This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This is a daily updated dataset of COVID-19 deaths around the world. The dataset contains data of 45 countries. This data was collected from
us-counties.csv
contains data of the daily number of new cases and deaths, the seven-day rolling average and the seven-day rolling average per 100,000 residents of US at county level. The average reported is the seven day trailing average i.e. average of the day reported and six days prior.
all_weekly_excess_deaths.csv
collates detailed weekly breakdowns from official sources around the world.
Image credits: Unsplash - schluditsch
Let's pray for the ones who lost their lives fighting the battle and for the ones who risk their lives against this virus 🙏
This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.
THIS DATASET WAS LAST UPDATED AT 2:11 AM EASTERN ON JULY 23
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides an extensive view of global population statistics and health metrics across various countries from 2014 to 2024. It combines population data with vital health-related indicators, making it a valuable resource for understanding trends in population growth and health outcomes worldwide. Researchers, data scientists, and policymakers can utilize this dataset to analyze correlations between population dynamics and health performance at a global scale.
Key Features: - Country: Name of the country. - Year: Year of the data (2014–2024). - Population: Total population for the respective year and country. - Country Code: ISO 3-letter country codes for easy identification. - Health Expenditure (health_exp): Percentage of GDP spent on healthcare. - Life Expectancy (life_expect): Average life expectancy at birth in years. - Maternal Mortality (maternal_mortality): Maternal deaths per 100,000 live births. - Infant Mortality (infant_mortality): Deaths of infants under 1 year per 1,000 live births. - Neonatal Mortality (neonatal_mortality): Deaths of newborns (0–28 days) per 1,000 live births. - Under-5 Mortality (under_5_mortality): Deaths of children under 5 years per 1,000 live births. - HIV Prevalence (prev_hiv): Percentage of the population living with HIV. - Tuberculosis Incidence (inci_tuberc): Estimated new and relapse TB cases per 100,000 people. - Undernourishment Prevalence (prev_undernourishment): Percentage of the population that is undernourished.
Use Cases: - Health Policy Analysis: Understand trends in healthcare expenditure and its relationship to health outcomes. - Global Health Research: Investigate global or regional disparities in health and nutrition. - Population Studies: Analyze population growth trends alongside health indicators. - Data Visualization: Build visual dashboards for storytelling and impactful data representation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Maternal Mortality Ratio: Modeled Estimate: per 100,000 Live Births data was reported at 14.000 Ratio in 2015. This stayed constant from the previous number of 14.000 Ratio for 2014. United States US: Maternal Mortality Ratio: Modeled Estimate: per 100,000 Live Births data is updated yearly, averaging 13.000 Ratio from Dec 1990 (Median) to 2015, with 26 observations. The data reached an all-time high of 15.000 Ratio in 2009 and a record low of 11.000 Ratio in 1998. United States US: Maternal Mortality Ratio: Modeled Estimate: per 100,000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Maternal mortality ratio is the number of women who die from pregnancy-related causes while pregnant or within 42 days of pregnancy termination per 100,000 live births. The data are estimated with a regression model using information on the proportion of maternal deaths among non-AIDS deaths in women ages 15-49, fertility, birth attendants, and GDP.; ; WHO, UNICEF, UNFPA, World Bank Group, and the United Nations Population Division. Trends in Maternal Mortality: 1990 to 2015. Geneva, World Health Organization, 2015; Weighted average; This indicator represents the risk associated with each pregnancy and is also a Sustainable Development Goal Indicator for monitoring maternal health.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
The European CDC publishes daily statistics on the COVID-19 pandemic. Not just for Europe, but for the entire world. We rely on the ECDC as they collect and harmonize data from around the world which allows us to compare what is happening in different countries.
This dataset has daily level information on the number of affected cases, deaths and recovery etc. from coronavirus. It also contains various other parameters like average life expectancy, population density, smocking population etc. which users can find useful in further prediction that they need to make.
The data is available from 31 Dec,2019.
Give people weekly data so that they can use it to make accurate predictions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BR: Proportion of Time Spent on Unpaid Domestic and Care Work: Male: % of 24 Hour Day data was reported at 5.133 % in 2017. This records an increase from the previous number of 3.035 % for 2012. BR: Proportion of Time Spent on Unpaid Domestic and Care Work: Male: % of 24 Hour Day data is updated yearly, averaging 5.133 % from Dec 2009 (Median) to 2017, with 3 observations. The data reached an all-time high of 5.972 % in 2009 and a record low of 3.035 % in 2012. BR: Proportion of Time Spent on Unpaid Domestic and Care Work: Male: % of 24 Hour Day data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Brazil – Table BR.World Bank.WDI: Social: Health Statistics. The average time men spend on household provision of services for own consumption. Data are expressed as a proportion of time in a day. Domestic and care work includes food preparation, dishwashing, cleaning and upkeep of a dwelling, laundry, ironing, gardening, caring for pets, shopping, installation, servicing and repair of personal and household goods, childcare, and care of the sick, elderly or disabled household members, among others.;National statistical offices or national database and publications compiled by United Nations Statistics Division. The data were downloaded on February 14, 2023, from the Global SDG API: https://unstats.un.org/sdgs/UNSDGAPIV5/swagger/index.html;;This is the Sustainable Development Goal indicator 5.4.1[https://unstats.un.org/sdgs/metadata/].
