100+ datasets found
  1. AI Training Dataset Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). AI Training Dataset Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-ai-training-dataset-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    AI Training Dataset Market Outlook



    The global AI training dataset market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach USD 6.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 20.5% from 2024 to 2032. This substantial growth is driven by the increasing adoption of artificial intelligence across various industries, the necessity for large-scale and high-quality datasets to train AI models, and the ongoing advancements in AI and machine learning technologies.



    One of the primary growth factors in the AI training dataset market is the exponential increase in data generation across multiple sectors. With the proliferation of internet usage, the expansion of IoT devices, and the digitalization of industries, there is an unprecedented volume of data being generated daily. This data is invaluable for training AI models, enabling them to learn and make more accurate predictions and decisions. Moreover, the need for diverse and comprehensive datasets to improve AI accuracy and reliability is further propelling market growth.



    Another significant factor driving the market is the rising investment in AI and machine learning by both public and private sectors. Governments around the world are recognizing the potential of AI to transform economies and improve public services, leading to increased funding for AI research and development. Simultaneously, private enterprises are investing heavily in AI technologies to gain a competitive edge, enhance operational efficiency, and innovate new products and services. These investments necessitate high-quality training datasets, thereby boosting the market.



    The proliferation of AI applications in various industries, such as healthcare, automotive, retail, and finance, is also a major contributor to the growth of the AI training dataset market. In healthcare, AI is being used for predictive analytics, personalized medicine, and diagnostic automation, all of which require extensive datasets for training. The automotive industry leverages AI for autonomous driving and vehicle safety systems, while the retail sector uses AI for personalized shopping experiences and inventory management. In finance, AI assists in fraud detection and risk management. The diverse applications across these sectors underline the critical need for robust AI training datasets.



    As the demand for AI applications continues to grow, the role of Ai Data Resource Service becomes increasingly vital. These services provide the necessary infrastructure and tools to manage, curate, and distribute datasets efficiently. By leveraging Ai Data Resource Service, organizations can ensure that their AI models are trained on high-quality and relevant data, which is crucial for achieving accurate and reliable outcomes. The service acts as a bridge between raw data and AI applications, streamlining the process of data acquisition, annotation, and validation. This not only enhances the performance of AI systems but also accelerates the development cycle, enabling faster deployment of AI-driven solutions across various sectors.



    Regionally, North America currently dominates the AI training dataset market due to the presence of major technology companies and extensive R&D activities in the region. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid technological advancements, increasing investments in AI, and the growing adoption of AI technologies across various industries in countries like China, India, and Japan. Europe and Latin America are also anticipated to experience significant growth, supported by favorable government policies and the increasing use of AI in various sectors.



    Data Type Analysis



    The data type segment of the AI training dataset market encompasses text, image, audio, video, and others. Each data type plays a crucial role in training different types of AI models, and the demand for specific data types varies based on the application. Text data is extensively used in natural language processing (NLP) applications such as chatbots, sentiment analysis, and language translation. As the use of NLP is becoming more widespread, the demand for high-quality text datasets is continually rising. Companies are investing in curated text datasets that encompass diverse languages and dialects to improve the accuracy and efficiency of NLP models.



    Image data is critical for computer vision application

  2. A

    Artificial Intelligence Training Dataset Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Artificial Intelligence Training Dataset Report [Dataset]. https://www.archivemarketresearch.com/reports/artificial-intelligence-training-dataset-38645
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Artificial Intelligence (AI) Training Dataset market is projected to reach $1605.2 million by 2033, exhibiting a CAGR of 9.4% from 2025 to 2033. The surge in demand for AI training datasets is driven by the increasing adoption of AI and machine learning technologies in various industries such as healthcare, financial services, and manufacturing. Moreover, the growing need for reliable and high-quality data for training AI models is further fueling the market growth. Key market trends include the increasing adoption of cloud-based AI training datasets, the emergence of synthetic data generation, and the growing focus on data privacy and security. The market is segmented by type (image classification dataset, voice recognition dataset, natural language processing dataset, object detection dataset, and others) and application (smart campus, smart medical, autopilot, smart home, and others). North America is the largest regional market, followed by Europe and Asia Pacific. Key companies operating in the market include Appen, Speechocean, TELUS International, Summa Linguae Technologies, and Scale AI. Artificial Intelligence (AI) training datasets are critical for developing and deploying AI models. These datasets provide the data that AI models need to learn, and the quality of the data directly impacts the performance of the model. The AI training dataset market landscape is complex, with many different providers offering datasets for a variety of applications. The market is also rapidly evolving, as new technologies and techniques are developed for collecting, labeling, and managing AI training data.

