quadrangle-tennessee-nps-grd-gri-obed
Organization logo

Digital Bedrock Geologic-GIS Map of the Twin Bridges Quadrangle, Tennessee (NPS, GRD, GRI, OBED, TWBR_bedrock digital map) adapted from a Tennessee Division of Geology Geologic Quadrangle Map by Coker (1965)

Explore at:
Dataset updated
Jun 4, 2024
Dataset provided by
National Park Servicehttp://www.nps.gov/
Description

The Digital Bedrock Geologic-GIS Map of the Twin Bridges Quadrangle, Tennessee is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (twbr_bedrock_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (twbr_bedrock_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (obed_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (obed_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (twbr_bedrock_geology_metadata_faq.pdf). Please read the obed_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Tennessee Division of Geology. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (twbr_bedrock_geology_metadata.txt or twbr_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Search
Clear search
Close search
Google apps
Main menu