100+ datasets found
  1. d

    Data from: Data and Results for GIS-Based Identification of Areas that have...

    • catalog.data.gov
    • datasets.ai
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Data and Results for GIS-Based Identification of Areas that have Resource Potential for Lode Gold in Alaska [Dataset]. https://catalog.data.gov/dataset/data-and-results-for-gis-based-identification-of-areas-that-have-resource-potential-for-lo
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    This data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.

  2. Lesson: Create and use a mosaic dataset

    • imagery-ivt.hub.arcgis.com
    Updated May 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Imagery Virtual Team (2022). Lesson: Create and use a mosaic dataset [Dataset]. https://imagery-ivt.hub.arcgis.com/datasets/lesson-create-and-use-a-mosaic-dataset
    Explore at:
    Dataset updated
    May 18, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Imagery Virtual Team
    Description

    Lesson: Explore the use of a mosaic dataset to provide extensive image management capabilities.In this lesson, you'll focus on the management and storage of large volumes of imagery and remote sensing data in ArcGIS Pro. As a remote sensing and GIS analyst for the Upper Austria government, you have received a collection of orthophotos that you must manage and share effectively with stakeholders. You will explore the challenges of working with multiple images individually and create a mosaic dataset that will allow you to work with the collection of seamless images, making them accessible and turning them into useful information products for both visualization and analysis. Next, you will enhance the mosaic dataset by applying and incorporating analysis functionality and, finally, add and use a catalog of imagery from an ArcGIS Living Atlas mosaic dataset.This lesson was last tested on May 26, 2021, using ArcGIS Pro 2.8. If you're using a different version of ArcGIS Pro, you may encounter different functionality and results.RequirementsArcGIS Pro (get a free trial)Lesson Plan1. Work with multiple raster datasetsExplore the challenges of working with multiple images individually.15 minutes2. Create a mosaic datasetCreate a mosaic dataset that will allow you to work with a collection of seamless images.15 minutes3. Use a mosaic dataset as a dynamic imageEnhance the mosaic dataset by applying and incorporating analysis functionality.30 minutes4. Use a mosaic dataset as a catalog of imageryAdd and use a catalog of imagery from an ArcGIS Living Atlas mosaic dataset.30 minutes

  3. d

    Datasets for Computational Methods and GIS Applications in Social Science

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fahui Wang; Lingbo Liu (2024). Datasets for Computational Methods and GIS Applications in Social Science [Dataset]. http://doi.org/10.7910/DVN/4CM7V4
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Fahui Wang; Lingbo Liu
    Description

    Dataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...

  4. e

    Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • portal.edirepository.org
    • search.dataone.org
    application/vnd.rar
    Updated May 4, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neal-Dunne; Morgan Grove (2012). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. http://doi.org/10.6073/pasta/377da686246f06554f7e517de596cd2b
    Explore at:
    application/vnd.rar(29574980 kilobyte)Available download formats
    Dataset updated
    May 4, 2012
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.

       BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
    
    
       Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
    
    
       For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
    
    
       Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. 
    
    
       This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
    
    
       See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
    
    
       See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
    
  5. A

    ‘2018 CT Data Catalog (GIS)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘2018 CT Data Catalog (GIS)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-2018-ct-data-catalog-gis-8148/4aa04a6c/?iid=001-843&v=presentation
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Connecticut
    Description

    Analysis of ‘2018 CT Data Catalog (GIS)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/5a93e011-4ea8-40b1-a888-0f573e6b785d on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    Catalog of high value data inventories produced by Connecticut executive branch agencies and compiled by the Office of Policy and Management. This catalog contains information on high value GIS data only. A catalog of high value non-GIS data may be found at the following link: https://data.ct.gov/Government/CT-Data-Catalog-Non-GIS-/ghmx-93jn

    As required by Public Act 18-175, executive branch agencies must annually conduct a high value data inventory to capture information about the high value data that they collect.

    High value data is defined as any data that the department head determines (A) is critical to the operation of an executive branch agency; (B) can increase executive branch agency accountability and responsiveness; (C) can improve public knowledge of the executive branch agency and its operations; (D) can further the core mission of the executive branch agency; (E) can create economic opportunity; (F) is frequently requested by the public; (G) responds to a need and demand as identified by the agency through public consultation; or (H) is used to satisfy any legislative or other reporting requirements.

    This dataset was last updated 1/2/2019 and will continue to be updated as high value data inventories are submitted to OPM.

    --- Original source retains full ownership of the source dataset ---

  6. A

    ‘PLACES: County Data (GIS Friendly Format), 2020 release’ analyzed by...

