Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘GIS Open Data Inspector (GODI) - Datasets’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/04a2a91a-4008-487b-8e13-8208350ecd58 on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Data record audit of feature classes within the MD iMAP spatial database.
--- Original source retains full ownership of the source dataset ---
This dataset is a compilation of address point data for the City of Tempe. The dataset contains a point location, the official address (as defined by The Building Safety Division of Community Development) for all occupiable units and any other official addresses in the City. There are several additional attributes that may be populated for an address, but they may not be populated for every address. Contact: Lynn Flaaen-Hanna, Development Services Specialist Contact E-mail Link: Map that Lets You Explore and Export Address Data Data Source: The initial dataset was created by combining several datasets and then reviewing the information to remove duplicates and identify errors. This published dataset is the system of record for Tempe addresses going forward, with the address information being created and maintained by The Building Safety Division of Community Development.Data Source Type: ESRI ArcGIS Enterprise GeodatabasePreparation Method: N/APublish Frequency: WeeklyPublish Method: AutomaticData Dictionary
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Neighborhood Names GIS’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/21d5defb-cc17-43c7-ad1b-f216e5221033 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
GIS data: neighborhood labels as depicted in New York City: A City of Neighborhoods.
All previously released versions of this data are available at BYTES of the BIG APPLE- Archive
--- Original source retains full ownership of the source dataset ---
Deprecation notice: This tool is deprecated because this functionality is now available with out-of-the-box tools in ArcGIS Pro. The tool author will no longer be making further enhancements or fixing major bugs.Use Add GTFS to a Network Dataset to incorporate transit data into a network dataset so you can perform schedule-aware analyses using the Network Analyst tools in ArcMap.After creating your network dataset, you can use the ArcGIS Network Analyst tools, like Service Area and OD Cost Matrix, to perform transit/pedestrian accessibility analyses, make decisions about where to locate new facilities, find populations underserved by transit or particular types of facilities, or visualize the areas reachable from your business at different times of day. You can also publish services in ArcGIS Server that use your network dataset.The Add GTFS to a Network Dataset tool suite consists of a toolbox to pre-process the GTFS data to prepare it for use in the network dataset and a custom GTFS transit evaluator you must install that helps the network dataset read the GTFS schedules. A user's guide is included to help you set up your network dataset and run analyses.Instructions:Download the tool. It will be a zip file.Unzip the file and put it in a permanent location on your machine where you won't lose it. Do not save the unzipped tool folder on a network drive, the Desktop, or any other special reserved Windows folders (like C:\Program Files) because this could cause problems later.The unzipped file contains an installer, AddGTFStoaNetworkDataset_Installer.exe. Double-click this to run it. The installation should proceed quickly, and it should say "Completed" when finished.Read the User's Guide for instructions on creating and using your network dataset.System requirements:ArcMap 10.1 or higher with a Desktop Standard (ArcEditor) license. (You can still use it if you have a Desktop Basic license, but you will have to find an alternate method for one of the pre-processing tools.) ArcMap 10.6 or higher is recommended because you will be able to construct your network dataset much more easily using a template rather than having to do it manually step by step. This tool does not work in ArcGIS Pro. See the User's Guide for more information.Network Analyst extensionThe necessary permissions to install something on your computer.Data requirements:Street data for the area covered by your transit system, preferably data including pedestrian attributes. If you need help preparing high-quality street data for your network, please review this tutorial.A valid GTFS dataset. If your GTFS dataset has blank values for arrival_time and departure_time in stop_times.txt, you will not be able to run this tool. You can download and use the Interpolate Blank Stop Times tool to estimate blank arrival_time and departure_time values for your dataset if you still want to use it.Help forum
NSO_SITE_PUB_PT: The Northern Spotted Owl (NSO) data standard documents how spatial location and information about inventory and monitoring activities for Northern Spotted Owls is stored. This dataset is a replacement of the former Northern Spotted Owl database. BLM wildlife biologists and GIS specialists enter and query data that was collected by district staff or contractors. The dataset includes four spatial feature classes and four non-spatial tables to support the following data collection: This data is only updated annually after the data entry has been completed for the previous years' field season.
This dataset represents point locations of cities and towns in Arizona. The data contains point locations for incorporated cities, Census Designated Places and populated places. Several data sets were used as inputs to construct this data set. A subset of the Geographic Names Information System (GNIS) national dataset for the state of Arizona was used for the base location of most of the points. Polygon files of the Census Designated Places (CDP), from the U.S. Census Bureau and an incorporated city boundary database developed and maintained by the Arizona State Land Department were also used for reference during development. Every incorporated city is represented by a point, originally derived from GNIS. Some of these points were moved based on local knowledge of the GIS Analyst constructing the data set. Some of the CDP points were also moved and while most CDP's of the Census Bureau have one point location in this data set, some inconsistencies were allowed in order to facilitate the use of the data for mapping purposes. Population estimates were derived from data collected during the 2010 Census. During development, an additional attribute field was added to provide additional functionality to the users of this data. This field, named 'DEF_CAT', implies definition category, and will allow users to easily view, and create custom layers or datasets from this file. For example, new layers may created to include only incorporated cities (DEF_CAT = Incorporated), Census designated places (DEF_CAT = Incorporated OR DEF_CAT = CDP), or all cities that are neither CDP's or incorporated (DEF_CAT= Other). This data is current as of February 2012. At this time, there is no planned maintenance or update process for this dataset.This data is created to serve as base information for use in GIS systems for a variety of planning, reference, and analysis purposes. This data does not represent a legal record.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Regularly scheduled tow-away zone GIS data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/97054e35-2ad3-4c9d-aec2-91a4368ef4fe on 26 January 2022.
