This dataset shows the the world's best hospital in 2023 issued by the Newsweek and Statista.
Success.ai’s Healthcare Professionals Data for Healthcare & Hospital Executives in Europe provides a reliable and comprehensive dataset tailored for businesses aiming to connect with decision-makers in the European healthcare and hospital sectors. Covering healthcare executives, hospital administrators, and medical directors, this dataset offers verified contact details, professional insights, and leadership profiles.
With access to over 700 million verified global profiles and data from 70 million businesses, Success.ai ensures your outreach, market research, and partnership strategies are powered by accurate, continuously updated, and GDPR-compliant data. Backed by our Best Price Guarantee, this solution is indispensable for navigating and thriving in Europe’s healthcare industry.
Why Choose Success.ai’s Healthcare Professionals Data?
Verified Contact Data for Targeted Engagement
Comprehensive Coverage of European Healthcare Professionals
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Comprehensive Professional Profiles
Advanced Filters for Precision Campaigns
Healthcare Industry Insights
AI-Driven Enrichment
Strategic Use Cases:
Marketing and Outreach to Healthcare Executives
Partnership Development and Collaboration
Market Research and Competitive Analysis
Recruitment and Workforce Solutions
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
...
By US Open Data Portal, data.gov [source]
This dataset provides an inside look at the performance of the Veterans Health Administration (VHA) hospitals on timely and effective care measures. It contains detailed information such as hospital names, addresses, census-designated cities and locations, states, ZIP codes county names, phone numbers and associated conditions. Additionally, each entry includes a score, sample size and any notes or footnotes to give further context. This data is collected through either Quality Improvement Organizations for external peer review programs as well as direct electronic medical records. By understanding these performance scores of VHA hospitals on timely care measures we can gain valuable insights into how VA healthcare services are delivering values throughout the country!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains information about the performance of Veterans Health Administration hospitals on timely and effective care measures. In this dataset, you can find the hospital name, address, city, state, ZIP code, county name, phone number associated with each hospital as well as data related to the timely and effective care measure such as conditions being measured and their associated scores.
To use this dataset effectively, we recommend first focusing on identifying an area of interest for analysis. For example: what condition is most impacting wait times for patients? Once that has been identified you can narrow down which fields would best fit your needs - for example if you are studying wait times then “Score” may be more valuable to filter than Footnote. Additionally consider using aggregation functions over certain fields (like average score over time) in order to get a better understanding of overall performance by factor--for instance Location.
Ultimately this dataset provides a snapshot into how Veteran's Health Administration hospitals are performing on timely and effective care measures so any research should focus around that aspect of healthcare delivery
- Analyzing and predicting hospital performance on a regional level to improve the quality of healthcare for veterans across the country.
- Using this dataset to identify trends and develop strategies for hospitals that consistently score low on timely and effective care measures, with the goal of improving patient outcomes.
- Comparison analysis between different VHA hospitals to discover patterns and best practices in providing effective care so they can be shared with other hospitals in the system
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: csv-1.csv | Column name | Description | |:-----------------------|:-------------------------------------------------------------| | Hospital Name | Name of the VHA hospital. (String) | | Address | Street address of the VHA hospital. (String) | | City | City where the VHA hospital is located. (String) | | State | State where the VHA hospital is located. (String) | | ZIP Code | ZIP code of the VHA hospital. (Integer) | | County Name | County where the VHA hospital is located. (String) | | Phone Number | Phone number of the VHA hospital. (String) | | Condition | Condition being measured. (String) | | Measure Name | Measure used to measure the condition. (String) | | Score | Score achieved by the VHA h...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for HOSPITAL BEDS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
By Health [source]
This dataset contains detailed information about 30-day readmission and mortality rates of U.S. hospitals. It is an essential tool for stakeholders aiming to identify opportunities for improving healthcare quality and performance across the country. Providers benefit by having access to comprehensive data regarding readmission, mortality rate, score, measure start/end dates, compared average to national as well as other pertinent metrics like zip codes, phone numbers and county names. Use this data set to conduct evaluations of how hospitals are meeting industry standards from a quality and outcomes perspective in order to make more informed decisions when designing patient care strategies and policies
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides data on 30-day readmission and mortality rates of U.S. hospitals, useful in understanding the quality of healthcare being provided. This data can provide insight into the effectiveness of treatments, patient care, and staff performance at different healthcare facilities throughout the country.