    • analyst-2.ai
    Updated Feb 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘PLACES: County Data (GIS Friendly Format), 2020 release’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-places-county-data-gis-friendly-format-2020-release-a8b4/097ae860/?iid=033-290&v=presentation
    Explore at:
    Dataset updated
    Feb 12, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘PLACES: County Data (GIS Friendly Format), 2020 release’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/d85c2f1c-0aa1-4eb6-a383-7a82f4aa7f6b on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset contains model-based county-level estimates for the PLACES project 2020 release in GIS-friendly format. The PLACES project is the expansion of the original 500 Cities project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code tabulation Areas (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2018 or 2017 data, Census Bureau 2018 or 2017 county population estimates, and American Community Survey (ACS) 2014-2018 or 2013-2017 estimates. The 2020 release uses 2018 BRFSS data for 23 measures and 2017 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening). Four measures are based on the 2017 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census 2015 county boundary file in a GIS system to produce maps for 27 measures at the county level. An ArcGIS Online feature service is also available at https://www.arcgis.com/home/item.html?id=8eca985039464f4d83467b8f6aeb1320 for users to make maps online or to add data to desktop GIS software.

    --- Original source retains full ownership of the source dataset ---

  7. Travel Monitoring Analysis System Volume

    • hub.arcgis.com
    • geodata.bts.gov
    • +3more
    Updated Jul 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Transportation: ArcGIS Online (2020). Travel Monitoring Analysis System Volume [Dataset]. https://hub.arcgis.com/datasets/5a9462b519854ec6a2334b3c0bdfc3c1
    Explore at:
    Dataset updated
    Jul 1, 2020
    Dataset provided by
    Authors
    U.S. Department of Transportation: ArcGIS Online
    Description

    The Travel Monitoring Analysis System (TMAS) - Volume dataset was compiled on December 31, 2023 and was published on July 16, 2024 from the Federal Highway Administration (FHWA), and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TMAS data included in this table have been collected by the FHWA from State DOTs through (temporal data representing each time period) permanent count data. DOTs determine what volume data is reported for any given month or day within the month. Each record in the volume data for the reported site, direction or lane is for the given day of record (it contains all 24 hours of data). The attributes are used by FHWA for its Travel Monitoring Analysis System and external agencies and have been intentionally limited to location referencing attributes since the core station description attribute data are contained within TMAS. The attributes in the Volume data correspond with the Volume file format found in Chapter 6 of the 2001 Traffic Monitoring Guide (https://doi.org/10.21949/1519109).

  8. w

    U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2

    • data.wu.ac.at
    • datadiscoverystudio.org
    • +3more
    esri rest
    Updated Jun 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2018). U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2 [Dataset]. https://data.wu.ac.at/schema/data_gov/MmMzYjljMzQtZmJjMy00NjUwLWE3YmMtNzRlOWRmMTFkZTVj
    Explore at:
    esri restAvailable download formats
    Dataset updated
    Jun 8, 2018
    Dataset provided by
    Department of the Interior
    Area covered
    d8998031d4cf34652dda2763c83c7b599a8a3521
    Description

    This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer

  9. d

    BestPlace: POI Dataset, GIS Database, Census data for Retail CPG & FMCG...

    • datarade.ai
    Updated Sep 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BestPlace (2023). BestPlace: POI Dataset, GIS Database, Census data for Retail CPG & FMCG analytics [Dataset]. https://datarade.ai/data-products/bestplace-poi-dataset-gis-database-census-data-for-retail-bestplace
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Sep 8, 2023
    Dataset authored and provided by
    BestPlace
    Area covered
    United Kingdom, Israel, Tunisia, Mongolia, Latvia, Taiwan, Nicaragua, Morocco, Isle of Man, Cameroon
    Description

    BestPlace is an innovative retail data and analytics tool created explicitly for medium and enterprise-level CPG/FMCG companies. It's designed to revolutionize your retail data analysis approach by adding a strategic location-based perspective to your existing database. This perspective enriches your data landscape and allows your business to understand better and cater to shopping behavior. An In-Depth Approach to Retail Analytics Unlike conventional analytics tools, BestPlace delves deep into each store location details, providing a comprehensive analysis of your retail database. We leverage unique tools and methodologies to extract, analyze, and compile data. Our processes have been accurately designed to provide a holistic view of your business, equipping you with the information you need to make data-driven data-backed decisions. Amplifying Your Database with BestPlace At BestPlace, we understand the importance of a robust and informative retail database design. We don't just add new stores to your database; we enrich each store with vital characteristics and factors. These enhancements come from open cartographic sources such as Google Maps and our proprietary GIS database, all carefully collected and curated by our experienced data analysts. Store Features We enrich your retail database with an array of store features, which include but are not limited to: Number of reviews Average ratings Operational hours Categories relevant to each point Our attention to detail ensures your retail database becomes a powerful tool for understanding customer interactions and preferences.

