100+ datasets found
  1. d

    Community Survey: 2021 Random Sample Results

    • catalog.data.gov
    • data.bloomington.in.gov
    Updated May 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.bloomington.in.gov (2023). Community Survey: 2021 Random Sample Results [Dataset]. https://catalog.data.gov/dataset/community-survey-2021-random-sample-results-69942
    Explore at:
    Dataset updated
    May 20, 2023
    Dataset provided by
    data.bloomington.in.gov
    Description

    A random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.

  2. Dataset #1: Cross-sectional survey data

    • figshare.com
    txt
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adam Baimel (2023). Dataset #1: Cross-sectional survey data [Dataset]. http://doi.org/10.6084/m9.figshare.23708730.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Adam Baimel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    N.B. This is not real data. Only here for an example for project templates.

    Project Title: Add title here

    Project Team: Add contact information for research project team members

    Summary: Provide a descriptive summary of the nature of your research project and its aims/focal research questions.

    Relevant publications/outputs: When available, add links to the related publications/outputs from this data.

    Data availability statement: If your data is not linked on figshare directly, provide links to where it is being hosted here (i.e., Open Science Framework, Github, etc.). If your data is not going to be made publicly available, please provide details here as to the conditions under which interested individuals could gain access to the data and how to go about doing so.

    Data collection details: 1. When was your data collected? 2. How were your participants sampled/recruited?

    Sample information: How many and who are your participants? Demographic summaries are helpful additions to this section.

    Research Project Materials: What materials are necessary to fully reproduce your the contents of your dataset? Include a list of all relevant materials (e.g., surveys, interview questions) with a brief description of what is included in each file that should be uploaded alongside your datasets.

    List of relevant datafile(s): If your project produces data that cannot be contained in a single file, list the names of each of the files here with a brief description of what parts of your research project each file is related to.

    Data codebook: What is in each column of your dataset? Provide variable names as they are encoded in your data files, verbatim question associated with each response, response options, details of any post-collection coding that has been done on the raw-response (and whether that's encoded in a separate column).

    Examples available at: https://www.thearda.com/data-archive?fid=PEWMU17 https://www.thearda.com/data-archive?fid=RELLAND14

  3. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  4. Elementary School Arts Education Survey, 2009

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated Nov 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2023). Elementary School Arts Education Survey, 2009 [Dataset]. https://catalog.data.gov/dataset/elementary-school-arts-education-survey-2009-bca49
    Explore at:
    Dataset updated
    Nov 25, 2023
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The Elementary School Arts Education Survey, 2009 (FRSS 100), is a study that is part of the Quick Response Information System. FRSS 100 (https://nces.ed.gov/surveys/frss/) is a sample survey that provides national estimates on student access to arts education and resources available for such instruction in public elementary schools during fall 2009. The study was conducted using mailed questionnaires that could be completed via web or by mail. Follow-up telephone interviews were also conducted. Principals of elementary schools were sampled. The study's response rate was 85 percent. Key statistics produced from FRSS 100 are availability and characteristics of music, visual arts, dance, and drama/theatre instruction; the type of space used for arts instruction; the availability of curriculum guides for arts teachers to follow; and whether those teaching the subject are arts specialists.

  5. Law Enforcement Management and Administrative Statistics (LEMAS): 2003...

    • icpsr.umich.edu
    • catalog.data.gov
    • +1more
    ascii, sas, spss +1
    Updated May 10, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Justice. Office of Justice Programs. Bureau of Justice Statistics (2006). Law Enforcement Management and Administrative Statistics (LEMAS): 2003 Sample Survey of Law Enforcement Agencies [Dataset]. http://doi.org/10.3886/ICPSR04411.v1
    Explore at:
    stata, spss, sas, asciiAvailable download formats
    Dataset updated
    May 10, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of Justice. Office of Justice Programs. Bureau of Justice Statistics
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/4411/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/4411/terms

    Time period covered
    2003
    Area covered
    United States
    Description

    The Law Enforcement Management and Administrative Statistics (LEMAS) survey collects data from a nationally representative sample of publicly funded State and local law enforcement agencies in the United States. Data include agency personnel, expenditures and pay, operations, community policing initiatives, equipment, computers and information systems, and written policies. The LEMAS survey has been conducted in 1987, 1990, 1993, 1997, 1999 (limited scope), 2000, and 2003.

  6. Enterprise Survey 2009-2014, Panel Data - Malawi

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 7, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2015). Enterprise Survey 2009-2014, Panel Data - Malawi [Dataset]. https://microdata.worldbank.org/index.php/catalog/2360
    Explore at:
    Dataset updated
    Oct 7, 2015
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank
    Time period covered
    2009 - 2014
    Area covered
    Malawi
    Description

    Abstract

    The documented dataset covers Enterprise Survey (ES) panel data collected in Malawi in 2009 and 2014, as part of Africa Enterprise Surveys roll-out, an initiative of the World Bank.

    New Enterprise Surveys target a sample consisting of longitudinal (panel) observations and new cross-sectional data. Panel firms are prioritized in the sample selection, comprising up to 50% of the sample in the current wave. For all panel firms, regardless of the sample, current eligibility or operating status is determined and included in panel datasets.

    Malawi ES 2014 was conducted between April 2014 and February 2015, Malawi ES 2009 was carried out in May - July 2009. The objective of the Enterprise Survey is to obtain feedback from enterprises on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries.

    Stratified random sampling was used to select the surveyed businesses. The data was collected using face-to-face interviews.

