77 datasets found
  1. Forecast revenue big data market worldwide 2011-2027

    • statista.com
    Updated Feb 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Forecast revenue big data market worldwide 2011-2027 [Dataset]. https://www.statista.com/statistics/254266/global-big-data-market-forecast/
    Explore at:
    Dataset updated
    Feb 13, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The global big data market is forecasted to grow to 103 billion U.S. dollars by 2027, more than double its expected market size in 2018. With a share of 45 percent, the software segment would become the large big data market segment by 2027.

    What is Big data?

    Big data is a term that refers to the kind of data sets that are too large or too complex for traditional data processing applications. It is defined as having one or some of the following characteristics: high volume, high velocity or high variety. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets.

    Big data analytics

    Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate new business insights. The global big data and business analytics market was valued at 169 billion U.S. dollars in 2018 and is expected to grow to 274 billion U.S. dollars in 2022. As of November 2018, 45 percent of professionals in the market research industry reportedly used big data analytics as a research method.

  2. r

    Big Data and Society Abstract & Indexing - ResearchHelpDesk

    • researchhelpdesk.org
    Updated Jun 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). Big Data and Society Abstract & Indexing - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/abstract-and-indexing/477/big-data-and-society
    Explore at:
    Dataset updated
    Jun 23, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    Big Data and Society Abstract & Indexing - ResearchHelpDesk - Big Data & Society (BD&S) is open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities and computing and their intersections with the arts and natural sciences about the implications of Big Data for societies. The Journal's key purpose is to provide a space for connecting debates about the emerging field of Big Data practices and how they are reconfiguring academic, social, industry, business, and government relations, expertise, methods, concepts, and knowledge. BD&S moves beyond usual notions of Big Data and treats it as an emerging field of practice that is not defined by but generative of (sometimes) novel data qualities such as high volume and granularity and complex analytics such as data linking and mining. It thus attends to digital content generated through online and offline practices in social, commercial, scientific, and government domains. This includes, for instance, the content generated on the Internet through social media and search engines but also that which is generated in closed networks (commercial or government transactions) and open networks such as digital archives, open government, and crowdsourced data. Critically, rather than settling on a definition the Journal makes this an object of interdisciplinary inquiries and debates explored through studies of a variety of topics and themes. BD&S seeks contributions that analyze Big Data practices and/or involve empirical engagements and experiments with innovative methods while also reflecting on the consequences for how societies are represented (epistemologies), realized (ontologies) and governed (politics). Article processing charge (APC) The article processing charge (APC) for this journal is currently 1500 USD. Authors who do not have funding for open access publishing can request a waiver from the publisher, SAGE, once their Original Research Article is accepted after peer review. For all other content (Commentaries, Editorials, Demos) and Original Research Articles commissioned by the Editor, the APC will be waived. Abstract & Indexing Clarivate Analytics: Social Sciences Citation Index (SSCI) Directory of Open Access Journals (DOAJ) Google Scholar Scopus

  3. f

    Big Data Analytics Market Size, Value & Share Analysis [2032]

    • fortunebusinessinsights.com
    Updated Apr 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fortune Business Insights (2025). Big Data Analytics Market Size, Value & Share Analysis [2032] [Dataset]. https://www.fortunebusinessinsights.com/big-data-analytics-market-106179
    Explore at:
    Dataset updated
    Apr 4, 2025
    Dataset authored and provided by
    Fortune Business Insights
    License

    https://www.fortunebusinessinsights.com/privacy/https://www.fortunebusinessinsights.com/privacy/

    Time period covered
    2024 - 2032
    Area covered
    Worldwide
    Description

    The global big data analytics market size was valued at $307.52 billion in 2023 & is projected to grow from $348.21 billion in 2024 to $961.89 billion by 2032

  4. Big Data Services Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio, Big Data Services Market Analysis, Size, and Forecast 2025-2029: North America (Mexico), Europe (France, Germany, Italy, and UK), Middle East and Africa (UAE), APAC (Australia, China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-services-market-industry-analysis
    Explore at:
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    Big Data Services Market Size 2025-2029

    The big data services market size is forecast to increase by USD 604.2 billion, at a CAGR of 54.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of big data in various industries, particularly in blockchain technology. The ability to process and analyze vast amounts of data in real-time is revolutionizing business operations and decision-making processes. However, this market is not without challenges. One of the most pressing issues is the need to cater to diverse client requirements, each with unique data needs and expectations. This necessitates customized solutions and a deep understanding of various industries and their data requirements. Additionally, ensuring data security and privacy in an increasingly interconnected world poses a significant challenge. Companies must navigate these obstacles while maintaining compliance with regulations and adhering to ethical data handling practices. To capitalize on the opportunities presented by the market, organizations must focus on developing innovative solutions that address these challenges while delivering value to their clients. By staying abreast of industry trends and investing in advanced technologies, they can effectively meet client demands and differentiate themselves in a competitive landscape.