    Extensive Use Cases BestPlace's capabilities stretch across various applications, offering value in areas such as: Competition Analysis: Identify your competitors, analyze their performance, and understand your standing in the market with our extensive POI database and retail data analytics capabilities. New Location Search: Use our rich retail store database to identify ideal locations for store expansions based on foot traffic data, proximity to key points, and potential customer demographics.

  10. a

    City Points

    • azgeo-open-data-agic.hub.arcgis.com
    • hub.arcgis.com
    Updated May 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AZGeo Data Hub (2020). City Points [Dataset]. https://azgeo-open-data-agic.hub.arcgis.com/datasets/azgeo::city-points
    Explore at:
    Dataset updated
    May 4, 2020
    Dataset authored and provided by
    AZGeo Data Hub
    Area covered
    Description

    This dataset represents point locations of cities and towns in Arizona. The data contains point locations for incorporated cities, Census Designated Places and populated places. Several data sets were used as inputs to construct this data set. A subset of the Geographic Names Information System (GNIS) national dataset for the state of Arizona was used for the base location of most of the points. Polygon files of the Census Designated Places (CDP), from the U.S. Census Bureau and an incorporated city boundary database developed and maintained by the Arizona State Land Department were also used for reference during development. Every incorporated city is represented by a point, originally derived from GNIS. Some of these points were moved based on local knowledge of the GIS Analyst constructing the data set. Some of the CDP points were also moved and while most CDP's of the Census Bureau have one point location in this data set, some inconsistencies were allowed in order to facilitate the use of the data for mapping purposes. Population estimates were derived from data collected during the 2010 Census. During development, an additional attribute field was added to provide additional functionality to the users of this data. This field, named 'DEF_CAT', implies definition category, and will allow users to easily view, and create custom layers or datasets from this file. For example, new layers may created to include only incorporated cities (DEF_CAT = Incorporated), Census designated places (DEF_CAT = Incorporated OR DEF_CAT = CDP), or all cities that are neither CDP's or incorporated (DEF_CAT= Other). This data is current as of February 2012. At this time, there is no planned maintenance or update process for this dataset.This data is created to serve as base information for use in GIS systems for a variety of planning, reference, and analysis purposes. This data does not represent a legal record.

  11. m

    Geospatial Datasets for Assessing Vulnerability of Bangladesh to Climate...

    • data.mendeley.com
    • narcis.nl
    Updated Jan 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MD GOLAM AZAM (2021). Geospatial Datasets for Assessing Vulnerability of Bangladesh to Climate Change and Extremes [Dataset]. http://doi.org/10.17632/cv6cyfgmcd.3
    Explore at:
    Dataset updated
    Jan 12, 2021
    Authors
    MD GOLAM AZAM
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh
    Description

    The present dataset provides necessary indicators of the climate change vulnerability of Bangladesh in raster form. Geospatial databases have been created in Geographic Information System (GIS) environment mainly from two types of raw data; socioeconomic data from the Bangladesh Bureau of Statistics (BBS) and biophysical maps from various government and non-government agencies. Socioeconomic data have been transformed into a raster database through the Inverse Distance Weighted (IDW) interpolation method in GIS. On the other hand, biophysical maps have been directly recreated as GIS feature classes and eventually, the biophysical raster database has been produced. 30 socioeconomic indicators have been considered, which has been obtained from the Bangladesh Bureau of Statistics. All socioeconomic data were incorporated into the GIS database to generate maps. However, the units of some variables have been adopted directly from BBS, some have been normalized based on population, and some have been adopted as percentages. 12 biophysical system indicators have also been classified based on the collected information from different sources and literature. Biophysical maps are mainly classified in relative scales according to the intensity. These geospatial datasets have been analyzed to assess the spatial vulnerability of Bangladesh to climate change and extremes. The analysis has resulted in a climate change vulnerability map of Bangladesh with recognized hotspots, significant vulnerability factors, and adaptation measures to reduce the level of vulnerability.

  12. d

    Traffic Analysis Zones

    • catalog.data.gov
    • opendata.dc.gov
    • +4more
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D.C. Office of the Chief Technology Officer (2025). Traffic Analysis Zones [Dataset]. https://catalog.data.gov/dataset/traffic-analysis-zones
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    D.C. Office of the Chief Technology Officer
    Description

    Traffic Analysis Zones (TAZ) for the COG/TPB Modeled Region from Metropolitan Washington Council of Governments. The TAZ dataset is used to join several types of zone-based transportation modeling data. For more information, visit https://plandc.dc.gov/page/traffic-analysis-zone.