    Data from 673 establishments was analyzed: 436 businesses were from 2014 ES only, 63 - from 2009 ES only, and 174 firms were from both 2009 and 2014 panels.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively measure characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural private economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors. Companies with 100% government ownership are not eligible to participate in the Enterprise Surveys.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    For the Malawi ES, multiple sample frames were used: a sample frame was built using data compiled from local and municipal business registries. Due to the fact that the previous round of surveys utilized different stratification criteria in the 2009 survey sample, the presence of panel firms was limited to a maximum of 50% of the achieved interviews in each stratum. That sample is referred to as the panel.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following survey instruments were used for Malawi ES 2009 and 2014: - Manufacturing Module Questionnaire - Services Module Questionnaire

    The survey is fielded via manufacturing or services questionnaires in order not to ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth. There is a skip pattern in the Service Module Questionnaire for questions that apply only to retail firms.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.

  7. w

    COVID-19 National Longitudinal Phone Survey 2020 – World Bank LSMS...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (NBS) (2021). COVID-19 National Longitudinal Phone Survey 2020 – World Bank LSMS Harmonized Dataset - Nigeria [Dataset]. https://microdata.worldbank.org/index.php/catalog/3856
    Explore at:
    Dataset updated
    Oct 25, 2021
    Dataset authored and provided by
    National Bureau of Statistics (NBS)
    Time period covered
    2018 - 2021
    Area covered
    Nigeria
    Description

    Abstract

    To facilitate the use of data collected through the high-frequency phone surveys on COVID-19, the Living Standards Measurement Study (LSMS) team has created the harmonized datafiles using two household surveys: 1) the country’ latest face-to-face survey which has become the sample frame for the phone survey, and 2) the country’s high-frequency phone survey on COVID-19.

    The LSMS team has extracted and harmonized variables from these surveys, based on the harmonized definitions and ensuring the same variable names. These variables include demography as well as housing, household consumption expenditure, food security, and agriculture. Inevitably, many of the original variables are collected using questions that are asked differently. The harmonized datafiles include the best available variables with harmonized definitions.

    Two harmonized datafiles are prepared for each survey. The two datafiles are: 1. HH: This datafile contains household-level variables. The information include basic household characterizes, housing, water and sanitation, asset ownership, consumption expenditure, consumption quintile, food security, livestock ownership. It also contains information on agricultural activities such as crop cultivation, use of organic and inorganic fertilizer, hired labor, use of tractor and crop sales.
    2. IND: This datafile contains individual-level variables. It includes basic characteristics of individuals such as age, sex, marital status, disability status, literacy, education and work.

    Geographic coverage

    National coverage

    Analysis unit

    • Households
    • Individuals

    Universe

    The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    See “Nigeria - General Household Survey, Panel 2018-2019, Wave 4” and “Nigeria - COVID-19 National Longitudinal Phone Survey 2020” available in the Microdata Library for details.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Cleaning operations

    Nigeria General Household Survey, Panel (GHS-Panel) 2018-2019 and Nigeria COVID-19 National Longitudinal Phone Survey (COVID-19 NLPS) 2020 data were harmonized following the harmonization guidelines (see “Harmonized Datafiles and Variables for High-Frequency Phone Surveys on COVID-19” for more details).

    The high-frequency phone survey on COVID-19 has multiple rounds of data collection. When variables are extracted from multiple rounds of the survey, the originating round of the survey is noted with “_rX” in the variable name, where X represents the number of the round. For example, a variable with “_r3” presents that the variable was extracted from Round 3 of the high-frequency phone survey. Round 0 refers to the country’s latest face-to-face survey which has become the sample frame for the high-frequency phone surveys on COVID-19. When the variables are without “_rX”, they were extracted from Round 0.

    Response rate

    See “Nigeria - General Household Survey, Panel 2018-2019, Wave 4” and “Nigeria - COVID-19 National Longitudinal Phone Survey 2020” available in the Microdata Library for details.

  8. e

    Employment and Unemployment Survey, EUS 2016 - Jordan

    • erfdataportal.com
    Updated Oct 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Economic Research Forum (2017). Employment and Unemployment Survey, EUS 2016 - Jordan [Dataset]. http://www.erfdataportal.com/index.php/catalog/133
    Explore at:
    Dataset updated
    Oct 22, 2017
    Dataset provided by
    Department of Statistics
    Economic Research Forum
    Time period covered
    2016
    Area covered
    Jordan
    Description

    Abstract

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE DEPARTMENT OF STATISTICS OF THE HASHEMITE KINGDOM OF JORDAN

    The Department of Statistics (DOS) carried out four rounds of the 2016 Employment and Unemployment Survey (EUS). The survey rounds covered a sample of about fourty nine thousand households Nation-wide. The sampled households were selected using a stratified multi-stage cluster sampling design.

    It is worthy to mention that the DOS employed new technology in data collection and data processing. Data was collected using electronic questionnaire instead of a hard copy, namely a hand held device (PDA).

    The survey main objectives are: - To identify the demographic, social and economic characteristics of the population and manpower. - To identify the occupational structure and economic activity of the employed persons, as well as their employment status. - To identify the reasons behind the desire of the employed persons to search for a new or additional job. - To measure the economic activity participation rates (the number of economically active population divided by the population of 15+ years old). - To identify the different characteristics of the unemployed persons. - To measure unemployment rates (the number of unemployed persons divided by the number of economically active population of 15+ years old) according to the various characteristics of the unemployed, and the changes that might take place in this regard. - To identify the most important ways and means used by the unemployed persons to get a job, in addition to measuring durations of unemployment for such persons. - To identify the changes overtime that might take place regarding the above-mentioned variables.

    The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing labor force surveys in several Arab countries.

    Geographic coverage

    Covering a sample representative on the national level (Kingdom), governorates, and the three Regions (Central, North and South).

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE DEPARTMENT OF STATISTICS OF THE HASHEMITE KINGDOM OF JORDAN

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Cleaning operations

    ----> Raw Data

    A tabulation results plan has been set based on the previous Employment and Unemployment Surveys while the required programs were prepared and tested. When all prior data processing steps were completed, the actual survey results were tabulated using an ORACLE package. The tabulations were then thoroughly checked for consistency of data. The final report was then prepared, containing detailed tabulations as well as the methodology of the survey.