--- Dataset description provided by original source is as follows ---
This dataset contains locations and schedules of regular tow-away zones which apply at the blockface-level in San Francisco. It does not include temporary street closures which could result in towing. The dataset contains:Geospatial information for blockfaces with known tow schedulesTow schedules with starting and ending hours and days applicableAddress ranges for the blockface segmentThe centerline identifier of the street segment on which the blockface occursNotes, if known, to enhance the information about the regulation.
This dataset was compiled in October and November of 2011. It reflects legislated changes through November 1, 2011. It is at least 95% accurate and may not include all blockface-level tow-away zones with regular, weekly schedules. Please email corrections or discrepancies to info@sfpark.org. Always look for signage near your parking space and follow posted regulations to avoid parking citations and possible towage. See http://sfpark.org/resources/regularly-scheduled-tow-away-zone-gis-data/ for more.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data should be used carefully for statistical analysis and reporting due to missing perimeters (see Use Limitation in metadata). Some fires are missing because historical records were lost or damaged, were too small for the minimum cutoffs, had inadequate documentation or have not yet been incorporated into the database. Other errors with the fire perimeter database include duplicate fires and over-generalization. Additionally, over-generalization, particularly with large old fires, may show unburned "islands" within the final perimeter as burned. Users of the fire perimeter database must exercise caution in application of the data. Careful use of the fire perimeter database will prevent users from drawing inaccurate or erroneous conclusions from the data. This data is updated annually in the spring with fire perimeters from the previous fire season. This dataset may differ in California compared to that available from the National Interagency Fire Center (NIFC) due to different requirements between the two datasets. The data covers fires back to 1878. As of May 2025, it represents fire24_1.
Please help improve this dataset by filling out this survey with feedback:
Historic Fire Perimeter Dataset Feedback (arcgis.com)
Current criteria for data collection are as follows:
CAL FIRE (including contract counties) submit perimeters ≥10 acres in timber, ≥50 acres in brush, or ≥300 acres in grass, and/or ≥3 impacted residential or commercial structures, and/or caused ≥1 fatality.
All cooperating agencies submit perimeters ≥10 acres.
Version update:
Firep24_1 was released in April 2025. Five hundred forty-eight fires from the 2024 fire season were added to the database (2 from BIA, 56 from BLM, 197 from CAL FIRE, 193 from Contract Counties, 27 from LRA, 8 from NPS, 55 from USFS and 8 from USFW). Six perimeters were added from the 2025 fire season (as a special case due to an unusual January fire siege). Five duplicate fires were removed, and the 2023 Sage was replaced with a more accurate perimeter. There were 900 perimeters that received updated attribution (705 removed “FIRE” from the end of Fire Name field and 148 replaced Complex IRWIN ID with Complex local incident number for COMPLEX_ID field). The following fires were identified as meeting our collection criteria but are not included in this version and will hopefully be added in a future update: Addie (2024-CACND-002119), Alpaugh (2024-CACND-001715), South (2024-CATIA-001375). One perimeter is missing containment date that will be updated in the next release.
Cross checking CALFIRS reporting for new CAL FIRE submissions to ensure accuracy with cause class was added to the compilation process. The cause class domain description for “Powerline” was updated to “Electrical Power” to be more inclusive of cause reports.
Includes separate layers filtered by criteria as follows:
California Fire Perimeters (All): Unfiltered. The entire collection of wildfire perimeters in the database. It is scale dependent and starts displaying at the country level scale.
Recent Large Fire Perimeters (≥5000 acres): Filtered for wildfires greater or equal to 5,000 acres for the last 5 years of fires (2020-January 2025), symbolized with color by year and is scale dependent and starts displaying at the country level scale. Year-only labels for recent large fires.
California Fire Perimeters (1950+): Filtered for wildfires that started in 1950-January 2025. Symbolized by decade, and display starting at country level scale.
Detailed metadata is included in the following documents:
Wildland Fire Perimeters (Firep24_1) Metadata
See more information on our Living Atlas data release here:
CAL FIRE Historical Fire Perimeters Available in ArcGIS Living Atlas
For any questions, please contact the data steward:
Kim Wallin, GIS Specialist
CAL FIRE, Fire & Resource Assessment Program (FRAP)
kimberly.wallin@fire.ca.gov
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CAL FIRE's Fire and Resource Assessment Program (FRAP) annually maintains and distributes an historical fire perimeter dataset from across public and private lands in California. The GIS data is developed with the cooperation of the United States Forest Service Region 5, the Bureau of Land Management, the National Park Service and the United States Fish and Wildlife Service and is released in the spring with added data from the previous calendar year. Although the dataset represents the most complete digital record of fire perimeters in California, it is still incomplete, and users should be cautious when drawing conclusions based on the data.
This app contains three pages of maps and documentation of the historical fire perimeter metadata:
Historical Fire Perimeters: The landing page highlights the recent large fires (≥5,000 acres) on a backdrop of all of the dataset's documented fire perimeters dating back to 1878. This map includes perimeters symbolized by decade, county boundaries, California Vegetation, and NAIP imagery back to 2005. This page provides users the ability to add their own data or filter the fire perimeter data. It cleanly lists fire perimeters shown on the map with their name, year, and GIS calculated acreage. The user can navigate to the CAL FIRE current incident webpage or provide comments to the dataset's steward.