  3. Data from: AI & Computer Vision Dataset

    • kaggle.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khushi Yadav (2025). AI & Computer Vision Dataset [Dataset]. https://www.kaggle.com/datasets/khushikyad001/ai-and-computer-vision-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Khushi Yadav
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset contains metadata related to three categories of AI and computer vision applications:

    Handwritten Math Solutions: Metadata on images of handwritten math problems with step-by-step solutions.

    Multi-lingual Street Signs: Road sign images in various languages, with translations.

    Security Camera Anomalies: Surveillance footage metadata distinguishing between normal and suspicious activities.

    The dataset is useful for machine learning, image recognition, OCR (Optical Character Recognition), anomaly detection, and AI model training.

  4. AI Training Dataset Market By Type (Text, Image/Video), By Vertical (IT,...

    • verifiedmarketresearch.com
    pdf,excel,csv,ppt
    Updated Dec 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Verified Market Research (2024). AI Training Dataset Market By Type (Text, Image/Video), By Vertical (IT, Automotive, Government, Healthcare), And Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/ai-training-dataset-market/
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Dec 27, 2024
    Dataset authored and provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    The rapid adoption of AI technologies across various industries, including healthcare, finance, and autonomous vehicles, is driving the demand for high-quality training datasets essential for developing accurate AI models. According to the analyst from Verified Market Research, the AI Training Dataset Market surpassed the market size of USD 1555.58 Million valued in 2024 to reach a valuation of USD 7564.52 Million by 2032.

    The expanding scope of AI applications beyond traditional sectors is fueling growth in the AI Training Dataset Market. This increased demand for Inventory Tags the market to grow at a CAGR of 21.86% from 2026 to 2032.

    AI Training Dataset Market: Definition/ Overview

    An AI training dataset is defined as a comprehensive collection of data that has been meticulously curated and annotated to train artificial intelligence algorithms and machine learning models. These datasets are fundamental for AI systems as they enable the recognition of patterns.

  5. h

    Artificial-intelligence-dataset-for-IR-systems

    • huggingface.co
    Updated Jul 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adel Mamoun Elwan (2023). Artificial-intelligence-dataset-for-IR-systems [Dataset]. https://huggingface.co/datasets/Adel-Elwan/Artificial-intelligence-dataset-for-IR-systems
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 25, 2023
    Authors
    Adel Mamoun Elwan
    Description

    Dataset Card for Dataset Name

      Dataset Summary
    

    This dataset card aims to be a base template for new datasets. It has been generated using this raw template.

      Supported Tasks and Leaderboards
    

    information-retrieval semantic-search

      Languages
    

    English

      Dataset Structure
    
    
    
    
    
      Data Instances
    

    [More Information Needed]

      Data Fields
    

    [More Information Needed]

      Data Splits
    

    [More Information Needed]

      Dataset Creation… See the full description on the dataset page: https://huggingface.co/datasets/Adel-Elwan/Artificial-intelligence-dataset-for-IR-systems.
    
  6. D

    Notable AI Models

    • epoch.ai
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Epoch AI, Notable AI Models [Dataset]. https://epoch.ai/data/notable-ai-models
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    Epoch AI
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Global
    Variables measured
    https://epoch.ai/data/notable-ai-models-documentation#records
    Measurement technique
    https://epoch.ai/data/notable-ai-models-documentation#records
    Description

    Our most comprehensive database of AI models, containing over 800 models that are state of the art, highly cited, or otherwise historically notable. It tracks key factors driving machine learning progress and includes over 300 training compute estimates.