    ----> Harmonized Data

    • The SPSS package is used to clean and harmonize the datasets.
    • The harmonization process starts with a cleaning process for all raw data files received from the Statistical Agency.
    • All cleaned data files are then merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/ compute/ recode/ rename/ format/ label harmonized variables.
    • A post-harmonization cleaning process is then conducted on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and then converted to STATA, to be disseminated.
  9. i

    Household Health Survey 2012-2013, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Jun 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Organization (CSO) (2017). Household Health Survey 2012-2013, Economic Research Forum (ERF) Harmonization Data - Iraq [Dataset]. https://catalog.ihsn.org/index.php/catalog/6937
    Explore at:
    Dataset updated
    Jun 26, 2017
    Dataset provided by
    Central Statistical Organization (CSO)
    Kurdistan Regional Statistics Office (KRSO)
    Economic Research Forum
    Time period covered
    2012 - 2013
    Area covered
    Iraq
    Description

    Abstract

    The harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.

    ----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:

    Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    The survey has six main objectives. These objectives are:

    1. Provide data for poverty analysis and measurement and monitor, evaluate and update the implementation Poverty Reduction National Strategy issued in 2009.
    2. Provide comprehensive data system to assess household social and economic conditions and prepare the indicators related to the human development.
    3. Provide data that meet the needs and requirements of national accounts.
    4. Provide detailed indicators on consumption expenditure that serve making decision related to production, consumption, export and import.
    5. Provide detailed indicators on the sources of households and individuals income.
    6. Provide data necessary for formulation of a new consumer price index number.

    The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.

    Geographic coverage

    National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    ----> Design:

    Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.

    ----> Sample frame:

    Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.

    ----> Sampling Stages:

    In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    ----> Preparation:

    The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.

    ----> Questionnaire Parts:

    The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job

    Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.

    Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days

    Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.

    Cleaning operations

    ----> Raw Data:

    Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.

    ----> Harmonized Data:

    • The SPSS package is used to harmonize the Iraq Household Socio Economic Survey (IHSES) 2007 with Iraq Household Socio Economic Survey (IHSES) 2012.
    • The harmonization process starts with raw data files received from the Statistical Office.
    • A program is generated for each dataset to create harmonized variables.
    • Data is saved on the household and individual level, in SPSS and then converted to STATA, to be disseminated.

    Response rate

    Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).

  10. 2008-2012 American Community Survey: 5-Year Estimates - Public Use Microdata...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). 2008-2012 American Community Survey: 5-Year Estimates - Public Use Microdata Sample [Dataset]. https://catalog.data.gov/dataset/2008-2012-american-community-survey-5-year-estimates-public-use-microdata-sample
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The American Community Survey (ACS) Public Use Microdata Sample (PUMS) contains a sample of responses to the ACS. The ACS PUMS dataset includes variables for nearly every question on the survey, as well as many new variables that were derived after the fact from multiple survey responses (such as poverty status).Each record in the file represents a single person, or, in the household-level dataset, a single housing unit. In the person-level file, individuals are organized into households, making possible the study of people within the contexts of their families and other household members. Individuals living in Group Quarters, such as nursing facilities or college facilities, are also included on the person file. ACS PUMS data are available at the nation, state, and Public Use Microdata Area (PUMA) levels. PUMAs are special non-overlapping areas that partition each state into contiguous geographic units containing roughly 100,000 people each. ACS PUMS files for an individual year, such as 2019, contain data on approximately one percent of the United States population.

  11. e

    COVID 19 MENA Monitor Enterprise Surveys, CMMENT – Wave 3 - Tunisia

    • erfdataportal.com
    • mail.erfdataportal.com
    Updated Oct 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Economics Research Forum (2021). COVID 19 MENA Monitor Enterprise Surveys, CMMENT – Wave 3 - Tunisia [Dataset]. https://erfdataportal.com/index.php/catalog/229
    Explore at:
    Dataset updated
    Oct 13, 2021
    Dataset authored and provided by
    Economics Research Forum
    Time period covered
    2021
    Area covered
    Tunisia
    Description

    Abstract

    To better understand the impact of the shock induced by the COVID-19 pandemic on micro and small enterprises in Tunisia and assess the policy responses in a rapidly changing context, reliable data is imperative, and the need to resort to a dynamic data collection tool at a time when countries in the region are in a state of flux cannot be overstated. The COVID-19 MENA Monitor Survey was led by the Economic Research Forum (ERF) to provide data for researchers and policy makers on the economic and labor market impact of the global COVID-19 pandemic on enterprises.

    The ERF COVID-19 MENA Monitor Survey is constructed using a series of short panel phone surveys, that are conducted approximately every two months, and it will cover business closure (temporary/permanent) due to lockdowns, ability to telework/deliver the service, disruptions to supply chains (for inputs and outputs), loss of product markets, increased cost of supplies, worker layoffs, salary adjustments, access to lines of credit and delays in transportation. Understanding the strategies of enterprises (particularly micro and small enterprises) to cope with the crisis is one of the main objectives of this survey. Specific constraints such as weak access to the internet in some areas or laws constraining goods' delivery will be analyzed. Enterprise owners will also be asked about prospects for the future, including ability to stay open, and whether they benefited from any measures to support their businesses. The ERF COVID-19 MENA Monitor Survey is a wide-ranging, nationally representative panel survey. The wave 3 of this dataset was collected from August to September 2021 and harmonized by the Economic Research Forum (ERF) and is featured as data for enterprise data.