In order to use this dataset effectively, it is important to understand each column and how best to interpret them. The ‘Hospital Name’ column displays the name of the facility; ‘Address’ lists a street address for the hospital; ‘City’ indicates its geographic location; ‘State’ specifies a two-letter abbreviation for that state; ‘ZIP Code’ provides each facility's 5 digit zip code address; 'County Name' specifies what county that particular hospital resides in; 'Phone number' lists a phone contact for any given facility ;'Measure Name' identifies which measure is being recorded (for instance: Elective Delivery Before 39 Weeks); 'Score' value reflects an average score based on patient feedback surveys taken over time frame listed under ' Measure Start Date.' Then there are also columns tracking both lower estimates ('Lower Estimate') as well as higher estimates ('Higher Estimate'); these create variability that can be tracked by researchers seeking further answers or formulating future studies on this topic or field.; Lastly there is one more measure oissociated with this set: ' Footnote,' which may highlight any addional important details pertinent to analysis such as numbers outlying National averages etc..
This data set can be used by hospitals, research facilities and other interested parties in providing inciteful information when making decisions about patient care standards throughout America . It can help find patterns about readmitis/mortality along county lines or answer questions about preformance fluctuations between different hospital locations over an extended amount of time. So if you are ever curious about 30 days readmitted within US Hospitals don't hesitate to dive into this insightful dataset!
- Comparing hospitals on a regional or national basis to measure the quality of care provided for readmission and mortality rates.
- Analyzing the effects of technological advancements such as telemedicine, virtual visits, and AI on readmission and mortality rates at different hospitals.
- Using measures such as Lower Estimate Higher Estimate scores to identify systematic problems in readmissions or mortality rate management at hospitals and informing public health care policy
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: Readmissions_and_Deaths_-_Hospital.csv | Column name | Description | |:-------------------------|:---------------------------------------------------------------------------------------------------| | Hospital Name ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
*Standardized units.Characteristics of the top 50 Cancer Hospitals, as ranked by the US News and World Report.
The average number of hospital beds available per 1,000 people in the United States was forecast to continuously decrease between 2024 and 2029 by in total 0.1 beds (-3.7 percent). After the eighth consecutive decreasing year, the number of available beds per 1,000 people is estimated to reach 2.63 beds and therefore a new minimum in 2029. Depicted is the number of hospital beds per capita in the country or region at hand. As defined by World Bank this includes inpatient beds in general, specialized, public and private hospitals as well as rehabilitation centers.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the average number of hospital beds available per 1,000 people in countries like Canada and Mexico.