  13. A

    ‘2019 CT Data Catalog (GIS)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘2019 CT Data Catalog (GIS)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-2019-ct-data-catalog-gis-3c2a/latest
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Connecticut
    Description

    Analysis of ‘2019 CT Data Catalog (GIS)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/168eaac6-5f52-4015-be99-93031db2fd0d on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    Catalog of high value data inventories produced by Connecticut executive branch agencies and compiled by the Office of Policy and Management, updated in 2019. This catalog contains information on high value GIS data only. A catalog of high value non-GIS data may be found at the following link: https://data.ct.gov/Government/2019-CT-Data-Catalog-Non-GIS-/f6rf-n3ke

    As required by Public Act 18-175, executive branch agencies must annually conduct a high value data inventory to capture information about the high value data that they collect.

    High value data is defined as any data that the department head determines (A) is critical to the operation of an executive branch agency; (B) can increase executive branch agency accountability and responsiveness; (C) can improve public knowledge of the executive branch agency and its operations; (D) can further the core mission of the executive branch agency; (E) can create economic opportunity; (F) is frequently requested by the public; (G) responds to a need and demand as identified by the agency through public consultation; or (H) is used to satisfy any legislative or other reporting requirements.

    This dataset was last updated 2/3/2020 and will continue to be updated as high value data inventories are submitted to OPM.

    The 2018 high value data inventories for Non-GIS and GIS data can be found at the following links: CT Data Catalog (Non GIS): https://data.ct.gov/Government/CT-Data-Catalog-Non-GIS-/ghmx-93jn/ CT Data Catalog (GIS): https://data.ct.gov/Government/CT-Data-Catalog-GIS-/p7we-na27 Less

    --- Original source retains full ownership of the source dataset ---

  14. Wind Techno-economic Exclusion

    • catalog.data.gov
    • gis.data.ca.gov
    • +3more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2024). Wind Techno-economic Exclusion [Dataset]. https://catalog.data.gov/dataset/wind-techno-economic-exclusion-29d91
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Energy Commissionhttp://www.energy.ca.gov/
    Description

    The site suitability criteria included in the techno-economic land use screens are listed below. As this list is an update to previous cycles, tribal lands, prime farmland, and flood zones are not included as they are not technically infeasible for development. The techno-economic site suitability exclusion thresholds are presented in table 1. Distances indicate the minimum distance from each feature for commercial scale wind developmentAttributes: Steeply sloped areas: change in vertical elevation compared to horizontal distancePopulation density: the number of people living in a 1 km2 area Urban areas: defined by the U.S. Census. Water bodies: defined by the U.S. National Atlas Water Feature Areas, available from Argonne National Lab Energy Zone Mapping Tool Railways: a comprehensive database of North America's railway system from the Federal Railroad Administration (FRA), available from Argonne National Lab Energy Zone Mapping Tool Major highways: available from ESRI Living Atlas Airports: The Airports dataset including other aviation facilities as of July 13, 2018 is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics's (BTS's) National Transportation Atlas Database (NTAD). The Airports database is a geographic point database of aircraft landing facilities in the United States and U.S. Territories. Attribute data is provided on the physical and operational characteristics of the landing facility, current usage including enplanements and aircraft operations, congestion levels and usage categories. This geospatial data is derived from the FAA's National Airspace System Resource Aeronautical Data Product. Available from Argonne National Lab Energy Zone Mapping Tool Active mines: Active Mines and Mineral Processing Plants in the United States in 2003Military Lands: Land owned by the federal government that is part of a US military base, camp, post, station, yard, center, or installation. Table 1 Wind Steeply sloped areas >10o Population density >100/km2 Capacity factor <20% Urban areas <1000 m Water bodies <250 m Railways <250 m Major highways <125 m Airports <5000 m Active mines <1000 m Military Lands <3000m For more information about the processes and sources used to develop the screening criteria see sources 1-7 in the footnotes. Data updates occur as needed, corresponding to typical 3-year CPUC IRP planning cyclesFootnotes:[1] Lopez, A. et. al. “U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis,” 2012. https://www.nrel.gov/docs/fy12osti/51946.pdf[2] https://greeningthegrid.org/Renewable-Energy-Zones-Toolkit/topics/social-environmental-and-other-impacts#ReadingListAndCaseStudies[3] Multi-Criteria Analysis for Renewable Energy (MapRE), University of California Santa Barbara. https://mapre.es.ucsb.edu/[4] Larson, E. et. al. “Net-Zero America: Potential Pathways, Infrastructure, and Impacts, Interim Report.” Princeton University, 2020. https://environmenthalfcentury.princeton.edu/sites/g/files/toruqf331/files/2020-12/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf.[5] Wu, G. et. al. “Low-Impact Land Use Pathways to Deep Decarbonization of Electricity.” Environmental Research Letters 15, no. 7 (July 10, 2020). https://doi.org/10.1088/1748-9326/ab87d1.[6] RETI Coordinating Committee, RETI Stakeholder Steering Committee. “Renewable Energy Transmission Initiative Phase 1B Final Report.” California Energy Commission, January 2009.[7] Pletka, Ryan, and Joshua Finn. “Western Renewable Energy Zones, Phase 1: QRA Identification Technical Report.” Black & Veatch and National Renewable Energy Laboratory, 2009. https://www.nrel.gov/docs/fy10osti/46877.pdf.[8]https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2019&layergroup=Urban+Areas[9]https://ezmt.anl.gov/[10]https://www.arcgis.com/home/item.html?id=fc870766a3994111bce4a083413988e4[11]https://mrdata.usgs.gov/mineplant/Credits Title: Techno-economic screening criteria for utility-scale wind energy installations for Integrated Resource Planning Purpose for creation: These site suitability criteria are for use in electric system planning, capacity expansion modeling, and integrated resource planning. Keywords: wind energy, resource potential, techno-economic, IRP Extent: western states of the contiguous U.S. Use Limitations The geospatial data created by the use of these techno-economic screens inform high-level estimates of technical renewable resource potential for electric system planning and should not be used, on their own, to guide siting of generation projects nor assess project-level impacts.Confidentiality: Public ContactEmily Leslie Emily@MontaraMtEnergy.comSam Schreiber sam.schreiber@ethree.com Jared Ferguson Jared.Ferguson@cpuc.ca.govOluwafemi Sawyerr femi@ethree.com