Times Burned: The second page provides a map showing an analysis performed annually on the fire perimeter dataset to show case burn frequency from 1950 to present for fires greater than one acre.
Fire Across Time: This third page provides a time enabled layer of the fire perimeter dataset, featuring a time slider to allow users to view the perimeter dataset across time.
The final page provides the user with the dataset's metadata, including its most current data dictionary.
For any questions, please contact the data steward:
Kim Wallin, GIS Specialist
CAL FIRE, Fire & Resource Assessment Program (FRAP)
kimberly.wallin@fire.ca.gov
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. The CURE vegetation mapping project area was divided into 11,133 polygons and 42 map classes. A total of 10,520 map polygons represent 27 natural and semi-natural vegetation map classes. Fifteen land use map classes describe 613 other polygons within the mapping area. Average polygon size across all map classes is 4.4 ha (10.8 acres). The mapping component of the CURE project used a combination of methods to interpret and delineate vegetation polygons. Initial line work was prepared by USBOR photointerpreters who delineated the most contrasting signatures, e.g., water bodies, exposed shoreline, unvegetated geology, land use types, and vegetation at the physiognomic level. The project photo interpreter used this baseline mapping and refined it by examining digital orthophotos in stereo. The stereo photography was used as needed to distinguish fine scale vegetation patterns. Ancillary datasets including plot and observation point data and classification and local descriptions of plant associations were used by the photointerpreter to assist with map class definitions and guide manual delineations. Polygons were drawn on Mylar overlays of printed orthophotos that were later scanned, or were drawn digitally on a computer screen. Heads-up digitizing consisted of delineating map class polygons on an electronic version of the digital orthophotos at a computer workstation. Digitizing was performed using vector editing in ArcGIS. The line work was refined and finalized by the SEUG GIS Specialist and the map class and other descriptive attributes for each polygon were assigned. The recreation area and the environs were interpreted and mapped to the same level of detail.
This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.
Road segments representing centerlines of all roadways or carriageways in a local government. Typically, this information is compiled from orthoimagery or other aerial photography sources. This representation of the road centerlines support address geocoding and mapping. It also serves as a source for public works and other agencies that are responsible for the active management of the road network. (From ESRI Local Government Model "RoadCenterline" Feature)**This dataset was significantly revised in August of 2014 to correct for street segments that were not properly split at intersections. There may be issues with using data based off of the original centerline file. ** The column Speed Limit was updated in November 2014 by the Transportation Intern and is believed to be accurate** The column One Way was updated in November of 2014 by core GIS and is believed to be accurate.[MAXIMOID] A unique id field used in a work order management software called Maximo by IBM. Maximo uses GIS CL data to assign locations to work orders using this field. This field is maintained by the Transportation GIS specialists and is auto incremented when new streets are digitized. For example, if the latest digitized street segment MAXIMOID = 999, the next digitized line will receive MAXIMOID = 1000, and so on. STREET NAMING IS BROKEN INTO THREE FIELDS FOR GEOCODING:PREFIX This field is attributed if a street name has a prefix such as W, N, E, or S.NAME Domain with all street names. The name of the street without prefix or suffix.ROAD_TYPE (Text,4) Describes the type of road aka suffix, if applicable. CAPCOG Addressing Guidelines Sec 504 U. states, “Every road shall have corresponding standard street suffix…” standard street suffix abbreviations comply with USPS Pub 28 Appendix C Street Abbreviations. Examples include, but are not limited to, Rd, Dr, St, Trl, Ln, Gln, Lp, CT. LEFT_LOW The minimum numeric address on the left side of the CL segment. Left side of CL is defined as the left side of the line segment in the From-To direction. For example, if a line has addresses starting at 101 and ending at 201 on its left side, this column will be attributed 101.LEFT_HIGH The largest numeric address on the left side of the CL segment. Left side of CL is defined as the left side of the line segment in the From-To direction. For example, if a line has addresses starting at 101 and ending at 201 on its left side, this column will be attributed 201.LOW The minimum numeric address on the RIGHT side of the CL segment. Right side of CL is defined as the right side of the line segment in the From-To direction. For example, if a line has addresses starting at 100 and ending at 200 on its right side, this column will be attributed 100.HIGHThe maximum numeric address on the RIGHT side of the CL segment. Right side of CL is defined as the right side of the line segment in the From-To direction. For example, if a line has addresses starting at 100 and ending at 200 on its right side, this column will be attributed 200.ALIAS Alternative names for roads if known. This field is useful for geocode re-matching. CLASSThe functional classification of the centerline. For example, Minor (Minor Arterial), Major (Major Arterial). THIS FIELD IS NOT CONSISTENTLY FILLED OUT, NEEDS AN AUDIT. FULLSTREET The full name of the street concatenating the [PREFIX], [NAME], and [SUFFIX] fields. For example, "W San Antonio St."ROWWIDTH Width of right-of-way along the CL segment. Data entry from Plat by Planning GIS Or from Engineering PICPs/ CIPs.NUMLANES Number of striped vehicular driving lanes, including turn lanes if present along majority of segment. Does not inlcude bicycle lanes. LANEMILES Describes the total length of lanes for that segment in miles. It is manually field calculated as follows (( [ShapeLength] / 5280) * [NUMLANES]) and maintained by Transportation GIS.SPEEDLIMIT Speed limit of CL segment if known. If not, assume 30 mph for local and minor arterial streets. If speed limit changes are enacted by city council they will be recorded in the Traffic Register dataset, and this field will be updating accordingly. Initial data entry made by CIP/Planning GIS and maintained by Transportation GIS.