  7. MISATO - Machine learning dataset for structure-based drug discovery

    • zenodo.org
    • data.niaid.nih.gov
    application/gzip, bin +1
    Updated May 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Till Siebenmorgen; Till Siebenmorgen; Filipe Menezes; Sabrina Benassou; Erinc Merdivan; Stefan Kesselheim; Marie Piraud; Marie Piraud; Fabian J. Theis; Michael Sattler; Grzegorz M. Popowicz; Filipe Menezes; Sabrina Benassou; Erinc Merdivan; Stefan Kesselheim; Fabian J. Theis; Michael Sattler; Grzegorz M. Popowicz (2023). MISATO - Machine learning dataset for structure-based drug discovery [Dataset]. http://doi.org/10.5281/zenodo.7711953
    Explore at:
    application/gzip, txt, binAvailable download formats
    Dataset updated
    May 25, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Till Siebenmorgen; Till Siebenmorgen; Filipe Menezes; Sabrina Benassou; Erinc Merdivan; Stefan Kesselheim; Marie Piraud; Marie Piraud; Fabian J. Theis; Michael Sattler; Grzegorz M. Popowicz; Filipe Menezes; Sabrina Benassou; Erinc Merdivan; Stefan Kesselheim; Fabian J. Theis; Michael Sattler; Grzegorz M. Popowicz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Developments in Artificial Intelligence (AI) have had an enormous impact on scientific research in recent years. Yet, relatively few robust methods have been reported in the field of structure-based drug discovery. To train AI models to abstract from structural data, highly curated and precise biomolecule-ligand interaction datasets are urgently needed. We present MISATO, a curated dataset of almost 20000 experimental structures of protein-ligand complexes, associated molecular dynamics traces, and electronic properties. Semi-empirical quantum mechanics was used to systematically refine protonation states of proteins and small molecule ligands. Molecular dynamics traces for protein-ligand complexes were obtained in explicit water. The dataset is made readily available to the scientific community via simple python data-loaders. AI baseline models are provided for dynamical and electronic properties. This highly curated dataset is expected to enable the next-generation of AI models for structure-based drug discovery. Our vision is to make MISATO the first step of a vibrant community project for the development of powerful AI-based drug discovery tools.

  8. LLM - Detect AI Generated Text Dataset

    • kaggle.com
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sunil thite (2023). LLM - Detect AI Generated Text Dataset [Dataset]. https://www.kaggle.com/datasets/sunilthite/llm-detect-ai-generated-text-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    sunil thite
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    In this Dataset contains both AI Generated Essay and Human Written Essay for Training Purpose This dataset challenge is to to develop a machine learning model that can accurately detect whether an essay was written by a student or an LLM. The competition dataset comprises a mix of student-written essays and essays generated by a variety of LLMs.

    Dataset contains more than 28,000 essay written by student and AI generated.

    Features : 1. text : Which contains essay text 2. generated : This is target label . 0 - Human Written Essay , 1 - AI Generated Essay

  9. d

    The Artificial Intelligence Patent Dataset (AIPD) for Academia and...

    • catalog.data.gov
    Updated Jul 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of the Chief Economist (OCE) (2022). The Artificial Intelligence Patent Dataset (AIPD) for Academia and Researchers [Dataset]. https://catalog.data.gov/dataset/the-artificial-intelligence-patent-dataset-aipd-for-academia-and-researchers
    Explore at:
    Dataset updated
    Jul 15, 2022
    Dataset provided by
    Office of the Chief Economist (OCE)
    Description

    Contains Artificial Intelligence Patent Landscape data classifying 13,244,037 granted patents and PGPubs published from 1976 through 2021 in eight AI component technologies using state-of-the art machine learning based models.