  15. m

    GIS analysis of HYDMEAS - Hydstra Groundwater Measurement Update: NSW Office...

    • demo.dev.magda.io
    • researchdata.edu.au
    • +2more
    zip
    Updated Dec 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). GIS analysis of HYDMEAS - Hydstra Groundwater Measurement Update: NSW Office of Water - Nov2013 [Dataset]. https://demo.dev.magda.io/dataset/ds-dga-abc762ae-9ddb-402d-82fe-6f7d603a98a0
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 4, 2022
    Dataset provided by
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New South Wales
    Description

    Abstract The dataset was derived by the Bioregional Assessment Programme from Hydstra Groundwater Measurement Update - NSW Office of Water, Nov2013. The source dataset ia identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement. Displays the original Hydstra measurement (HYDMEAS) tabular data records (as stored in the Hydstra software platform) in a GIS format for …Show full descriptionAbstract The dataset was derived by the Bioregional Assessment Programme from Hydstra Groundwater Measurement Update - NSW Office of Water, Nov2013. The source dataset ia identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement. Displays the original Hydstra measurement (HYDMEAS) tabular data records (as stored in the Hydstra software platform) in a GIS format for interpretation and analysis. Analysis completed on this dataset includes extracts to determine location and status of current monitoring bores: HYDMEAS - original tabular database file (dbf) showing groundwater levels HYDMEAS_XY_all - displays all original tabular data in GIS shapefile format HYDMEAS_unique_bores - shows one record for each unique bore station ID HYDMEAS_2008 - All HYDMEAS data from 2008 or later HYDMEAS_2008to2013_mulitple_reading - All HYDMEAS data from 2008 or later which has been monitored twice or more (in that period), produced to estimate groundwater level monitoring bores National Groundwater Information System (NGIS) data supplied as a comparison of HYDMEAS monitoring estimates. Hydstra is a water resources time series data management system developed by KISTERS Pty Ltd. Purpose Provide spatial distribution of groundwater level monitoring status and reading for New South Wales. Dataset History HYDMEAS - original tabular data HYDMEAS_XY_all - displays all original tabular data in GIS format - Displayed as XY in ArcGIS based on Lat and Long attributes and exported as a point shapefile HYDMEAS_unique_bores - shows one record for each unique bore ID - Dissolved HYDMEAS_XY_all based on STATION field HYDMEAS_2008 - All HYDMEAS data from 2008 or later - Selected based on DATE field HYDMEAS_2008to2013_mulitple_reading - All HYDMEAS data from 2008 or later which has been monitored twice or more (in that period), produced to estimate groundwater level monitoring bores - HYDMEAS_2008 dataset dissolved based on STATION and a count field added. Only bores with count of 2 or more were retained Dataset Citation Bioregional Assessment Programme (2014) GIS analysis of HYDMEAS - Hydstra Groundwater Measurement Update: NSW Office of Water - Nov2013. Bioregional Assessment Derived Dataset. Viewed 12 March 2019, http://data.bioregionalassessments.gov.au/dataset/d414c703-aabd-43af-81e0-30aab4d9dfb1. Dataset Ancestors Derived From Hydstra Groundwater Measurement Update - NSW Office of Water, Nov2013