[YRBUILT] replaced by [DateBuilt] See below. Will be deleted. 4/21/2017LASTYRRECON (Text,10) Is the last four-digit year a major reconstruction occurred. Most streets have not been reconstructed since orignal construction, and will have values. The Transportation GIS Specialist will update this field. OWNER Describes the governing body or private entity that owns/maintains the CL. It is possible that some streets are owned by other entities but maintained by CoSM. Possible attributes include, CoSM, Hays Owned/City Maintained, TxDOT Owned/City Maintained, TxDOT, one of four counties (Hays, Caldwell, Guadalupe, and Comal), TxState, and Private.ST_FROM Centerline segments are split at their intersections with other CL segments. This field names the nearest cross-street in the From- direction. Should be edited when new CL segments that cause splits are added. ST_TO Centerline segments are split at their intersections with other CL segments. This field names the nearest cross-street in the To- direction. Should be edited when new CL segments that cause splits are added. PAV_WID Pavement width of street in feet from back-of-curb to back-of-curb. This data is entered from as-built by CIP GIS. In January 2017 Transportation Dept. field staff surveyed all streets and measured width from face-of-curb to face-of-curb where curb was present, and edge of pavement to edge of pavement where it was not. This data was used to field calculate pavement width where we had values. A value of 1 foot was added to the field calculation if curb and gutter or stand up curb were present (the face-of-curb to back-of-curb is 6 in, multiple that by 2 to find 1 foot). If no curb was present, the value enter in by the field staff was directly copied over. If values were already present, and entered from asbuilt, they were left alone. ONEWAY Field describes direction of travel along CL in relation to digitized direction. If a street allows bi-directional travel it is attributed "B", a street that is one-way in the From_To direction is attributed "F", a street that is one-way in the To_From direction is attributed "T", and a street that does not allow travel in any direction is attibuted "N". ROADLEVEL Field will be aliased to [MINUTES] and be used to calculate travel time along CL segments in minutes using shape length and [SPEEDLIMIT]. Field calculate using the following expression: [MINUTES] = ( ([SHAPE_LENGTH] / 5280) / ( [SPEEDLIMIT] / 60 ))ROWSTATUS Values include "Open" or "Closed". Describes whether a right-of-way is open or closed. If a street is constructed within ROW it is "Open". If a street has not yet been constructed, and there is ROW, it is "Cosed". UPDATE: This feature class only has CL geometries for "Open" rights-of-way. This field should be deleted or re-purposed. ASBUILT field used to hyper link as-built documents detailing construction of the CL. Field was added in Dec. 2016. DateBuilt Date field used to record month and year a road was constructed from Asbuilt. Data was collected previously without month information. Data without a known month is entered as "1/1/YYYY". When month and year are known enter as "M/1/YYYY". Month and Year from asbuilt. Added by Engineering/CIP. ACCEPTED Date field used to record the month, day, and year that a roadway was officially accepted by the City of San Marcos. Engineering signs off on acceptance letters and stores these documents. This field was added in May of 2018. Due to a lack of data, the date built field was copied into this field for older roadways. Going forward, all new roadways will have this date. . This field will typically be populated well after a road has been drawn into GIS. Entered by Engineering/CIP. ****In an effort to make summarizing the data more efficient in Operations Dashboard, a generic date of "1/1/1900" was assigned to all COSM owned or maintained roads that had NULL values. These were roads that either have not been accepted yet, or roads that were expcepted a long time ago and their accepted date is not known. WARRANTY_EXP Date field used to record the expiration date of a newly accepted roadway. Typically this is one year from acceptance date, but can be greater. This field was added in May of 2018, so only roadways that have been excepted since and older roadways with valid warranty dates within this time frame have been populated.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘PLACES: Census Tract Data (GIS Friendly Format), 2020 release’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/36454ff3-3bd6-4626-8607-ed62ff3f4619 on 12 February 2022.
--- Dataset description provided by original source is as follows ---
This dataset contains model-based census tract level estimates for the PLACES project 2020 release in GIS-friendly format. The PLACES project is the expansion of the original 500 Cities project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code tabulation Areas (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2018 or 2017 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2014-2018 or 2013-2017 estimates. The 2020 release uses 2018 BRFSS data for 23 measures and 2017 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening). Four measures are based on the 2017 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 27 measures at the census tract level. An ArcGIS Online feature service is also available at https://www.arcgis.com/home/item.html?id=8eca985039464f4d83467b8f6aeb1320 for users to make maps online or to add data to desktop GIS software.