  10. h

    AI-Generated-vs-Real-Images-Datasets

    • huggingface.co
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hem Bahadur Gurung (2025). AI-Generated-vs-Real-Images-Datasets [Dataset]. https://huggingface.co/datasets/Hemg/AI-Generated-vs-Real-Images-Datasets
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 27, 2025
    Authors
    Hem Bahadur Gurung
    Description

    Dataset Card for "AI-Generated-vs-Real-Images-Datasets"

    More Information needed

  11. A

    AI Training Dataset In Healthcare Market Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2024). AI Training Dataset In Healthcare Market Report [Dataset]. https://www.archivemarketresearch.com/reports/ai-training-dataset-in-healthcare-market-5352
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Nov 29, 2024
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    global
    Variables measured
    Market Size
    Description

    The AI Training Dataset In Healthcare Market size was valued at USD 341.8 million in 2023 and is projected to reach USD 1464.13 million by 2032, exhibiting a CAGR of 23.1 % during the forecasts period. The growth is attributed to the rising adoption of AI in healthcare, increasing demand for accurate and reliable training datasets, government initiatives to promote AI in healthcare, and technological advancements in data collection and annotation. These factors are contributing to the expansion of the AI Training Dataset In Healthcare Market. Healthcare AI training data sets are vital for building effective algorithms, and enhancing patient care and diagnosis in the industry. These datasets include large volumes of Electronic Health Records, images such as X-ray and MRI scans, and genomics data which are thoroughly labeled. They help the AI systems to identify trends, forecast and even help in developing unique approaches to treating the disease. However, patient privacy and ethical use of a patient’s information is of the utmost importance, thus requiring high levels of anonymization and compliance with laws such as HIPAA. Ongoing expansion and variety of datasets are crucial to address existing bias and improve the efficiency of AI for different populations and diseases to provide safer solutions for global people’s health.

  12. A

    Artificial Intelligence Training Dataset Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Artificial Intelligence Training Dataset Report [Dataset]. https://www.datainsightsmarket.com/reports/artificial-intelligence-training-dataset-1958994
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    May 3, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Artificial Intelligence (AI) Training Dataset market is experiencing robust growth, driven by the increasing adoption of AI across diverse sectors. The market's expansion is fueled by the burgeoning need for high-quality data to train sophisticated AI algorithms capable of powering applications like smart campuses, autonomous vehicles, and personalized healthcare solutions. The demand for diverse dataset types, including image classification, voice recognition, natural language processing, and object detection datasets, is a key factor contributing to market growth. While the exact market size in 2025 is unavailable, considering a conservative estimate of a $10 billion market in 2025 based on the growth trend and reported market sizes of related industries, and a projected CAGR (Compound Annual Growth Rate) of 25%, the market is poised for significant expansion in the coming years. Key players in this space are leveraging technological advancements and strategic partnerships to enhance data quality and expand their service offerings. Furthermore, the increasing availability of cloud-based data annotation and processing tools is further streamlining operations and making AI training datasets more accessible to businesses of all sizes. Growth is expected to be particularly strong in regions with burgeoning technological advancements and substantial digital infrastructure, such as North America and Asia Pacific. However, challenges such as data privacy concerns, the high cost of data annotation, and the scarcity of skilled professionals capable of handling complex datasets remain obstacles to broader market penetration. The ongoing evolution of AI technologies and the expanding applications of AI across multiple sectors will continue to shape the demand for AI training datasets, pushing this market toward higher growth trajectories in the coming years. The diversity of applications—from smart homes and medical diagnoses to advanced robotics and autonomous driving—creates significant opportunities for companies specializing in this market. Maintaining data quality, security, and ethical considerations will be crucial for future market leadership.

  13. Z

    Data from: Multi-Source Distributed System Data for AI-powered Analytics

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Nov 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jorge Cardoso (2022). Multi-Source Distributed System Data for AI-powered Analytics [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3484800
    Explore at:
    Dataset updated
    Nov 10, 2022
    Dataset provided by
    Ajay Kumar Mandapati
    Sasho Nedelkoski
    Odej Kao
    Soeren Becker
    Jorge Cardoso
    Jasmin Bogatinovski
    Description

    Abstract:

    In recent years there has been an increased interest in Artificial Intelligence for IT Operations (AIOps). This field utilizes monitoring data from IT systems, big data platforms, and machine learning to automate various operations and maintenance (O&M) tasks for distributed systems. The major contributions have been materialized in the form of novel algorithms. Typically, researchers took the challenge of exploring one specific type of observability data sources, such as application logs, metrics, and distributed traces, to create new algorithms. Nonetheless, due to the low signal-to-noise ratio of monitoring data, there is a consensus that only the analysis of multi-source monitoring data will enable the development of useful algorithms that have better performance.
    Unfortunately, existing datasets usually contain only a single source of data, often logs or metrics. This limits the possibilities for greater advances in AIOps research. Thus, we generated high-quality multi-source data composed of distributed traces, application logs, and metrics from a complex distributed system. This paper provides detailed descriptions of the experiment, statistics of the data, and identifies how such data can be analyzed to support O&M tasks such as anomaly detection, root cause analysis, and remediation.

    General Information:

    This repository contains the simple scripts for data statistics, and link to the multi-source distributed system dataset.

    You may find details of this dataset from the original paper:

    Sasho Nedelkoski, Ajay Kumar Mandapati, Jasmin Bogatinovski, Soeren Becker, Jorge Cardoso, Odej Kao, "Multi-Source Distributed System Data for AI-powered Analytics". [link very soon]

    If you use the data, implementation, or any details of the paper, please cite!

    The multi-source/multimodal dataset is composed of distributed traces, application logs, and metrics produced from running a complex distributed system (Openstack). In addition, we also provide the workload and fault scripts together with the Rally report which can serve as ground truth (all at the Zenodo link below). We provide two datasets, which differ on how the workload is executed. The openstack_multimodal_sequential_actions is generated via executing workload of sequential user requests. The openstack_multimodal_concurrent_actions is generated via executing workload of concurrent user requests.

    The difference of the concurrent dataset is that:

    Due to the heavy load on the control node, the metric data for wally113 (control node) is not representative and we excluded it.

    Three rally actions are executed in parallel: boot_and_delete, create_and_delete_networks, create_and_delete_image, whereas for the sequential there were 5 actions executed.

    The raw logs in both datasets contain the same files. If the user wants the logs filetered by time with respect to the two datasets, should refer to the timestamps at the metrics (they provide the time window). In addition, we suggest to use the provided aggregated time ranged logs for both datasets in CSV format.

    Important: The logs and the metrics are synchronized with respect time and they are both recorded on CEST (central european standard time). The traces are on UTC (Coordinated Universal Time -2 hours). They should be synchronized if the user develops multimodal methods.

    Our GitHub repository can be found at: https://github.com/SashoNedelkoski/multi-source-observability-dataset/

  14. P

    Nvidia's Aegis-AI-Content-Safety-Dataset-1.0 Dataset

    • paperswithcode.com
    Updated Apr 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Nvidia's Aegis-AI-Content-Safety-Dataset-1.0 Dataset [Dataset]. https://paperswithcode.com/dataset/https-huggingface-co-datasets-nvidia-aegis-ai
    Explore at:
    Dataset updated
    Apr 8, 2024
    Description

    Aegis AI Content Safety Dataset is an open-source content safety dataset (CC-BY-4.0), which adheres to Nvidia's content safety taxonomy, covering 13 critical risk categories (see Dataset Description).

    Dataset Details Dataset Description The Aegis AI Content Safety Dataset is comprised of approximately 11,000 manually annotated interactions between humans and LLMs, split into 10,798 training samples and 1,199 test samples.

    To curate the dataset, we use the Hugging Face version of human preference data about harmlessness from Anthropic HH-RLHF. We extract only the prompts, and elicit responses from Mistral-7B-v0.1. Mistral excels at instruction following and generates high quality responses for the content moderation categories. We use examples in the system prompt to ensure diversity by instructing Mistral to not generate similar responses. Our data comprises four different formats: user prompt only, system prompt with user prompt, single turn user prompt with Mistral response, and multi-turn user prompt with Mistral responses.