  16. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  17. A

    Pattern-based GIS for understanding content of very large Earth Science...

    • data.amerigeoss.org
    • data.wu.ac.at
    html
    Updated Jul 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2018). Pattern-based GIS for understanding content of very large Earth Science datasets [Dataset]. https://data.amerigeoss.org/pl/dataset/pattern-based-gis-for-understanding-content-of-very-large-earth-science-datasets
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 19, 2018
    Dataset provided by
    United States
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Earth
    Description

    The research focus in the field of remotely sensed imagery has shifted from collection and warehousing of data ' tasks for which a mature technology already exists, to auto-extraction of information and knowledge discovery from this valuable resource ' tasks for which technology is still under active development. In particular, intelligent algorithms for analysis of very large rasters, either high resolutions images or medium resolution global datasets, that are becoming more and more prevalent, are lacking. We propose to develop the Geospatial Pattern Analysis Toolbox (GeoPAT) a computationally efficient, scalable, and robust suite of algorithms that supports GIS processes such as segmentation, unsupervised/supervised classification of segments, query and retrieval, and change detection in giga-pixel and larger rasters. At the core of the technology that underpins GeoPAT is the novel concept of pattern-based image analysis. Unlike pixel-based or object-based (OBIA) image analysis, GeoPAT partitions an image into overlapping square scenes containing 1,000'100,000 pixels and performs further processing on those scenes using pattern signature and pattern similarity ' concepts first developed in the field of Content-Based Image Retrieval. This fusion of methods from two different areas of research results in orders of magnitude performance boost in application to very large images without sacrificing quality of the output.

    GeoPAT v.1.0 already exists as the GRASS GIS add-on that has been developed and tested on medium resolution continental-scale datasets including the National Land Cover Dataset and the National Elevation Dataset. Proposed project will develop GeoPAT v.2.0 ' much improved and extended version of the present software. We estimate an overall entry TRL for GeoPAT v.1.0 to be 3-4 and the planned exit TRL for GeoPAT v.2.0 to be 5-6. Moreover, several new important functionalities will be added. Proposed improvements includes conversion of GeoPAT from being the GRASS add-on to stand-alone software capable of being integrated with other systems, full implementation of web-based interface, writing new modules to extent it applicability to high resolution images/rasters and medium resolution climate data, extension to spatio-temporal domain, enabling hierarchical search and segmentation, development of improved pattern signature and their similarity measures, parallelization of the code, implementation of divide and conquer strategy to speed up selected modules.

    The proposed technology will contribute to a wide range of Earth Science investigations and missions through enabling extraction of information from diverse types of very large datasets. Analyzing the entire dataset without the need of sub-dividing it due to software limitations offers important advantage of uniformity and consistency. We propose to demonstrate the utilization of GeoPAT technology on two specific applications. The first application is a web-based, real time, visual search engine for local physiography utilizing query-by-example on the entire, global-extent SRTM 90 m resolution dataset. User selects region where process of interest is known to occur and the search engine identifies other areas around the world with similar physiographic character and thus potential for similar process. The second application is monitoring urban areas in their entirety at the high resolution including mapping of impervious surface and identifying settlements for improved disaggregation of census data.

  18. d

    POI Data | 230M+ Business Locations, Geographic & Places Insights

    • datarade.ai
    .json
    Updated Nov 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum (2023). POI Data | 230M+ Business Locations, Geographic & Places Insights [Dataset]. https://datarade.ai/data-categories/places-data/datasets
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Nov 14, 2023
    Dataset authored and provided by
    Xverum
    Area covered
    Central African Republic, Saint Kitts and Nevis, Vanuatu, Qatar, Estonia, Angola, American Samoa, Ecuador, Israel, French Southern Territories
    Description

    Xverum’s Point of Interest (POI) Data is a comprehensive dataset of 230M+ verified locations, covering businesses, commercial properties, and public places across 5000+ industry categories. Our dataset enables retailers, investors, and GIS professionals to make data-driven decisions for business expansion, location intelligence, and geographic analysis.