    The harmonization was designed to create comparable data that can facilitate cross-country and comparative research between other Arab countries (Morocco, Egypt, and Jordan). All the COVID-19 MENA Monitor surveys incorporate similar survey designs, with data on enterprises within Arab countries (Egypt, Jordan, Tunisia, and Morocco).

    Geographic coverage

    National

    Analysis unit

    Enterprises

    Universe

    The sample universe for the enterprise survey was enterprises that had 6-199 workers pre-COVID-19

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample universe for the firm survey was firms that had 6-199 workers pre-COVID-19. Stratified random samples were used to ensure adequate sample size in key strata. A target of 500 firms was set as a sample. Up to Five attempts were made to ensure response if a phone number was not picked up/answered, was disconnected or busy, or picked up but could not complete the interview at that time. After the fifth failed attempt, a firm was treated as a non-response and a random firm from the same stratum was used as an alternate.

    Use the National Institute of Statistics (INS) and Agency for the Promotion of Industry and Innovation (APII) databases as follow: o Tunisia did not have a Yellow Pages or similar database, so administrative/statistics data sources had to be used o The sample started with the INS frame with 1,238 enterprises with 6-200 wage employees § Enterprises were stratified into: (1) Agriculture (2) Industry (3) Construction (4) Trade (5) Accommodation (6) Service § Enterprises were also stratified by size in terms of 6-49 versus 50-200 employees § A random stratified sample (order) was selected § Further restricted to enterprises with 6-199 workers in February 2020 based on an eligibility question during the phone interview § This sample frame was eventually exhausted o After the INS sample was exhausted, the APII sample was used § APII only covered enterprises with 10+ workers § APII only covered (1) services & transport, and (2) industry o Weights are based on the underlying data on all enterprises from INS, specifically: Entreprises privées selon l'activité principale et la tranche de salariés (RNE 2019). § We ultimately stratify the Tunisia weights by industry and enterprises sized: 6-9 employees (since APII only covered 10+), 10-49, and 50-199.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    The enterprise questionnaire is carried out to understand the strategies of enterprises -particularly micro and small enterprises- to cope with the crisis as well as related constraints and prospects for the future. It includes questions on business closure (temporary/permanent) due to lockdowns, ability to telework/deliver the service, disruptions to supply chains (for inputs and outputs), loss of product markets, increased cost of supplies, worker layoffs, salary adjustments, access to lines of credit and delays in transportation.

    Note: The questionnaire can be seen in the documentation materials tab.

  12. p

    High Frequency Phone Survey, Continuous Data Collection 2023 - Solomon...

    • microdata.pacificdata.org
    Updated Mar 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Darian Naidoo and William Seitz (2025). High Frequency Phone Survey, Continuous Data Collection 2023 - Solomon Islands [Dataset]. https://microdata.pacificdata.org/index.php/catalog/875
    Explore at:
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    Darian Naidoo and William Seitz
    Time period covered
    2023 - 2024
    Area covered
    Solomon Islands
    Description

    Abstract

    Access to up-to-date socio-economic data is a widespread challenge in Solomon Islands and other Pacific Island Countries. To increase data availability and promote evidence-based policymaking, the Pacific Observatory provides innovative solutions and data sources to complement existing survey data and analysis. One of these data sources is a series of High Frequency Phone Surveys (HFPS), which began in 2020 as a way to monitor the socio-economic impacts of the COVID-19 Pandemic, and since 2023 has grown into a series of continuous surveys for socio-economic monitoring. See https://www.worldbank.org/en/country/pacificislands/brief/the-pacific-observatory for further details.

    For Solmon Islands, after five rounds of data collection from 2020-2020, in April 2023 a monthly HFPS data collection commenced and continued for 18 months (ending September 2024) –on topics including employment, income, food security, health, food prices, assets and well-being. Fieldwork took place in two non-consecutive weeks of each month. Data for April 2023-December 2023 were a repeated cross section, while January 2024 established the first month of a panel, the was continued to September 2024. Each month has approximately 550 households in the sample and is representative of urban and rural areas, but is not representative at the province level. This dataset contains combined monthly survey data for all months of the continuous HFPS in Solomon Islands. There is one date file for household level data with a unique household ID. and a separate file for individual level data within each household data, that can be matched to the household file using the household ID, and which also has a unique individual ID within the household data which can be used to track individuals over time within households, where the data is panel data.

    Geographic coverage

    Urban and rural areas of Solomon Islands.

    Analysis unit

    Household, individual.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The initial sample was drawn through Random Digit Dialing (RDD) with geographic stratification. As an objective of the survey was to measure changes in household economic wellbeing over time, the HFPS sought to contact a consistent number of households across each province month to month. This was initially a repeated cross section from April 2023-Dec 2023. The initial sample was drawn from information provided by a major phone service provider in Solomon Islands, covering all the provinces in the country. It had a probability-based weighted design, with a proportionate stratification to achieve geographical representation. The geographical distribution compared to the 2019 Census is listed below for the first month of the HFPS monthly survey:

    Choiseul : Census: 4.3%, HFPS: 5.2% Western : Census: 14.4%, HFPS: 13.7% Isabel : Census: 4.8%, HFPS: 4.7% Central : Census: 3.6%, HFPS: 5.2% Ren Bell : Census: 0.6%, HFPS: 1.4% Guadalcanal: Census: 19.8%, HFPS: 21.1% Malaita : Census: 23.1%, HFPS: 18.7% Makira : Census: 5.6%, HFPS: 5.6% Temotu: Census: 3.0%, HFPS: 3% Honiara: Census: 20.7%, HFPS: 21.3%

    Source: Census of Population and Housing 2019

    Note: The values in the HFPS column represent the proportion of survey participants residing in each province, based on the raw HFPS data from April.