Overview: This is a large-scale real-world dataset with videos recording medical staff washing their hands as part of their normal job duties in the Jurmala Hospital located in Jurmala, Latvia. There are 2427 hand washing episodes in total, almost all of which are annotated by two persons. The annotations classify the washing movements according to the World Health Organization's (WHO) guidelines by marking each frame in each video with a certain movement code. This dataset is part on three dataset series all following the same format: https://zenodo.org/record/4537209 - data collected in Pauls Stradins Clinical University Hospital https://zenodo.org/record/5808764 - data collected in Jurmala Hospital https://zenodo.org/record/5808789 - data collected in the Medical Education Technology Center (METC) of Riga Stradins University Applications: The intention of this dataset is twofold: to serve as a basis for training machine learning classifiers for automated hand washing movement recognition and quality control, and to allow to investigate the real-world quality of washing performed by working medical staff. Statistics: Frame rate: 30 FPS Resolution: 320x240 and 640x480 Number of videos: 2427 Number of annotation files: 4818 Movement codes (both in CSV and JSON files): 1: Hand washing movement ��� Palm to palm 2: Hand washing movement ��� Palm over dorsum, fingers interlaced 3: Hand washing movement ��� Palm to palm, fingers interlaced 4: Hand washing movement ��� Backs of fingers to opposing palm, fingers interlocked 5: Hand washing movement ��� Rotational rubbing of the thumb 6: Hand washing movement ��� Fingertips to palm 7: Turning off the faucet with a paper towel 0: Other hand washing movement Acknowledgments: The dataset collection was funded by the Latvian Council of Science project: "Automated hand washing quality control and quality evaluation system with real-time feedback", No: lzp - Nr. 2020/2-0309. References: For more detailed information, see this article, describing a similar dataset collected in a different project: M. Lulla, A. Rutkovskis, A. Slavinska, A. Vilde, A. Gromova, M. Ivanovs, A. Skadins, R. Kadikis, A. Elsts. Hand-Washing Video Dataset Annotated According to the World Health Organization���s Hand-Washing Guidelines. Data. 2021; 6(4):38. https://doi.org/10.3390/data6040038 Contact information: atis.elsts@edi.lv
In 2023, there were nearly 11 thousand hospitals in Columbia, the highest number among OECD countries, followed by 8,156 hospitals in Japan. If only general hospitals were counted (excluding mental health hospitals and other specialized hospitals), Japan had the most number of general hospitals among OECD countries worldwide. Most countries reported hospitals numbers similar to or lower than the previous year. Meanwhile, Mexico, South Korea and the Netherlands all reported more hospitals than last year.
We are working to develop a comprehensive dataset of surgical tools based on specialities, with a hierarchical structure ��� speciality, pack, set and tool. We belive that this dataset can be useful for computer vision and deep learning research into surgical tool tracking, management and surgical training and audit. We have therefore created an initial dataset of surgical tool (instrument and implant) images, captured using under different lighting conditions and with different backgrounds. We captured RGB images of surgical tools using a DSLR camera and webcam on site in a major hospital under realistic conditions and with the surgical tools currently in use. Image backgrounds in our initial dataset were essentially flat colours, even though different colour backgrounds were used. As we further developed our dataset, we will try to include much greater occlusions, illumination changes, and the presence of blood, tissue and smoke in the images which would be more reflective of crowded, messy, real-world conditions. Illumination sources included natural light ��� direct sunlight and shaded light ��� LED, halogen and fluorescent lighting, and this accurately reflected the illumination working conditions within the hospital. Distances of the surgical tools to the camera to the object ranged from 60 to 150 cms., and the average class size was 74 images. Images captured included individual object images as well as cluttered, clustered and occluded objects. Our initial focus was on Orthopaedics and General Surgery, two out of the 14 surgical specialities. We selected these specialities since general surgery instruments are the most commonly used tools across all surgeries and provide instrument volume, while orthopaedics provides variety and complexity given the wide range of procedures, instruments and implants used in orthopaedic surgery. We will add other specialities as we develop this dataset, to reflect the complexities inherent in each of the surgical specialities. This dataset was designed to offer a large variety of tools, arranged hierarchically to reflect how surgical tools are organised in real-world conditions. If you do find our dataset useful, please cite our papers in your work: Rodrigues, M., Mayo, M, and Patros, P. (2022). OctopusNet: Machine Learning for Intelligent Management of Surgical Tools. Published in ���Smart Health���, Volume 23, 2022. https://doi.org/10.1016/j.smhl.2021.100244 Rodrigues, M., Mayo, M, and Patros, P. (2021). Evaluation of Deep Learning Techniques on a Novel Hierarchical Surgical Tool Dataset. Accepted paper at The 2021 Australasian Joint Conference on Artificial Intelligence. 