    With regular updates and continuous POI discovery, Xverum ensures your mapping and business location models have the latest data on business openings, closures, and geographic trends. Delivered in bulk via S3 Bucket or cloud storage, our dataset integrates seamlessly into geospatial analysis, market research, and navigation platforms.

    🔥 Key Features:

    📌 Comprehensive POI Coverage ✅ 230M+ global business & location data points, spanning 5000+ industry categories. ✅ Covers retail stores, corporate offices, hospitality venues, service providers & public spaces.

    🌍 Geographic & Business Location Insights ✅ Latitude & longitude coordinates for accurate mapping & navigation. ✅ Country, state, city, and postal code classifications. ✅ Business status tracking – Open, temporarily closed, permanently closed.

    🆕 Continuous Discovery & Regular Updates ✅ New business locations & POIs added continuously. ✅ Regular updates to reflect business openings, closures & relocations.

    📊 Rich Business & Location Data ✅ Company name, industry classification & category insights. ✅ Contact details, including phone number & website (if available). ✅ Consumer review insights, including rating distribution (optional feature).

    📍 Optimized for Business & Geographic Analysis ✅ Supports GIS, navigation systems & real estate site selection. ✅ Enhances location-based marketing & competitive analysis. ✅ Enables data-driven decision-making for business expansion & urban planning.

    🔐 Bulk Data Delivery (NO API) ✅ Delivered in bulk via S3 Bucket or cloud storage. ✅ Available in structured formats (.csv, .json, .xml) for seamless integration.

    🏆 Primary Use Cases:

    📈 Business Expansion & Market Research 🔹 Identify key business locations & competitors for strategic growth. 🔹 Assess market saturation & regional industry presence.

    📊 Geographic Intelligence & Mapping Solutions 🔹 Enhance GIS platforms & navigation systems with precise POI data. 🔹 Support smart city & infrastructure planning with location insights.

    🏪 Retail Site Selection & Consumer Insights 🔹 Analyze high-traffic locations for new store placements. 🔹 Understand customer behavior through business density & POI patterns.

    🌍 Location-Based Advertising & Geospatial Analytics 🔹 Improve targeted marketing with location-based insights. 🔹 Leverage geographic data for precision advertising & customer segmentation.

    💡 Why Choose Xverum’s POI Data? - 230M+ Verified POI Records – One of the largest & most structured business location datasets available. - Global Coverage – Spanning 249+ countries, covering all major business categories. - Regular Updates & New POI Discoveries – Ensuring accuracy. - Comprehensive Geographic & Business Data – Coordinates, industry classifications & category insights. - Bulk Dataset Delivery (NO API) – Direct access via S3 Bucket or cloud storage. - 100% GDPR & CCPA-Compliant – Ethically sourced & legally compliant.

    Access Xverum’s 230M+ POI Data for business location intelligence, geographic analysis & market research. Request a free sample or contact us to customize your dataset today!