    In April 2023, the geographic distribution of World Bank HFPS participants was generally similar to that of the census data at the province level, though within provinces, areas with less mobile phone connectivity are likely to be underrepresented. One indication of this is that urban areas constituted 38.2 percent of the survey sample, which is a slight overrepresentation, compared to 32.5 percent in the Census 2019.

    A monthly panel was established in January 2024, that is ongoing as of March 2025. In each subsequent month after January 2024, the survey firm would first attempt to contact all households from the previous month and then attempt to contact households from earlier months that had dropped out. After previous numbers were exhausted, RDD with geographic stratification was used for replacement households. Across all months of the survey a total of, 9,926 interviews were completed.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    The questionnaire, which can be found in the External Resources of this documentation, is available in English, with Solomons Pijin translation. There were few changes to the questionnaire across the survey months, but some sections were only introduced in 2024, namely energy access questions and questions to inform the baseline data of the Solomon Islands Government Integrated Economic Development and Climate Resilience (IEDCR) project.

    Cleaning operations

    The raw data were cleaned by the World Bank team using STATA. This included formatting and correcting errors identified through the survey’s monitoring and quality control process. The data are presented in two datasets: a household dataset and an individual dataset. The total number of observations is 9,926 in the household dataset and 62,054 in the individual dataset. The individual dataset contains information on individual demographics and labor market outcomes of all household members aged 15 and above, and the household data set contains information about household demographics, education, food security, food prices, household income, agriculture activities, social protection, access to services, and durable asset ownership. The household identifier (hhid) is available in both the household dataset and the individual dataset. The individual identifier (id_member) can be found in the individual dataset.

  13. Quarterly Labour Force Survey 2021, Quarter 1 - South Africa

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2021). Quarterly Labour Force Survey 2021, Quarter 1 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/4074
    Explore at:
    Dataset updated
    Oct 25, 2021
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2021
    Area covered
    South Africa
    Description

    Abstract

    The Quarterly Labour Force Survey (QLFS) is a household-based sample survey conducted by Statistics South Africa (Stats SA). It collects data on the labour market activities of individuals aged 15 years or older who live in South Africa.

    Geographic coverage

    National coverage

    Analysis unit

    Individuals

    Universe

    The QLFS sample covers the non-institutional population of South Africa with one exception. The only institutional subpopulation included in the QLFS sample are individuals in worker's hostels. Persons living in private dwelling units within institutions are also enumerated. For example, within a school compound, one would enumerate the schoolmaster's house and teachers' accommodation because these are private dwellings. Students living in a dormitory on the school compound would, however, be excluded.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The QLFS uses a master sampling frame that is used by several household surveys conducted by Statistics South Africa. This wave of the QLFS is based on the 2013 master frame, which was created based on the 2011 census. There are 3324 PSUs in the master frame and roughly 33000 dwelling units.

    The sample for the QLFS is based on a stratified two-stage design with probability proportional to size (PPS) sampling of PSUs in the first stage, and sampling of dwelling units (DUs) with systematic sampling in the second stage.

    For each quarter of the QLFS, a quarter of the sampled dwellings are rotated out of the sample. These dwellings are replaced by new dwellings from the same PSU or the next PSU on the list. For more information see the statistical release.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    The survey questionnaire consists of the following sections: - Biographical information (marital status, education, etc.) - Economic activities in the last week for persons aged 15 years and older - Unemployment and economic inactivity for persons aged 15 years and above - Main work activity in the last week for persons aged 15 years and above - Earnings in the main job for employees, employers and own-account workers aged 15 years and above

    From 2010 the income data collected by South Africa's Quarterly Labour Force Survey is no longer provided in the QLFS dataset (except for a brief return in QLFS 2010 Q3 which may be an error). Possibly because the data is unreliable at the level of the quarter, Statistics South Africa now provides the income data from the QLFS in an annualised dataset called Labour Market Dynamics in South Africa (LMDSA). The datasets for LMDSA are available from DataFirst's website.

  14. f

    Descriptive statistics for survey responses from the full survey sample.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lortie-Forgues, Hugues; Moore, Melody; Martin, Elizabeth; Wan, Sirui; Bailey, Drew Hal; Alvarez-Vargas, Daniela; Braithwaite, David (2023). Descriptive statistics for survey responses from the full survey sample. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000937397
    Explore at:
    Dataset updated
    Oct 26, 2023
    Authors
    Lortie-Forgues, Hugues; Moore, Melody; Martin, Elizabeth; Wan, Sirui; Bailey, Drew Hal; Alvarez-Vargas, Daniela; Braithwaite, David
    Description

    Descriptive statistics for survey responses from the full survey sample.

  15. s

    Data from: Fostering cultures of open qualitative research: Dataset 1 –...

    • orda.shef.ac.uk
    docx
    Updated Oct 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Hanchard; Itzel San Roman Pineda (2025). Fostering cultures of open qualitative research: Dataset 1 – Survey Responses [Dataset]. http://doi.org/10.15131/shef.data.23567250.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    The University of Sheffield
    Authors
    Matthew Hanchard; Itzel San Roman Pineda
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This dataset was created and deposited onto the University of Sheffield Online Research Data repository (ORDA) on 23-Jun-2023 by Dr. Matthew S. Hanchard, Research Associate at the University of Sheffield iHuman Institute.

    The dataset forms part of three outputs from a project titled ‘Fostering cultures of open qualitative research’ which ran from January 2023 to June 2023:

    · Fostering cultures of open qualitative research: Dataset 1 – Survey Responses · Fostering cultures of open qualitative research: Dataset 2 – Interview Transcripts · Fostering cultures of open qualitative research: Dataset 3 – Coding Book

    The project was funded with £13,913.85 Research England monies held internally by the University of Sheffield - as part of their ‘Enhancing Research Cultures’ scheme 2022-2023.

    The dataset aligns with ethical approval granted by the University of Sheffield School of Sociological Studies Research Ethics Committee (ref: 051118) on 23-Jan-2021.This includes due concern for participant anonymity and data management.