2021. To be Published in Lecture Notes in Computer Science series. Rodrigues, M., Mayo, M, and Patros, P. (2021). Interpretable deep learning for surgical tool management. In M. Reyes, P. Henriques Abreu, J. Cardoso, M. Hajij, G. Zamzmi, P. Rahul, and L. Thakur (Eds.), Proc 4th International Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2021) LNCS 12929 (pp. 3-12). Cham: Springer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Hospital Beds: per 1000 People data was reported at 2.900 Number in 2011. This records a decrease from the previous number of 3.000 Number for 2010. United States US: Hospital Beds: per 1000 People data is updated yearly, averaging 5.000 Number from Dec 1960 (Median) to 2011, with 43 observations. The data reached an all-time high of 9.200 Number in 1960 and a record low of 2.900 Number in 2011. United States US: Hospital Beds: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Hospital beds include inpatient beds available in public, private, general, and specialized hospitals and rehabilitation centers. In most cases beds for both acute and chronic care are included.; ; Data are from the World Health Organization, supplemented by country data.; Weighted average;
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reducing unplanned readmissions is a major focus of current hospital quality efforts. In order to avoid unfair penalization, administrators and policymakers use prediction models to adjust for the performance of hospitals from healthcare claims data. Regression-based models are a commonly utilized method for such risk-standardization across hospitals; however, these models often suffer in accuracy. In this study we, compare four prediction models for unplanned patient readmission for patients hospitalized with acute myocardial infarction (AMI), congestive health failure (HF), and pneumonia (PNA) within the Nationwide Readmissions Database in 2014. We evaluated hierarchical logistic regression and compared its performance with gradient boosting and two models that utilize artificial neural networks. We show that unsupervised Global Vector for Word Representations embedding representations of administrative claims data combined with artificial neural network classification models improves prediction of 30-day readmission. Our best models increased the AUC for prediction of 30-day readmissions from 0.68 to 0.72 for AMI, 0.60 to 0.64 for HF, and 0.63 to 0.68 for PNA compared to hierarchical logistic regression. Furthermore, risk-standardized hospital readmission rates calculated from our artificial neural network model that employed embeddings led to reclassification of approximately 10% of hospitals across categories of hospital performance. This finding suggests that prediction models that incorporate new methods classify hospitals differently than traditional regression-based approaches and that their role in assessing hospital performance warrants further investigation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionIn confronting the sudden COVID-19 epidemic, China and other countries have been under great pressure to block virus transmission and reduce fatalities. Converting large-scale public venues into makeshift hospitals is a popular response. This addresses the outbreak and can maintain smooth operation of a country or region's healthcare system during a pandemic. However, large makeshift hospitals, such as the Shanghai New International Expo Center (SNIEC) makeshift hospital, which was one of the largest makeshift hospitals in the world, face two major problems: Effective and precise transfer of patients and heterogeneity of the medical care teams.MethodsTo solve these problems, this study presents the medical practices of the SNIEC makeshift hospital in Shanghai, China. The experiences include constructing two groups, developing a medical management protocol, implementing a multi-dimensional management mode to screen patients, transferring them effectively, and achieving homogeneous quality of medical care. To evaluate the medical practice performance of the SNIEC makeshift hospital, 41,941 infected patients were retrospectively reviewed from March 31 to May 23, 2022. Multivariate logistic regression method and a tree-augmented naive (TAN) Bayesian network