--- Original source retains full ownership of the source dataset ---
ACEC_HIST_ARC: This data set shows the boundary lines for Areas of Critical Environmental Concern under BLM management in Oregon and Washington. The district Data Steward will define the ACEC boundary and work with the GIS specialist to ensure that the appropriate GIS coordinate sources are used and that only federal land is included. Prior representations of approved ACEC are placed into the historic data set.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data should be used carefully for statistical analysis and reporting due to missing perimeters (see Use Limitation in metadata). Some fires are missing because historical records were lost or damaged, were too small for the minimum cutoffs, had inadequate documentation or have not yet been incorporated into the database. Other errors with the fire perimeter database include duplicate fires and over-generalization. Additionally, over-generalization, particularly with large old fires, may show unburned "islands" within the final perimeter as burned. Users of the fire perimeter database must exercise caution in application of the data. Careful use of the fire perimeter database will prevent users from drawing inaccurate or erroneous conclusions from the data. This data is updated annually in the spring with fire perimeters from the previous fire season. This dataset may differ in California compared to that available from the National Interagency Fire Center (NIFC) due to different requirements between the two datasets. The data covers fires back to 1878. As of May 2025, it represents fire24_1.
Please help improve this dataset by filling out this survey with feedback:
Historic Fire Perimeter Dataset Feedback (arcgis.com)
Current criteria for data collection are as follows:
CAL FIRE (including contract counties) submit perimeters ≥10 acres in timber, ≥50 acres in brush, or ≥300 acres in grass, and/or ≥3 impacted residential or commercial structures, and/or caused ≥1 fatality.
All cooperating agencies submit perimeters ≥10 acres.
Version update:
Firep24_1 was released in April 2025. Five hundred forty-eight fires from the 2024 fire season were added to the database (2 from BIA, 56 from BLM, 197 from CAL FIRE, 193 from Contract Counties, 27 from LRA, 8 from NPS, 55 from USFS and 8 from USFW). Six perimeters were added from the 2025 fire season (as a special case due to an unusual January fire siege). Five duplicate fires were removed, and the 2023 Sage was replaced with a more accurate perimeter. There were 900 perimeters that received updated attribution (705 removed “FIRE” from the end of Fire Name field and 148 replaced Complex IRWIN ID with Complex local incident number for COMPLEX_ID field). The following fires were identified as meeting our collection criteria but are not included in this version and will hopefully be added in a future update: Addie (2024-CACND-002119), Alpaugh (2024-CACND-001715), South (2024-CATIA-001375). One perimeter is missing containment date that will be updated in the next release.
Cross checking CALFIRS reporting for new CAL FIRE submissions to ensure accuracy with cause class was added to the compilation process. The cause class domain description for “Powerline” was updated to “Electrical Power” to be more inclusive of cause reports.
Includes separate layers filtered by criteria as follows:
California Fire Perimeters (All): Unfiltered. The entire collection of wildfire perimeters in the database. It is scale dependent and starts displaying at the country level scale.
Recent Large Fire Perimeters (≥5000 acres): Filtered for wildfires greater or equal to 5,000 acres for the last 5 years of fires (2020-January 2025), symbolized with color by year and is scale dependent and starts displaying at the country level scale. Year-only labels for recent large fires.
California Fire Perimeters (1950+): Filtered for wildfires that started in 1950-January 2025. Symbolized by decade, and display starting at country level scale.
Detailed metadata is included in the following documents:
Wildland Fire Perimeters (Firep24_1) Metadata
See more information on our Living Atlas data release here:
CAL FIRE Historical Fire Perimeters Available in ArcGIS Living Atlas
For any questions, please contact the data steward:
Kim Wallin, GIS Specialist
CAL FIRE, Fire & Resource Assessment Program (FRAP)
kimberly.wallin@fire.ca.gov
The Long Island Sound Study developed these digital data from 1:100,000-scale National Oceanic & Atmospheric Administration (NOAA) and United States Geological Survey (USGS) maps as a general reference to the depth of water in Long Island Sound. In 1996, these data were digitized from paper maps by the Long Island Sound Study (http://www.longislandsoundstudy.net) and incorporated into a Long Island Sound GIS database. Not intended for maps printed at map scales greater or more detailed than 1:100,000 scale (1 inch = 1,578 feet.) Dataset credit: Applied Geographics, Inc. of Boston, Massachussets was contracted by the Long Island Sound Study to automate and digitize these bathymetry data for Long Island Sound. Linda Bischoff, GIS Analyst, digitized the data and created the orginal metadata.