  19. a

    Building Point Classification - New Zealand

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • pacificgeoportal.com
    • +2more
    Updated Sep 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2023). Building Point Classification - New Zealand [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/content/ebc54f498df94224990cf5f6598a5665
    Explore at:
    Dataset updated
    Sep 17, 2023
    Dataset authored and provided by
    Eagle Technology Group Ltd
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    This New Zealand Point Cloud Classification Deep Learning Package will classify point clouds into building and background classes. This model is optimized to work with New Zealand aerial LiDAR data.The classification of point cloud datasets to identify Building is useful in applications such as high-quality 3D basemap creation, urban planning, and planning climate change response.Building could have a complex irregular geometrical structure that is hard to capture using traditional means. Deep learning models are highly capable of learning these complex structures and giving superior results.This model is designed to extract Building in both urban and rural area in New Zealand.The Training/Testing/Validation dataset are taken within New Zealand resulting of a high reliability to recognize the pattern of NZ common building architecture.Licensing requirementsArcGIS Desktop - ArcGIS 3D Analyst extension for ArcGIS ProUsing the modelThe model can be used in ArcGIS Pro's Classify Point Cloud Using Trained Model tool. Before using this model, ensure that the supported deep learning frameworks libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Note: Deep learning is computationally intensive, and a powerful GPU is recommended to process large datasets.The model is trained with classified LiDAR that follows the The model was trained using a training dataset with the full set of points. Therefore, it is important to make the full set of points available to the neural network while predicting - allowing it to better discriminate points of 'class of interest' versus background points. It is recommended to use 'selective/target classification' and 'class preservation' functionalities during prediction to have better control over the classification and scenarios with false positives.The model was trained on airborne lidar datasets and is expected to perform best with similar datasets. Classification of terrestrial point cloud datasets may work but has not been validated. For such cases, this pre-trained model may be fine-tuned to save on cost, time, and compute resources while improving accuracy. Another example where fine-tuning this model can be useful is when the object of interest is tram wires, railway wires, etc. which are geometrically similar to electricity wires. When fine-tuning this model, the target training data characteristics such as class structure, maximum number of points per block and extra attributes should match those of the data originally used for training this model (see Training data section below).OutputThe model will classify the point cloud into the following classes with their meaning as defined by the American Society for Photogrammetry and Remote Sensing (ASPRS) described below: 0 Background 6 BuildingApplicable geographiesThe model is expected to work well in the New Zealand. It's seen to produce favorable results as shown in many regions. However, results can vary for datasets that are statistically dissimilar to training data.Training dataset - Auckland, Christchurch, Kapiti, Wellington Testing dataset - Auckland, WellingtonValidation/Evaluation dataset - Hutt City Dataset City Training Auckland, Christchurch, Kapiti, Wellington Testing Auckland, Wellington Validating HuttModel architectureThis model uses the SemanticQueryNetwork model architecture implemented in ArcGIS Pro.Accuracy metricsThe table below summarizes the accuracy of the predictions on the validation dataset. - Precision Recall F1-score Never Classified 0.984921 0.975853 0.979762 Building 0.951285 0.967563 0.9584Training dataThis model is trained on classified dataset originally provided by Open TopoGraphy with < 1% of manual labelling and correction.Train-Test split percentage {Train: 75~%, Test: 25~%} Chosen this ratio based on the analysis from previous epoch statistics which appears to have a descent improvementThe training data used has the following characteristics: X, Y, and Z linear unitMeter Z range-137.74 m to 410.50 m Number of Returns1 to 5 Intensity16 to 65520 Point spacing0.2 ± 0.1 Scan angle-17 to +17 Maximum points per block8192 Block Size50 Meters Class structure[0, 6]Sample resultsModel to classify a dataset with 23pts/m density Wellington city dataset. The model's performance are directly proportional to the dataset point density and noise exlcuded point clouds.To learn how to use this model, see this story

  20. d

    5.02 New Jobs Created (summary)

    • catalog.data.gov
    • open.tempe.gov
    • +10more
    Updated Jan 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). 5.02 New Jobs Created (summary) [Dataset]. https://catalog.data.gov/dataset/5-02-new-jobs-created-summary-3cc9b
    Explore at:
    Dataset updated
    Jan 17, 2025
    Dataset provided by
    City of Tempe
    Description

    Tempe is among Arizona's most educated cities, lending to a creative, smart atmosphere. With more than a dozen colleges, trade schools and universities, about 40 percent of our residents over the age of 25 have Bachelor's degrees or higher. Having such an educated and accessible workforce is a driving factor in attracting and growing jobs for residents in the region.The City of Tempe is a member of the Greater Phoenix Economic Council (GPEC) and with the membership staff tracks collaborative efforts to recruit business prospects and locates. The Greater Phoenix Economic Council (GPEC) is a performance-driven, public-private partnership. GPEC partners with the City of Tempe, Maricopa County, 22 other communities and more than 170 private-sector investors to promote the region’s competitive position and attract quality jobs that enable strategic economic growth and provide increased tax revenue for Tempe.This dataset provides the target and actual job creation numbers for the City of Tempe and Greater Phoenix Economic Council (GPEC). The job creation target for Tempe is calculated by multiplying GPEC's target by twice Tempe's proportion of the population.This page provides data for the New Jobs Created performance measure.The performance measure dashboard is available at 5.02 New Jobs Created.Additional InformationSource:Contact: Madalaine McConvilleContact Phone: 480-350-2927Data Source Type: Excel filesPreparation Method: Extracted from GPEC monthly and annual reports and proprietary excel filesPublish Frequency: AnnuallyPublish Method: ManualData Dictionary

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Data and Results for GIS-Based Identification of Areas that have Resource Potential for Lode Gold in Alaska [Dataset]. https://catalog.data.gov/dataset/data-and-results-for-gis-based-identification-of-areas-that-have-resource-potential-for-lo

Data from: Data and Results for GIS-Based Identification of Areas that have Resource Potential for Lode Gold in Alaska

Related Article
Explore at:
Dataset updated
Jul 6, 2024
Dataset provided by
U.S. Geological Survey
Description

This data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.

Search
Clear search
Close search
Google apps
Main menu