mode were used.ResultsWe identified that the three most important variables were chronic disease, age, and type of cabin, with importance values of 0.63, 0.15, and 0.11, respectively. The constructed TAN Bayesian network model had good predictive values; the overall correct rates of the model-training dataset partition and test dataset partition were 99.19 and 99.05%, respectively, and the respective values for the area under the receiver operating characteristic curve were 0.939 and 0.957.ConclusionThe medical practice in the SNIEC makeshift hospital was implemented well, had good medical care performance, and could be copied worldwide as a practical intervention to fight the epidemic in China and other developing countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveAcute ischemic stroke (AIS) brings an increasingly heavier economic burden nowadays. Prolonged length of stay (LOS) is a vital factor in healthcare expenditures. The aim of this study was to predict prolonged LOS in AIS patients based on an interpretable machine learning algorithm.MethodsWe enrolled AIS patients in our hospital from August 2017 to July 2019, and divided them into the “prolonged LOS” group and the “no prolonged LOS” group. Prolonged LOS was defined as hospitalization for more than 7 days. The least absolute shrinkage and selection operator (LASSO) regression was applied to reduce the dimensionality of the data. We compared the predictive capacity of extended LOS in eight different machine learning algorithms. SHapley Additive exPlanations (SHAP) values were used to interpret the outcome, and the most optimal model was assessed by discrimination, calibration, and clinical utility.ResultsProlonged LOS developed in 149 (22.0%) of the 677 eligible patients. In eight machine learning algorithms, prolonged LOS was best predicted by the Gaussian naive Bayes (GNB) model, which had a striking area under the curve (AUC) of 0.878 ± 0.007 in the training set and 0.857 ± 0.039 in the validation set. The variables sorted by the gap values showed that the strongest predictors were pneumonia, dysphagia, thrombectomy, and stroke severity. High net benefits were observed at 0%–76% threshold probabilities, while good agreement was found between the observed and predicted probabilities.ConclusionsThe model using the GNB algorithm proved excellent for predicting prolonged LOS in AIS patients. This simple model of prolonged hospitalization could help adjust policies and better utilize resources.
From the selected regions, the ranking by number of hospitals is led by China with 37,627 hospitals and is followed by the Nigeria (23,640 hospitals). In contrast, the ranking is trailed by Seychelles with one hospitals, recording a difference of 37,626 hospitals to China. Depicted is the number of hospitals in the country or region at hand. As the OECD states, the rules according to which an institution can be registered as a hospital vary across countries.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionThe global incidence of caesarean section (CS) deliveries has exceeded the recommended threshold set by the World Health Organization. This development is a matter of public health concern due to the cost involved and the potential health risk to the mother and the neonate. We sought to investigate the prevalence, indications, maternal and neonatal outcomes and determinants of CS in private health facilities in Ghana.MethodA retrospective cross-sectional analysis was conducted using data from women who delivered at the Holy Family Hospital from January to February 2020 using descriptive and inferential statistics, with a significance level set at p
Success.ai’s Healthcare Industry Leads Data empowers businesses and organizations to connect with key decision-makers and stakeholders in the global healthcare and pharmaceutical sectors. Leveraging over 170 million verified professional profiles and 30 million company profiles, this dataset includes detailed contact information, firmographic insights, and leadership data for hospitals, clinics, biotech firms, medical device manufacturers, pharmaceuticals, and other healthcare-related enterprises. Whether your goal is to pitch a new medical technology, partner with healthcare providers, or conduct market research, Success.ai ensures that your outreach and strategic planning are guided by reliable, continuously updated, and AI-validated data.
Why Choose Success.ai’s Healthcare Industry Leads Data?
Comprehensive Contact Information
Global Reach Across Healthcare Segments
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Healthcare Decision-Maker Profiles
Detailed Business Profiles
Advanced Filters for Precision Targeting
AI-Driven Enrichment
Strategic Use Cases:
Sales and Business Development
Market Research and Product Innovation
Strategic Partnerships and Alliances
Recruitment and Talent Acquisition
Why Choose Success.ai?