    ORDA has full permission to store this dataset and to make it open access for public re-use on the basis that no commercial gain will be made form reuse. It has been deposited under a CC-BY-NC license.

    This dataset comprises one spreadsheet with N=91 anonymised survey responses .xslx format. It includes all responses to the project survey which used Google Forms between 06-Feb-2023 and 30-May-2023. The spreadsheet can be opened with Microsoft Excel, Google Sheet, or open-source equivalents.

    The survey responses include a random sample of researchers worldwide undertaking qualitative, mixed-methods, or multi-modal research.

    The recruitment of respondents was initially purposive, aiming to gather responses from qualitative researchers at research-intensive (targetted Russell Group) Universities. This involved speculative emails and a call for participant on the University of Sheffield ‘Qualitative Open Research Network’ mailing list. As result, the responses include a snowball sample of scholars from elsewhere.

    The spreadsheet has two tabs/sheets: one labelled ‘SurveyResponses’ contains the anonymised and tidied set of survey responses; the other, labelled ‘VariableMapping’, sets out each field/column in the ‘SurveyResponses’ tab/sheet against the original survey questions and responses it relates to.

    The survey responses tab/sheet includes a field/column labelled ‘RespondentID’ (using randomly generated 16-digit alphanumeric keys) which can be used to connect survey responses to interview participants in the accompanying ‘Fostering cultures of open qualitative research: Dataset 2 – Interview transcripts’ files.

    A set of survey questions gathering eligibility criteria detail and consent are not listed with in this dataset, as below. All responses provide in the dataset gained a ‘Yes’ response to all the below questions (with the exception of one question, marked with an asterisk (*) below):

    · I am aged 18 or over · I have read the information and consent statement and above. · I understand how to ask questions and/or raise a query or concern about the survey. · I agree to take part in the research and for my responses to be part of an open access dataset. These will be anonymised unless I specifically ask to be named. · I understand that my participation does not create a legally binding agreement or employment relationship with the University of Sheffield · I understand that I can withdraw from the research at any time. · I assign the copyright I hold in materials generated as part of this project to The University of Sheffield. · * I am happy to be contacted after the survey to take part in an interview.

    The project was undertaken by two staff: Co-investigator: Dr. Itzel San Roman Pineda ORCiD ID: 0000-0002-3785-8057 i.sanromanpineda@sheffield.ac.uk

    Postdoctoral Research Assistant Principal Investigator (corresponding dataset author): Dr. Matthew Hanchard ORCiD ID: 0000-0003-2460-8638 m.s.hanchard@sheffield.ac.uk Research Associate iHuman Institute, Social Research Institutes, Faculty of Social Science

  16. d

    National Sample Survey (NSS) data (unit level)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Sample Survey Office, Ministry of Statistics (2023). National Sample Survey (NSS) data (unit level) [Dataset]. http://doi.org/10.7910/DVN/K8BSDU
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    National Sample Survey Office, Ministry of Statistics
    Time period covered
    Jan 1, 2004 - Jan 1, 2014
    Description

    The National Sample Survey contains a variety of socio-economic data for India and is collected by the Ministry of Statistics and Programme Implementation for planning and policy formulation. The National Sample Survey Office (NSSO) conducts the Socio-Economic (SE) Surveys, nationwide sample surveys relating to various socio-economic topics. Surveys are conducted in the form of Rounds, each Round being normally of one-year duration and occasionally for a period of six months.The National Sample Survey website provides further information about the survey, coverages and methodology.

  17. Expenditure and Consumption Survey, 2004 - West Bank and Gaza

    • catalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2019). Expenditure and Consumption Survey, 2004 - West Bank and Gaza [Dataset]. https://catalog.ihsn.org/index.php/catalog/3085
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttps://pcbs.gov/
    Time period covered
    2004 - 2005
    Area covered
    Gaza, Gaza Strip, West Bank
    Description

    Abstract

    The basic goal of this survey is to provide the necessary database for formulating national policies at various levels. It represents the contribution of the household sector to the Gross National Product (GNP). Household Surveys help as well in determining the incidence of poverty, and providing weighted data which reflects the relative importance of the consumption items to be employed in determining the benchmark for rates and prices of items and services. Generally, the Household Expenditure and Consumption Survey is a fundamental cornerstone in the process of studying the nutritional status in the Palestinian territory.

    The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality. Data is a public good, in the interest of the region, and it is consistent with the Economic Research Forum's mandate to make micro data available, aiding regional research on this important topic.

    Geographic coverage

    The survey data covers urban, rural and camp areas in West Bank and Gaza Strip.

    Analysis unit

    1- Household/families. 2- Individuals.

    Universe

    The survey covered all the Palestinian households who are a usual residence in the Palestinian Territory.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample and Frame:

    The sampling frame consists of all enumeration areas which were enumerated in 1997; the enumeration area consists of buildings and housing units and is composed of an average of 120 households. The enumeration areas were used as Primary Sampling Units (PSUs) in the first stage of the sampling selection. The enumeration areas of the master sample were updated in 2003.

    Sample Design:

    The sample is a stratified cluster systematic random sample with two stages: First stage: selection of a systematic random sample of 299 enumeration areas. Second stage: selection of a systematic random sample of 12-18 households from each enumeration area selected in the first stage. A person (18 years and more) was selected from each household in the second stage.

    Sample strata:

    The population was divided by: 1- Governorate 2- Type of Locality (urban, rural, refugee camps)

    Sample Size:

    The calculated sample size is 3,781 households.

    Target cluster size:

    The target cluster size or "sample-take" is the average number of households to be selected per PSU. In this survey, the sample take is around 12 households.