  15. a

    ai training dataset Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). ai training dataset Report [Dataset]. https://www.datainsightsmarket.com/reports/ai-training-dataset-1502524
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    May 10, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    CA
    Variables measured
    Market Size
    Description

    The AI training dataset market is experiencing robust growth, driven by the increasing adoption of artificial intelligence across diverse sectors. The market's expansion is fueled by the need for high-quality, labeled data to train sophisticated AI models capable of handling complex tasks. Applications span various industries, including IT, automotive, healthcare, BFSI (Banking, Financial Services, and Insurance), and retail & e-commerce. The demand for diverse data types—text, image/video, and audio—further fuels market expansion. While precise market sizing is unavailable, considering the rapid growth of AI and the significant investment in data annotation services, a reasonable estimate places the 2025 market value at approximately $15 billion, with a compound annual growth rate (CAGR) of 25% projected through 2033. This growth reflects a rising awareness of the pivotal role high-quality datasets play in achieving accurate and reliable AI outcomes. Key restraining factors include the high cost of data acquisition and annotation, along with concerns around data privacy and security. However, these challenges are being addressed through advancements in automation and the emergence of innovative data synthesis techniques. The competitive landscape is characterized by a mix of established technology giants like Google, Amazon, and Microsoft, alongside specialized data annotation companies like Appen and Lionbridge. The market is expected to see continued consolidation as larger players acquire smaller firms to expand their data offerings and strengthen their market position. Regional variations exist, with North America and Europe currently dominating the market share, although regions like Asia-Pacific are projected to experience significant growth due to increasing AI adoption and investments.

  16. t

    AI Training Dataset Global Market Report 2025

    • thebusinessresearchcompany.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Business Research Company, AI Training Dataset Global Market Report 2025 [Dataset]. https://www.thebusinessresearchcompany.com/report/ai-training-dataset-global-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    The Business Research Company
    License

    https://www.thebusinessresearchcompany.com/privacy-policyhttps://www.thebusinessresearchcompany.com/privacy-policy

    Description

    Global AI Training Dataset market size is expected to reach $6.98 billion by 2029 at 21.5%, segmented as by text, natural language processing (nlp) datasets, chatbot training datasets, sentiment analysis datasets, language translation datasets

  17. h

    AI-and-Human-Generated-Text

    • huggingface.co
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ateeq Azam (2025). AI-and-Human-Generated-Text [Dataset]. https://huggingface.co/datasets/Ateeqq/AI-and-Human-Generated-Text
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 3, 2025
    Authors
    Ateeq Azam
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    AI & Human Generated Text

      I am Using this dataset for AI Text Detection for https://exnrt.com.
    

    Check Original DataSet GitHub Repository Here: https://github.com/panagiotisanagnostou/AI-GA

      Description
    

    The AI-GA dataset, short for Artificial Intelligence Generated Abstracts, comprises abstracts and titles. Half of these abstracts are generated by AI, while the remaining half are original. Primarily intended for research and experimentation in natural language… See the full description on the dataset page: https://huggingface.co/datasets/Ateeqq/AI-and-Human-Generated-Text.

  18. P

    U.S AI Training Dataset Market Size & Analysis, 2024-2032

    • polarismarketresearch.com
    Updated Apr 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Polaris Market Research (2024). U.S AI Training Dataset Market Size & Analysis, 2024-2032 [Dataset]. https://www.polarismarketresearch.com/industry-analysis/us-ai-training-dataset-market
    Explore at:
    Dataset updated
    Apr 26, 2024
    Dataset authored and provided by
    Polaris Market Research
    License

    https://www.polarismarketresearch.com/privacy-policyhttps://www.polarismarketresearch.com/privacy-policy

    Description

    U.S. AI training dataset market size will be valued at USD 2,137.26 Million in 2032 and is projected to grow at a (CAGR) of 17.7%.