Original provider: Turtle Hospital- Marathon
Dataset credits: Data provider Mote Marine Laboratory Originating data center Satellite Tracking and Analysis Tool (STAT) Project partner Sea Turtle HospitalMote Marine Laboratory, Sea Turtle Conservation and Research Program Project sponsor or sponsor description Sponsor's for these turtles include:Sharon-Tilly's tag was sponsored by Doug and Sharon Largent
Abstract: The Turtle Hospital is located in Marathon, Florida (in the heart of the Florida Keys) on Overseas highway at mile marker 48.5, Bayside. 2396 Overseas Highway, Marathon, Florida 33050. Reservations are recommended as space is limited please call (305) 743-2552The Turtle Hospital was opened in 1986 with four main goals: 1) rehab injured sea turtles and return them to the wild, 2) educate the public through outreach programs to local schools, 3) conduct and assist with research which aids the sea turtles (in conjunction with state universities), and 4) work toward environmental legislation which makes the beaches and water safe and clean for sea turtles.The Turtle Hospital (Hidden Harbor Marine Environmental Project, Inc.) is a 501(c)(3) charitable corporation. The Hidden Harbor Motel provides the space and buildings needed to house and care for the sea turtles. The Turtle Hospital offers Guided Educational Experiences to public daily 7 days a week. Please call 305-743-2552 for further information and reservations.The Turtle Hospital contains up-to-date equipment needed to perform a variety of surgeries on different species and sizes of sea turtles. More than half of this equipment has been donated by local hospitals and doctors, and some equipment has been donated by environmentally- friendly organizations and individuals.RehabilitationA variety of turtle ailments are treated here, including flipper amputations caused by fishing line and trap rope entanglements, shell damage caused by boat collisions, and intestinal impactions caused by ingestion of foreign materials such as plastic bags, balloons, and fishing line and/or hooks. The most common surgery performed is the removal of debilitating viral tumors that affect over 50% of the sea turtles in the Keys and around the world.ResearchThe Turtle Hospital and the University of Florida have been doing cooperative research into the causes of fibropapilloma, the devastating viral tumors which affect sea turtles. This is currently the only known disease affecting wild animals on a global basis. The virus has been successfully transmitted (proving that it is infectious) and current research concentrates on isolating the cause.ReleaseThe Turtle Hospital has successfully treated and released over 1000 Sea Turtles since its founding in 1986. The turtles are released in a variety of ways and at different locations depending on species. Greens are taken either to Pigeon Key via ambulance or they are taken to a spot 20 miles north of Marathon in the Florida Bay. Loggerheads are usually released at Pigeon Key or launched off a boat into the gulf or ocean. Kemp’s Ridleys are taken 70 miles west of Key West out to the coral reefs of the Dry Tortugas.
Supplemental information: Visit STAT's project page for additional information.
This dataset is a summarized representation of the telemetry locations aggregated per species per 1-degree cell.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
This Australian English Call Center Speech Dataset for the Healthcare industry is purpose-built to accelerate the development of English speech recognition, spoken language understanding, and conversational AI systems. With 40 Hours of unscripted, real-world conversations, it delivers the linguistic and contextual depth needed to build high-performance ASR models for medical and wellness-related customer service.
Created by FutureBeeAI, this dataset empowers voice AI teams, NLP researchers, and data scientists to develop domain-specific models for hospitals, clinics, insurance providers, and telemedicine platforms.
The dataset features 40 Hours of dual-channel call center conversations between native Australian English speakers. These recordings cover a variety of healthcare support topics, enabling the development of speech technologies that are contextually aware and linguistically rich.
The dataset spans inbound and outbound calls, capturing a broad range of healthcare-specific interactions and sentiment types (positive, neutral, negative).
These real-world interactions help build speech models that understand healthcare domain nuances and user intent.
Every audio file is accompanied by high-quality, manually created transcriptions in JSON format.
Each conversation and speaker includes detailed metadata to support fine-tuned training and analysis.
This dataset can be used across a range of healthcare and voice AI use cases:
This dataset shows the the world's best hospital in 2023 issued by the Newsweek and Statista.