The Sheeprocks (UT) was revised to resync with the UT habitat change as reflected in the Oct 2017 habitat data, creating the most up-to-date version of this dataset. Data submitted by Wyoming in February 2018 and by Montana and Oregon in May 2016 were used to update earlier versions of this feature class. The biologically significant unit (BSU) is a geographical/spatial area within Greater Sage-Grouse habitat that contains relevant and important habitats which is used as the basis for comparative calculations to support evaluation of changes to habitat. This BSU unit, or subset of this unit is used in the calculation of the anthropogenic disturbance threshold and in the adaptive management habitat trigger. BSU feature classes were submitted by individual states/EISs and consolidated by the Wildlife Spatial Analysis Lab. They are sometimes referred to as core areas/core habitat areas in the explanations below, which were consolidated from metadata submitted with BSU feature classes. These data provide a biological tool for planning in the event of human development in sage-grouse habitats. The intended use of all data in the BLM's GIS library is to support diverse activities including planning, management, maintenance, research, and interpretation. While the BSU defines the geographic extent and scale of these two measures, how they are calculated differs based on the specific measures to reflect appropriate assessment and evaluation as supported by scientific literature.There are 10 BSUs for the Idaho and Southwestern Montana GRSG EIS sub-region. For the Idaho and Southwestern Montana Greater Sage-Grouse Plan Amendment FEIS the biologically significant unit is defined as: a geographical/spatial area within greater sage-grouse habitat that contains relevant and important habitats which is used as the basis for comparative calculations to support evaluation of changes to habitat. Idaho: BSUs include all of the Idaho Fish and Game modeled nesting and delineated winter habitat, based on 2011 inventories within Priority and/or Important Habitat Management Area (Alternative G) within a Conservation Area. There are eight BSUs for Idaho identified by Conservation Area and Habitat Management Area: Idaho Desert Conservation Area - Priority, Idaho Desert Conservation Area - Important, Idaho Mountain Valleys Conservation Area - Priority, Idaho Mountain Valleys Conservation Area - Important, Idaho Southern Conservation Area - Priority, Idaho Southern Conservation Area - Important, Idaho West Owyhee Conservation Area - Priority, and Idaho West Owyhee Conservation Area - Important. Raft River : Utah portion of the Sawtooth National Forest, 1 BSU. All of this areas was defined as Priority habitat in Alternative G. Raft River - Priority. Montana: All of the Priority Habitat Management Area. 1 BSU. SW Montana Conservation Area - Priority. Montana BSUs were revised in May 2016 by the MT State Office. They are grouped together and named by the Population in which they are located: Northern Montana, Powder River Basin, Wyoming Basin, and Yellowstone Watershed. North and South Dakota BSUs have been grouped together also. California and Nevada's BSUs were developed by Nevada Department of Wildlife's Greater Sage-Grouse Wildlife Staff Specialist and Sagebrush Ecosystem Technical Team Representative in January 2015. Nevada's Biologically Significant Units (BSUs) were delineated by merging associated PMUs to provide a broader scale management option that reflects sage grouse populations at a higher scale. PMU boundarys were then modified to incorporate Core Management Areas (August 2014; Coates et al. 2014) for management purposes. (Does not include Bi-State DPS.) Within Colorado, a Greater Sage-Grouse GIS data set identifying Preliminary Priority Habitat (PPH) and Preliminary General Habitat (PGH) was developed by Colorado Parks and Wildlife. This data is a combination of mapped grouse occupied range, production areas, and modeled habitat (summer, winter, and breeding). PPH is defined as areas of high probability of use (summer or winter, or breeding models) within a 4 mile buffer around leks that have been active within the last 10 years. Isolated areas with low activity were designated as general habitat. PGH is defined as Greater sage-grouse Occupied Range outside of PPH. Datasets used to create PPH and PGH: Summer, winter, and breeding habitat models. Rice, M. B., T. D. Apa, B. L. Walker, M. L. Phillips, J. H. Gammonly, B. Petch, and K. Eichhoff. 2012. Analysis of regional species distribution models based on combined radio-telemetry datasets from multiple small-scale studies. Journal of Applied Ecology in review. Production Areas are defined as 4 mile buffers around leks which have been active within the last 10 years (leks active between 2002-2011). Occupied range was created by mapping efforts of the Colorado Division of Wildlife (now Colorado Parks and Wildlife –CPW) biologists and district officers during the spring of 2004, and further refined in early 2012. Occupied Habitat is defined as areas of suitable habitat known to be used by sage-grouse within the last 10 years from the date of mapping. Areas of suitable habitat contiguous with areas of known use, which do not have effective barriers to sage-grouse movement from known use areas, are mapped as occupied habitat unless specific information exists that documents the lack of sage-grouse use. Mapped from any combination of telemetry locations, sightings of sage grouse or sage grouse sign, local biological expertise, GIS analysis, or other data sources. This information was derived from field personnel. A variety of data capture techniques were used including the SmartBoard Interactive Whiteboard using stand-up, real-time digitizing atvarious scales (Cowardin, M., M. Flenner. March 2003. Maximizing Mapping Resources. GeoWorld 16(3):32-35). Update August 2012: This dataset was modified by the Bureau of Land Management as requested by CPW GIS Specialist, Karin Eichhoff. Eichhoff requested that this dataset, along with the GrSG managment zones (population range zones) dataset, be snapped to county boundaries along the UT-CO border and WY-CO border. The county boundaries dataset was provided by Karin Eichhoff. In addition, a few minor topology errors were corrected where PPH and PGH were overlapping. Update October 10, 2012: NHD water bodies greater than 100 acres were removed from GrSG habitat, as requested by Jim Cagney, BLM CO Northwest District Manager. 