World Health Organization has estimated 12 million deaths occur worldwide, every year due to Heart diseases. Half the deaths in the United States and other developed countries are due to cardio vascular diseases. The early prognosis of cardiovascular diseases can aid in making decisions on lifestyle changes in high risk patients and in turn reduce the complications. This research intends to pinpoint the most relevant/risk factors of heart disease as well as predict the overall risk using logistic regression Data Preparation
The task is to predict whether patient have 10 year risk of coronary heart disease CHD or not. Additionally, participants also asked to create some data visualization about the data to gained actionable insight about the topic.
The dataset is publically available on the Kaggle website, and it is from an ongoing cardiovascular study on residents of the town of Framingham, Massachusetts. The classification goal is to predict whether the patient has 10-year risk of future coronary heart disease (CHD).The dataset provides the patients’ information. It includes over 4,000 records and 15 attributes. Variables Each attribute is a potential risk factor. There are both demographic, behavioral and medical risk factors.
Demographic: • Sex: male or female("M" or "F") • Age: Age of the patient;(Continuous - Although the recorded ages have been truncated to whole numbers, the concept of age is continuous) Behavioral • is_smoking: whether or not the patient is a current smoker ("YES" or "NO") • Cigs Per Day: the number of cigarettes that the person smoked on average in one day.(can be considered continuous as one can have any number of cigarettes, even half a cigarette.) Medical( history) • BP Meds: whether or not the patient was on blood pressure medication (Nominal) • Prevalent Stroke: whether or not the patient had previously had a stroke (Nominal) • Prevalent Hyp: whether or not the patient was hypertensive (Nominal) • Diabetes: whether or not the patient had diabetes (Nominal) Medical(current) • Tot Chol: total cholesterol level (Continuous) • Sys BP: systolic blood pressure (Continuous) • Dia BP: diastolic blood pressure (Continuous) • BMI: Body Mass Index (Continuous) • Heart Rate: heart rate (Continuous - In medical research, variables such as heart rate though in fact discrete, yet are considered continuous because of large number of possible values.) • Glucose: glucose level (Continuous) Predict variable (desired target) • 10 year risk of coronary heart disease CHD(binary: “1”, means “Yes”, “0” means “No”)
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Happiness Report may be a point of interest survey of the state of worldwide bliss. The primary report was distributed in 2012, the second in 2013, the third in 2015, and the fourth within the 2016 Upgrade. The World Joy 2017, which positions 155 nations by their bliss levels, was discharged at the Joined together Countries at an occasion celebrating Universal Day of Joy on Walk 20th. The report proceeds to pick up worldwide acknowledgment as governments, organizations and respectful society progressively utilize joy pointers to educate their policy-making choices. Driving specialists over areas – financial matters, brain research, overview investigation, national insights, wellbeing, open approach and more – depict how estimations of well-being can be used effectively to evaluate the advance of countries. The reports survey the state of bliss within the world nowadays and appear how the modern science of bliss clarifies individual and national varieties in bliss.
The joy scores and rankings utilize information from the Gallup World Survey. The scores are based on answers to the most life evaluation address inquired within the survey. This address, known as the Cantril step, asks respondents to think of a step with the most excellent conceivable life for them being a 10 and the most exceedingly bad conceivable life being a and to rate their claim current lives on that scale. The scores are from broadly agent tests for the a long time 2013-2016 and utilize the Gallup weights to create the gauges agent. The columns taking after the bliss score assess the degree to which each of six variables – financial generation, social back, life anticipation, flexibility, nonattendance of debasement, and liberality – contribute to making life assessments higher in each nation than they are in Dystopia, a theoretical nation that has values rise to to the world’s least national midpoints for each of the six variables. They have no affect on the full score detailed for each nation, but they do exp
This file contains the Happiness Score for 153 countries along with the factors used to explain the score.
The Happiness Score is a national average of the responses to the main life evaluation question asked in the Gallup World Poll (GWP), which uses the Cantril Ladder.