  19. Wirestock's AI/ML Image Training Data, 4.5M Files with Metadata

    • datarade.ai
    .csv
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WIRESTOCK (2023). Wirestock's AI/ML Image Training Data, 4.5M Files with Metadata [Dataset]. https://datarade.ai/data-products/wirestock-s-ai-ml-image-training-data-4-5m-files-with-metadata-wirestock
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Jul 18, 2023
    Dataset provided by
    Wirestock
    Authors
    WIRESTOCK
    Area covered
    Peru, Swaziland, Georgia, Sudan, Chile, Belarus, New Caledonia, Jersey, Pakistan, Estonia
    Description

    Wirestock's AI/ML Image Training Data, 4.5M Files with Metadata: This data product is a unique offering in the realm of AI/ML training data. What sets it apart is the sheer volume and diversity of the dataset, which includes 4.5 million files spanning across 20 different categories. These categories range from Animals/Wildlife and The Arts to Technology and Transportation, providing a rich and varied dataset for AI/ML applications.

    The data is sourced from Wirestock's platform, where creators upload and sell their photos, videos, and AI art online. This means that the data is not only vast but also constantly updated, ensuring a fresh and relevant dataset for your AI/ML needs. The data is collected in a GDPR-compliant manner, ensuring the privacy and rights of the creators are respected.

    The primary use-cases for this data product are numerous. It is ideal for training machine learning models for image recognition, improving computer vision algorithms, and enhancing AI applications in various industries such as retail, healthcare, and transportation. The diversity of the dataset also means it can be used for more niche applications, such as training AI to recognize specific objects or scenes.

    This data product fits into Wirestock's broader data offering as a key resource for AI/ML training. Wirestock is a platform for creators to sell their work, and this dataset is a collection of that work. It represents the breadth and depth of content available on Wirestock, making it a valuable resource for any company working with AI/ML.

    The core benefits of this dataset are its volume, diversity, and quality. With 4.5 million files, it provides a vast resource for AI training. The diversity of the dataset, spanning 20 categories, ensures a wide range of images for training purposes. The quality of the images is also high, as they are sourced from creators selling their work on Wirestock.

    In terms of how the data is collected, creators upload their work to Wirestock, where it is then sold on various marketplaces. This means the data is sourced directly from creators, ensuring a diverse and unique dataset. The data includes both the images themselves and associated metadata, providing additional context for each image.

    The different image categories included in this dataset are Animals/Wildlife, The Arts, Backgrounds/Textures, Beauty/Fashion, Buildings/Landmarks, Business/Finance, Celebrities, Education, Emotions, Food Drinks, Holidays, Industrial, Interiors, Nature Parks/Outdoor, People, Religion, Science, Signs/Symbols, Sports/Recreation, Technology, Transportation, Vintage, Healthcare/Medical, Objects, and Miscellaneous. This wide range of categories ensures a diverse dataset that can cater to a variety of AI/ML applications.

  20. Z

    Data from: TWIGMA: A dataset of AI-Generated Images with Metadata From...

    • data.niaid.nih.gov
    • zenodo.org
    Updated May 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James Zou (2024). TWIGMA: A dataset of AI-Generated Images with Metadata From Twitter [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8031784
    Explore at:
    Dataset updated
    May 28, 2024
    Dataset provided by
    James Zou
    Yiqun Chen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Update May 2024: Fixed a data type issue with "id" column that prevented twitter ids from rendering correctly.

    Recent progress in generative artificial intelligence (gen-AI) has enabled the generation of photo-realistic and artistically-inspiring photos at a single click, catering to millions of users online. To explore how people use gen-AI models such as DALLE and StableDiffusion, it is critical to understand the themes, contents, and variations present in the AI-generated photos. In this work, we introduce TWIGMA (TWItter Generative-ai images with MetadatA), a comprehensive dataset encompassing 800,000 gen-AI images collected from Jan 2021 to March 2023 on Twitter, with associated metadata (e.g., tweet text, creation date, number of likes).

    Through a comparative analysis of TWIGMA with natural images and human artwork, we find that gen-AI images possess distinctive characteristics and exhibit, on average, lower variability when compared to their non-gen-AI counterparts. Additionally, we find that the similarity between a gen-AI image and human images (i) is correlated with the number of likes; and (ii) can be used to identify human images that served as inspiration for the gen-AI creations. Finally, we observe a longitudinal shift in the themes of AI-generated images on Twitter, with users increasingly sharing artistically sophisticated content such as intricate human portraits, whereas their interest in simple subjects such as natural scenes and animals has decreased. Our analyses and findings underscore the significance of TWIGMA as a unique data resource for studying AI-generated images.