    Detailed information/formulas on the sampling design are available in the user manual.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The PECS questionnaire consists of two main sections:

    First section: Certain articles / provisions of the form filled at the beginning of the month,and the remainder filled out at the end of the month. The questionnaire includes the following provisions:

    Cover sheet: It contains detailed and particulars of the family, date of visit, particular of the field/office work team, number/sex of the family members.

    Statement of the family members: Contains social, economic and demographic particulars of the selected family.

    Statement of the long-lasting commodities and income generation activities: Includes a number of basic and indispensable items (i.e, Livestock, or agricultural lands).

    Housing Characteristics: Includes information and data pertaining to the housing conditions, including type of shelter, number of rooms, ownership, rent, water, electricity supply, connection to the sewer system, source of cooking and heating fuel, and remoteness/proximity of the house to education and health facilities.

    Monthly and Annual Income: Data pertaining to the income of the family is collected from different sources at the end of the registration / recording period.

    Second section: The second section of the questionnaire includes a list of 54 consumption and expenditure groups itemized and serially numbered according to its importance to the family. Each of these groups contains important commodities. The number of commodities items in each for all groups stood at 667 commodities and services items. Groups 1-21 include food, drink, and cigarettes. Group 22 includes homemade commodities. Groups 23-45 include all items except for food, drink and cigarettes. Groups 50-54 include all of the long-lasting commodities. Data on each of these groups was collected over different intervals of time so as to reflect expenditure over a period of one full year.

    Cleaning operations

    Raw Data

    Both data entry and tabulation were performed using the ACCESS and SPSS software programs. The data entry process was organized in 6 files, corresponding to the main parts of the questionnaire. A data entry template was designed to reflect an exact image of the questionnaire, and included various electronic checks: logical check, range checks, consistency checks and cross-validation. Complete manual inspection was made of results after data entry was performed, and questionnaires containing field-related errors were sent back to the field for corrections.

    Harmonized Data

    • The Statistical Package for Social Science (SPSS) is used to clean and harmonize the datasets.
    • The harmonization process starts with cleaning all raw data files received from the Statistical Office.
    • Cleaned data files are then all merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/compute/recode/rename/format/label harmonized variables.
    • A post-harmonization cleaning process is run on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and converted to STATA format.

    Response rate

    The survey sample consists of about 3,781 households interviewed over a twelve-month period between January 2004 and January 2005. There were 3,098 households that completed the interview, of which 2,060 were in the West Bank and 1,038 households were in GazaStrip. The response rate was 82% in the Palestinian Territory.

    Sampling error estimates

    The calculations of standard errors for the main survey estimations enable the user to identify the accuracy of estimations and the survey reliability. Total errors of the survey can be divided into two kinds: statistical errors, and non-statistical errors. Non-statistical errors are related to the procedures of statistical work at different stages, such as the failure to explain questions in the questionnaire, unwillingness or inability to provide correct responses, bad statistical coverage, etc. These errors depend on the nature of the work, training, supervision, and conducting all various related activities. The work team spared no effort at different stages to minimize non-statistical errors; however, it is difficult to estimate numerically such errors due to absence of technical computation methods based on theoretical principles to tackle them. On the other hand, statistical errors can be measured. Frequently they are measured by the standard error, which is the positive square root of the variance. The variance of this survey has been computed by using the “programming package” CENVAR.

  18. VOTP Dataset

    • kaggle.com
    zip
    Updated Apr 10, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sdorius (2017). VOTP Dataset [Dataset]. https://www.kaggle.com/sdorius/votpharm
    Explore at:
    zip(24823052 bytes)Available download formats
    Dataset updated
    Apr 10, 2017
    Authors
    sdorius
    Description

    This is an integration of 10 independent multi-country, multi-region, multi-cultural social surveys fielded by Gallup International between 2000 and 2013. The integrated data file contains responses from 535,159 adults living in 103 countries. In total, the harmonization project combined 571 social surveys.

    These data have value in a number of longitudinal multi-country, multi-regional, and multi-cultural (L3M) research designs. Understood as independent, though non-random, L3M samples containing a number of multiple indicator ASQ (ask same questions) and ADQ (ask different questions) measures of human development, the environment, international relations, gender equality, security, international organizations, and democracy, to name a few [see full list below].

    The data can be used for exploratory and descriptive analysis, with greatest utility at low levels of resolution (e.g. nation-states, supranational groupings). Level of resolution in analysis of these data should be sufficiently low to approximate confidence intervals.

    These data can be used for teaching 3M methods, including data harmonization in L3M, 3M research design, survey design, 3M measurement invariance, analysis, and visualization, and reporting. Opportunities to teach about para data, meta data, and data management in L3M designs.

    The country units are an unbalanced panel derived from non-probability samples of countries and respondents> Panels (countries) have left and right censorship and are thusly unbalanced. This design limitation can be overcome to the extent that VOTP panels are harmonized with public measurements from other 3M surveys to establish balance in terms of panels and occasions of measurement. Should L3M harmonization occur, these data can be assigned confidence weights to reflect the amount of error in these surveys.

    Pooled public opinion surveys (country means), when combine with higher quality country measurements of the same concepts (ASQ, ADQ), can be leveraged to increase the statistical power of pooled publics opinion research designs (multiple L3M datasets)…that is, in studies of public, rather than personal, beliefs.

    The Gallup Voice of the People survey data are based on uncertain sampling methods based on underspecified methods. Country sampling is non-random. The sampling method appears be primarily probability and quota sampling, with occasional oversample of urban populations in difficult to survey populations. The sampling units (countries and individuals) are poorly defined, suggesting these data have more value in research designs calling for independent samples replication and repeated-measures frameworks.