The Happiness Score is explained by the following factors:
GDP per capita Healthy Life Expectancy Social support Freedom to make life choices Generosity Corruption Perception Residual error The data is described in much more detail here: link
I did not create this data, only sourced it. The credit goes to the original Authors:
Editors: John Helliwell, Richard Layard, Jeffrey D. Sachs, and Jan Emmanuel De Neve, Co-Editors; Lara Aknin, Haifang Huang and Shun Wang, Associate Editors; and Sharon Paculor, Production Editor
Citation: Helliwell, John F., Richard Layard, Jeffrey Sachs, and Jan-Emmanuel De Neve, eds. 2020. World Happiness Report 2020. New York: Sustainable Development Solutions Network
Deprecated as of 4/27/2023On 4/27/2023 several COVID-19 datasets were retired and no longer included in public COVID-19 data dissemination. For more information, visit https://imap.maryland.gov/pages/covid-dataSummaryThe daily cumulative total of COVID-19 tests administered in Maryland and the average percent daily positive rate.DescriptionTesting volume data represent the static daily total of PCR COVID-19 tests electronically reported for Maryland residents; this count does not include test results submitted by labs and other clinical facilities through non-electronic means. The percent positive rate is a five-day rolling average of positive results as a percentage of all tests.COVID-19 is a disease caused by a respiratory virus first identified in Wuhan, Hubei Province, China in December 2019. COVID-19 is a new virus that hasn't caused illness in humans before. Worldwide, COVID-19 has resulted in thousands of infections, causing illness and in some cases death. Cases have spread to countries throughout the world, with more cases reported daily. The Maryland Department of Health reports daily on COVID-19 cases by county.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LT: Mortality Rate: Neonatal: per 1000 Live Births data was reported at 2.500 Ratio in 2016. This records an increase from the previous number of 2.400 Ratio for 2015. LT: Mortality Rate: Neonatal: per 1000 Live Births data is updated yearly, averaging 4.950 Ratio from Dec 1981 (Median) to 2016, with 36 observations. The data reached an all-time high of 10.900 Ratio in 1992 and a record low of 2.400 Ratio in 2015. LT: Mortality Rate: Neonatal: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Lithuania – Table LT.World Bank: Health Statistics. Neonatal mortality rate is the number of neonates dying before reaching 28 days of age, per 1,000 live births in a given year.; ; Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted Average; Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kenya KE: Maternal Mortality Ratio: Modeled Estimate: per 100,000 Live Births data was reported at 510.000 Ratio in 2015. This records a decrease from the previous number of 525.000 Ratio for 2014. Kenya KE: Maternal Mortality Ratio: Modeled Estimate: per 100,000 Live Births data is updated yearly, averaging 685.500 Ratio from Dec 1990 (Median) to 2015, with 26 observations. The data reached an all-time high of 768.000 Ratio in 2003 and a record low of 510.000 Ratio in 2015. Kenya KE: Maternal Mortality Ratio: Modeled Estimate: per 100,000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kenya – Table KE.World Bank: Health Statistics. Maternal mortality ratio is the number of women who die from pregnancy-related causes while pregnant or within 42 days of pregnancy termination per 100,000 live births. The data are estimated with a regression model using information on the proportion of maternal deaths among non-AIDS deaths in women ages 15-49, fertility, birth attendants, and GDP measured using purchasing power parities (PPPs).; ; WHO, UNICEF, UNFPA, World Bank Group, and the United Nations Population Division. Trends in Maternal Mortality: 1990 to 2015. Geneva, World Health Organization, 2015; Weighted average; This indicator represents the risk associated with each pregnancy and is also a Sustainable Development Goal Indicator for monitoring maternal health.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CZ: Mortality Rate: Adult: Male: per 1000 Male Adults data was reported at 126.900 Ratio in 2021. This records an increase from the previous number of 111.913 Ratio for 2020. CZ: Mortality Rate: Adult: Male: per 1000 Male Adults data is updated yearly, averaging 199.603 Ratio from Dec 1960 (Median) to 2021, with 62 observations. The data reached an all-time high of 230.775 Ratio in 1990 and a record low of 107.105 Ratio in 2019. CZ: Mortality Rate: Adult: Male: per 1000 Male Adults data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Czech Republic – Table CZ.World Bank.WDI: Social: Health Statistics. Adult mortality rate, male, is the probability of dying between the ages of 15 and 60--that is, the probability of a 15-year-old male dying before reaching age 60, if subject to age-specific mortality rates of the specified year between those ages.;(1) United Nations Population Division. World Population Prospects: 2024 Revision. (2) HMD. Human Mortality Database. Max Planck Institute for Demographic Research (Germany), University of California, Berkeley (USA), and French Institute for Demographic Studies (France). Available at www.mortality.org.;Weighted average;
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.