6 water bodies in total were removed (Hog Lake, South Delaney, Williams Fork Reservoir, North Delaney, Wolford Mountain Reservoir (2 polygons)). There were two “SwampMarsh” polygons that resulted when selecting polygons greater than 100 acres; these polygons were not included. Only polygons with the attribute “LakePond” were removed from GrSG habitat. Colorado Greater Sage Grouse managment zones based on CDOW GrSG_PopRangeZones20120609.shp. Modified and renumbered by BLM 06/09/2012. The zones were modified again by the BLM in August 2012. The BLM discovered areas where PPH and PGH were not included within the zones. Several discrepancies between the zones and PPH and PGH dataset were discovered, and were corrected by the BLM. Zones 18-21 are linkages added as zones by the BLM. In addition to these changes, the zones were adjusted along the UT-CO boundary and WY-CO boundary to be coincident with the county boundaries dataset. This was requested by Karin Eichhoff, GIS Specialist at the CPW. She provided the county boundaries dataset to the BLM. Greater sage grouse GIS data set identifying occupied, potential and vacant/unknown habitats in Colorado. The data set was created by mapping efforts of the Colorado Division of Wildlife biologist and district officers during the spring of 2004, and further refined in the winter of 2005. Occupied Habitat: Areas of suitable habitat known to be used by sage-grouse within the last 10 years from the date of mapping. Areas of suitable habitat contiguous with areas of known use, which do not have effective barriers to sage-grouse movement from known use areas, are mapped as occupied habitat unless specific information exists that documents the lack of sage-grouse use. Mapped from any combination of telemetry locations, sightings of sage grouse or sage grouse sign, local biological expertise, GIS analysis, or other data sources. Vacant or Unknown Habitat: Suitable habitat for sage-grouse that is separated (not contiguous) from occupied habitats that either: 1) Has not been adequately inventoried, or 2) Has not had documentation of grouse presence in the past 10 years Potentially Suitable Habitat: Unoccupied habitats that could be suitable for occupation of sage-grouse if practical restoration were applied. Soils or other historic information (photos, maps, reports, etc.) indicate sagebrush communities occupied these areas. As examples, these sites could include areas overtaken by pinyon-juniper invasions or converted rangelandsUpdate October 10, 2012: NHD water bodies greater than 100 acres were removed from GrSG habitat and management zones, as requested by Jim Cagney, BLM CO Northwest District Manager. 6 water bodies in total were removed (Hog Lake, South Delaney, Williams Fork Reservoir, North Delaney, Wolford Mountain Reservoir (2 polygons)). There were two “SwampMarsh” polygons that resulted when selecting polygons greater than 100 acres; these polygons were not included. Only polygons with the attribute “LakePond” were removed from GrSG habitat. Oregon submitted updated BSU boundaries in May 2016 and again in October 2016, which were incorporated into this latest version. In Oregon, the Core Area maps and data were developed as one component of the Conservation Strategy for sage-grouse. Specifically, these data provide a tool in planning and identifying appropriate mitigation in the event of human development in sage-grouse habitats. These maps will assist in making
This dataset is a modified version of the FWS developed data depicting “Highly Important Landscapes”, as outlined in Memorandum FWS/AES/058711 and provided to the Wildlife Habitat Spatial analysis Lab on October 29th 2014. Other names and acronyms used to refer to this dataset have included: Areas of Significance (AoSs - name of GIS data set provided by FWS), Strongholds (FWS), and Sagebrush Focal Areas (SFAs - BLM). The BLM will refer to these data as Sagebrush Focal Areas (SFAs). Data were provided as a series of ArcGIS map packages which, when extracted, contained several datasets each. Based on the recommendation of the FWS Geographer/Ecologist (email communication, see data originator for contact information) the dataset called “Outiline_AreasofSignificance” was utilized as the source for subsequent analysis and refinement. Metadata was not provided by the FWS for this dataset. For detailed information regarding the dataset’s creation refer to Memorandum FWS/AES/058711 or contact the FWS directly. Several operations and modifications were made to this source data, as outlined in the “Description” and “Process Step” sections of this metadata file. Generally: The source data was named by the Wildlife Habitat Spatial Analysis Lab to identify polygons as described (but not identified in the GIS) in the FWS memorandum. The Nevada/California EIS modified portions within their decision space in concert with local FWS personnel and provided the modified data back to the Wildlife Habitat Spatial Analysis Lab. Gaps around Nevada State borders, introduced by the NVCA edits, were then closed as was a large gap between the southern Idaho & southeast Oregon present in the original dataset. Features with an area below 40 acres were then identified and, based on FWS guidance, either removed or retained. Finally, guidance from BLM WO resulted in the removal of additional areas, primarily non-habitat with BLM surface or subsurface management authority. Data were then provided to each EIS for use in FEIS development. Based on guidance from WO, SFAs were to be limited to BLM decision space (surface/sub-surface management areas) within PHMA. Each EIS was asked to provide the limited SFA dataset back to the National Operations Center to ensure consistent representation and analysis. Returned SFA data, modified by each individual EIS, was then consolidated at the BLM’s National Operations Center retaining the three standardized fields contained in this dataset.Several Modifications from the original FWS dataset have been made. Below is a summary of each modification.1. The data as received from FWS: 16,514,163 acres & 1 record.2. Edited to name SFAs by Wildlife Habitat Spatial Analysis Lab:Upon receipt of the “Outiline_AreasofSignificance” dataset from the FWS, a copy was made and the one existing & unnamed record was exploded in an edit session within ArcMap. A text field, “AoS_Name”, was added. Using the maps provided with Memorandum FWS/AES/058711, polygons were manually selected and the “AoS_Name” field was calculated to match the names as illustrated. Once all polygons in the exploded dataset were appropriately named, the dataset was dissolved, resulting in one record representing each of the seven SFAs identified in the memorandum.3. The NVCA EIS made modifications in concert with local FWS staff. Metadata and detailed change descriptions were not returned with the modified data. Contact Leisa Wesch, GIS Specialist, BLM Nevada State Office, 