    **The Voice of the People Survey Series is WIN/Gallup International Association's End of Year survey and is a global study that collects the public's view on the challenges that the world faces today. Ongoing since 1977, the purpose of WIN/Gallup International's End of Year survey is to provide a platform for respondents to speak out concerning government and corporate policies. The Voice of the People, End of Year Surveys for 2012, fielded June 2012 to February 2013, were conducted in 56 countries to solicit public opinion on social and political issues. Respondents were asked whether their country was governed by the will of the people, as well as their attitudes about their society. Additional questions addressed respondents' living conditions and feelings of safety around their living area, as well as personal happiness. Respondents' opinions were also gathered in relation to business development and their views on the effectiveness of the World Health Organization. Respondents were also surveyed on ownership and use of mobile devices. Demographic information includes sex, age, income, education level, employment status, and type of living area.

  19. 2020 American Community Survey: 5-Year Estimates - Public Use Microdata...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). 2020 American Community Survey: 5-Year Estimates - Public Use Microdata Sample [Dataset]. https://catalog.data.gov/dataset/2020-american-community-survey-5-year-estimates-public-use-microdata-sample
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The American Community Survey (ACS) Public Use Microdata Sample (PUMS) contains a sample of responses to the ACS. The ACS PUMS dataset includes variables for nearly every question on the survey, as well as many new variables that were derived after the fact from multiple survey responses (such as poverty status). Each record in the file represents a single person, or, in the household-level dataset, a single housing unit. In the person-level file, individuals are organized into households, making possible the study of people within the contexts of their families and other household members. Individuals living in Group Quarters, such as nursing facilities or college facilities, are also included on the person file. ACS PUMS data are available at the nation, state, and Public Use Microdata Area (PUMA) levels. PUMAs are special non-overlapping areas that partition each state into contiguous geographic units containing roughly 100,000 people each. ACS PUMS files for an individual year, such as 2020, contain data on approximately one percent of the United States population.

  20. p

    High Frequency Phone Survey, Continuous Data Collection 2023 - Papua New...

    • microdata.pacificdata.org
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Seitz (2025). High Frequency Phone Survey, Continuous Data Collection 2023 - Papua New Guinea [Dataset]. https://microdata.pacificdata.org/index.php/catalog/877
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    William Seitz
    Darian Naidoo
    Time period covered
    2023 - 2025
    Area covered
    Papua New Guinea
    Description

    Abstract

    Access to up-to-date socio-economic data is a widespread challenge in Papua New Guinea and other Pacific Island Countries. To increase data availability and promote evidence-based policymaking, the Pacific Observatory provides innovative solutions and data sources to complement existing survey data and analysis. One of these data sources is a series of High Frequency Phone Surveys (HFPS), which began in 2020 as a way to monitor the socio-economic impacts of the COVID-19 Pandemic, and since 2023 has grown into a series of continuous surveys for socio-economic monitoring. See https://www.worldbank.org/en/country/pacificislands/brief/the-pacific-observatory for further details.

    For PNG, after five rounds of data collection from 2020-2022, in April 2023 a monthly HFPS data collection commenced and continued for 18 months (ending September 2024) –on topics including employment, income, food security, health, food prices, assets and well-being. This followed an initial pilot of the data collection from January 2023-March 2023. Data for April 2023-September 2023 were a repeated cross section, while October 2023 established the first month of a panel, which is ongoing as of March 2025. For each month, approximately 550-1000 households were interviewed. The sample is representative of urban and rural areas but is not representative at the province level. This dataset contains combined monthly survey data for all months of the continuous HFPS in PNG. There is one date file for household level data with a unique household ID, and separate files for individual level data within each household data, and household food price data, that can be matched to the household file using the household ID. A unique individual ID within the household data which can be used to track individuals over time within households.

    Geographic coverage

    Urban and rural areas of Papua New Guinea

    Analysis unit

    Household, Individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The initial sample was drawn through Random Digit Dialing (RDD) with geographic stratification from a large random sample of Digicel’s subscribers. As an objective of the survey was to measure changes in household economic wellbeing over time, the HFPS sought to contact a consistent number of households across each province month to month. This was initially a repeated cross section from April 2023-Dec 2023. The resulting overall sample has a probability-based weighted design, with a proportionate stratification to achieve a proper geographical representation. More information on sampling for the cross-sectional monthly sample can be found in previous documentation for the PNG HFPS data.

    A monthly panel was established in October 2023, that is ongoing as of March 2025. In each subsequent round of data collection after October 2024, the survey firm would first attempt to contact all households from the previous month, and then attempt to contact households from earlier months that had dropped out. After previous numbers were exhausted, RDD with geographic stratification was used for replacement households.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    he questionnaire, which can be found in the External Resources of this documentation, is in English with a Pidgin translation.

    The survey instrument for Q1 2025 consists of the following modules: -1. Basic Household information, -2. Household Roster, -3. Labor, -4a Food security, -4b Food prices -5. Household income, -6. Agriculture, -8. Access to services, -9. Assets -10. Wellbeing and shocks -10a. WASH

    Cleaning operations

    The raw data were cleaned by the World Bank team using STATA. This included formatting and correcting errors identified through the survey’s monitoring and quality control process. The data are presented in two datasets: a household dataset and an individual dataset. The individual dataset contains information on individual demographics and labor market outcomes of all household members aged 15 and above, and the household data set contains information about household demographics, education, food security, food prices, household income, agriculture activities, social protection, access to services, and durable asset ownership. The household identifier (hhid) is available in both the household dataset and the individual dataset. The individual identifier (id_member) can be found in the individual dataset.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.bloomington.in.gov (2023). Community Survey: 2021 Random Sample Results [Dataset]. https://catalog.data.gov/dataset/community-survey-2021-random-sample-results-69942

Community Survey: 2021 Random Sample Results

Explore at:
Dataset updated
May 20, 2023
Dataset provided by
data.bloomington.in.gov
Description

A random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.

Search
Clear search
Close search
Google apps
Main menu