    Note that in accordance with the privacy and control policy of Twitter, NO raw content from Twitter is included in this dataset and users could and need to retrieve the original Twitter content used for analysis using the Twitter id. In addition, users who want to access Twitter data should consult and follow rules and regulations closely at the official Twitter developer policy at https://developer.twitter.com/en/developer-terms/policy.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dataintelo (2025). AI Training Dataset Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-ai-training-dataset-market
Organization logo

AI Training Dataset Market Report | Global Forecast From 2025 To 2033

Explore at:
csv, pptx, pdfAvailable download formats
Dataset updated
Jan 7, 2025
Dataset authored and provided by
Dataintelo
License

https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

Time period covered
2024 - 2032
Area covered
Global
Description

AI Training Dataset Market Outlook



The global AI training dataset market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach USD 6.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 20.5% from 2024 to 2032. This substantial growth is driven by the increasing adoption of artificial intelligence across various industries, the necessity for large-scale and high-quality datasets to train AI models, and the ongoing advancements in AI and machine learning technologies.



One of the primary growth factors in the AI training dataset market is the exponential increase in data generation across multiple sectors. With the proliferation of internet usage, the expansion of IoT devices, and the digitalization of industries, there is an unprecedented volume of data being generated daily. This data is invaluable for training AI models, enabling them to learn and make more accurate predictions and decisions. Moreover, the need for diverse and comprehensive datasets to improve AI accuracy and reliability is further propelling market growth.



Another significant factor driving the market is the rising investment in AI and machine learning by both public and private sectors. Governments around the world are recognizing the potential of AI to transform economies and improve public services, leading to increased funding for AI research and development. Simultaneously, private enterprises are investing heavily in AI technologies to gain a competitive edge, enhance operational efficiency, and innovate new products and services. These investments necessitate high-quality training datasets, thereby boosting the market.



The proliferation of AI applications in various industries, such as healthcare, automotive, retail, and finance, is also a major contributor to the growth of the AI training dataset market. In healthcare, AI is being used for predictive analytics, personalized medicine, and diagnostic automation, all of which require extensive datasets for training. The automotive industry leverages AI for autonomous driving and vehicle safety systems, while the retail sector uses AI for personalized shopping experiences and inventory management. In finance, AI assists in fraud detection and risk management. The diverse applications across these sectors underline the critical need for robust AI training datasets.



As the demand for AI applications continues to grow, the role of Ai Data Resource Service becomes increasingly vital. These services provide the necessary infrastructure and tools to manage, curate, and distribute datasets efficiently. By leveraging Ai Data Resource Service, organizations can ensure that their AI models are trained on high-quality and relevant data, which is crucial for achieving accurate and reliable outcomes. The service acts as a bridge between raw data and AI applications, streamlining the process of data acquisition, annotation, and validation. This not only enhances the performance of AI systems but also accelerates the development cycle, enabling faster deployment of AI-driven solutions across various sectors.



Regionally, North America currently dominates the AI training dataset market due to the presence of major technology companies and extensive R&D activities in the region. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid technological advancements, increasing investments in AI, and the growing adoption of AI technologies across various industries in countries like China, India, and Japan. Europe and Latin America are also anticipated to experience significant growth, supported by favorable government policies and the increasing use of AI in various sectors.



Data Type Analysis



The data type segment of the AI training dataset market encompasses text, image, audio, video, and others. Each data type plays a crucial role in training different types of AI models, and the demand for specific data types varies based on the application. Text data is extensively used in natural language processing (NLP) applications such as chatbots, sentiment analysis, and language translation. As the use of NLP is becoming more widespread, the demand for high-quality text datasets is continually rising. Companies are investing in curated text datasets that encompass diverse languages and dialects to improve the accuracy and efficiency of NLP models.



Image data is critical for computer vision application

Search
Clear search
Close search
Google apps
Main menu