775-861-6421, lwesch@blm.gov, for details.4. Once the data was returned to the Wildlife Habitat Spatial Analysis Lab from the NVCA EIS, gaps surrounding the State of NV were closed. These gaps were introduced by the NVCA edits, exacerbated by them, or existed in the data as provided by the FWS. The gap closing was performed in an edit session by either extending each polygon towards each other or by creating a new polygon, which covered the gap, and merging it with the existing features. In addition to the gaps around state boundaries, a large area between the S. Idaho and S.E. Oregon SFAs was filled in. To accomplish this, ADPP habitat (current as of January 2015) and BLM GSSP SMA data were used to create a new polygon representing PHMA and BLM management that connected the two existing SFAs.5. In an effort to simplify the FWS dataset, features whose areas were less than 40 acres were identified and FWS was consulted for guidance on possible removal. To do so, features from #4 above were exploded once again in an ArcMap edit session. Features whose areas were less than forty acres were selected and exported (770 total features). This dataset was provided to the FWS and then returned with specific guidance on inclusion/exclusion via email by Lara Juliusson (lara_juliusson@fws.gov). The specific guidance was:a. Remove all features whose area is less than 10 acresb. Remove features identified as slivers (the thinness ratio was calculated and slivers identified by Lara Juliusson according to https://tereshenkov.wordpress.com/2014/04/08/fighting-sliver-polygons-in-arcgis-thinness-ratio/) and whose area was less than 20 acres.c. Remove features with areas less than 20 acres NOT identified as slivers and NOT adjacent to other features.d. Keep the remainder of features identified as less than 40 acres.To accomplish “a” and “b”, above, a simple selection was applied to the dataset representing features less than 40 acres. The select by _location tool was used, set to select identical, to select these features from the dataset created in step 4 above. The records count was confirmed as matching between the two data sets and then these features were deleted. To accomplish “c” above, a field (“AdjacentSH”, added by FWS but not calculated) was calculated to identify features touching or intersecting other features. A series of selections was used: first to select records 6. Based on direction from the BLM Washington Office, the portion of the Upper Missouri River Breaks National Monument (UMRBNM) that was included in the FWS SFA dataset was removed. The BLM NOC GSSP NLCS dataset was used to erase these areas from #5 above. Resulting sliver polygons were also removed and geometry was repaired.7. In addition to removing UMRBNM, the BLM Washington Office also directed the removal of Non-ADPP habitat within the SFAs, on BLM managed lands, falling outside of Designated Wilderness’ & Wilderness Study Areas. An exception was the retention of the Donkey Hills ACEC and adjacent BLM lands. The BLM NOC GSSP NLCS datasets were used in conjunction with a dataset containing all ADPP habitat, BLM SMA and BLM sub-surface management unioned into one file to identify and delete these areas.8. The resulting dataset, after steps 2 – 8 above were completed, was dissolved to the SFA name field yielding this feature class with one record per SFA area.9. Data were provided to each EIS for use in FEIS allocation decision data development.10. Data were subset to BLM decision space (surface/sub-surface) within PHMA by each EIS and returned to the NOC.11. Due to variations in field names and values, three standardized fields were created and calculated by the NOC:a. SFA Name – The name of the SFA.b. Subsurface – Binary “Yes” or “No” to indicated federal subsurface estate.c. SMA – Represents BLM, USFS, other federal and non-federal surface management 12. The consolidated data (with standardized field names and values) were dissolved on the three fields illustrated above and geometry was repaired, resulting in this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘2019 CT Data Catalog (GIS)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/168eaac6-5f52-4015-be99-93031db2fd0d on 26 January 2022.
--- Dataset description provided by original source is as follows ---
Catalog of high value data inventories produced by Connecticut executive branch agencies and compiled by the Office of Policy and Management, updated in 2019. This catalog contains information on high value GIS data only. A catalog of high value non-GIS data may be found at the following link: https://data.ct.gov/Government/2019-CT-Data-Catalog-Non-GIS-/f6rf-n3ke
As required by Public Act 18-175, executive branch agencies must annually conduct a high value data inventory to capture information about the high value data that they collect.
High value data is defined as any data that the department head determines (A) is critical to the operation of an executive branch agency; (B) can increase executive branch agency accountability and responsiveness; (C) can improve public knowledge of the executive branch agency and its operations; (D) can further the core mission of the executive branch agency; (E) can create economic opportunity; (F) is frequently requested by the public; (G) responds to a need and demand as identified by the agency through public consultation; or (H) is used to satisfy any legislative or other reporting requirements.
This dataset was last updated 2/3/2020 and will continue to be updated as high value data inventories are submitted to OPM.
The 2018 high value data inventories for Non-GIS and GIS data can be found at the following links: CT Data Catalog (Non GIS): https://data.ct.gov/Government/CT-Data-Catalog-Non-GIS-/ghmx-93jn/ CT Data Catalog (GIS): https://data.ct.gov/Government/CT-Data-Catalog-GIS-/p7we-na27 Less
--- Original source retains full ownership of the source dataset ---
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
This layer (hosted feature layer) depicts the Canton water plant in the City of Canton, GA. This data set is maintained by the City of Canton's GIS division.For specific questions about this data or to provide feedback, please contact the City's GIS division: Alaina Ellis GIS Analyst alaina.ellis@cantonga.gov (770) 546-6780 Canton City Hall 110 Academy Street, Canton, GA 30114
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘GIS Open Data Inspector (GODI) - Datasets’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/04a2a91a-4008-487b-8e13-8208350ecd58 on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Data record audit of feature classes within the MD iMAP spatial database.
--- Original source retains full ownership of the source dataset ---