    What will be the Size of the Big Data Services Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the ever-increasing volume, velocity, and variety of data being generated across various sectors. Data extraction is a crucial component of this dynamic landscape, enabling entities to derive valuable insights from their data. Human resource management, for instance, benefits from data-driven decision making, operational efficiency, and data enrichment. Batch processing and data integration are essential for data warehousing and data pipeline management. Data governance and data federation ensure data accessibility, quality, and security. Data lineage and data monetization facilitate data sharing and collaboration, while data discovery and data mining uncover hidden patterns and trends. Real-time analytics and risk management provide operational agility and help mitigate potential threats. Machine learning and deep learning algorithms enable predictive analytics, enhancing business intelligence and customer insights. Data visualization and data transformation facilitate data usability and data loading into NoSQL databases. Government analytics, financial services analytics, supply chain optimization, and manufacturing analytics are just a few applications of big data services. Cloud computing and data streaming further expand the market's reach and capabilities. Data literacy and data collaboration are essential for effective data usage and collaboration. Data security and data cleansing are ongoing concerns, with the market continuously evolving to address these challenges. The integration of natural language processing, computer vision, and fraud detection further enhances the value proposition of big data services. The market's continuous dynamism underscores the importance of data cataloging, metadata management, and data modeling for effective data management and optimization.

    How is this Big Data Services Industry segmented?

    The big data services industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ComponentSolutionServicesEnd-userBFSITelecomRetailOthersTypeData storage and managementData analytics and visualizationConsulting servicesImplementation and integration servicesSupport and maintenance servicesSectorLarge enterprisesSmall and medium enterprises (SMEs)GeographyNorth AmericaUSMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW).

    By Component Insights

    The solution segment is estimated to witness significant growth during the forecast period.Big data services have become indispensable for businesses seeking operational efficiency and customer insight. The vast expanse of structured and unstructured data presents an opportunity for organizations to analyze consumer behaviors across multiple channels. Big data solutions facilitate the integration and processing of data from various sources, enabling businesses to gain a deeper understanding of customer sentiment towards their products or services. Data governance ensures data quality and security, while data federation and data lineage provide transparency and traceability. Artificial intelligenc

  5. m

    Big Data Analytics in Retail Market - Trends & Industry Analysis

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2024). Big Data Analytics in Retail Market - Trends & Industry Analysis [Dataset]. https://www.mordorintelligence.com/industry-reports/big-data-analytics-in-retail-marketing-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 16, 2024
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2021 - 2030
    Area covered
    Global
    Description

    The Data Analytics in Retail Industry is segmented by Application (Merchandising and Supply Chain Analytics, Social Media Analytics, Customer Analytics, Operational Intelligence, Other Applications), by Business Type (Small and Medium Enterprises, Large-scale Organizations), and Geography. The market size and forecasts are provided in terms of value (USD billion) for all the above segments.

  6. M

    Big Data in E-commerce Market Reflects US Tariff Impacts

    • scoop.market.us
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Scoop (2025). Big Data in E-commerce Market Reflects US Tariff Impacts [Dataset]. https://scoop.market.us/big-data-in-e-commerce-market-news/
    Explore at:
    Dataset updated
    Apr 22, 2025
    Dataset authored and provided by
    Market.us Scoop
    License

    https://scoop.market.us/privacy-policyhttps://scoop.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    United States, Global
    Description

    US Tariff Impact on Market

    The imposition of U.S. tariffs on imported technology components, particularly software and cloud infrastructure, has created challenges for businesses in the Big Data in e-commerce market. Tariffs on components used to build cloud-based solutions and data processing software can lead to increased operational costs.

    These increased costs may be passed onto e-commerce businesses, which could slow down the adoption of Big Data solutions in the short term. U.S. companies, heavily reliant on imports for these technologies, are facing disruptions in supply chains and may need to invest in domestic production or explore alternative suppliers to mitigate the impact.

    Although these challenges may dampen the short-term growth, long-term demand for Big Data in e-commerce is expected to remain strong, particularly with growing reliance on data analytics for customer experience management.

    ➤➤➤ Get More Insights about US Tariff Impact Analysis @ https://market.us/report/big-data-in-e-commerce-market/free-sample/

    • Economic Impact: U.S. tariffs on technology components raise costs, impacting pricing for Big Data solutions and leading to increased operational expenses for e-commerce businesses.
    • Geographical Impact: U.S. companies face higher prices for software and cloud solutions, resulting in a slowdown in adoption in the short term, while increasing pressure to source locally or from other regions.
    • Business Impact: Tariffs on imported technology components lead to higher prices and margin compression for e-commerce companies, potentially delaying investments in Big Data solutions.
    https://scoop.market.us/wp-content/uploads/2025/04/US-Tariff-Impact-Analysis-in-2025.png" alt="US Tariff Impact Analysis in 2025" class="wp-image-53722">

    Impact Percentage on Sectors

    • Software and Cloud Infrastructure: +8-10%
    • E-commerce Data Solutions: +5-7%
  7. f

    What is your definition of Big Data? Researchers’ understanding of the...

    • plos.figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maddalena Favaretto; Eva De Clercq; Christophe Olivier Schneble; Bernice Simone Elger (2023). What is your definition of Big Data? Researchers’ understanding of the phenomenon of the decade [Dataset]. http://doi.org/10.1371/journal.pone.0228987
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Maddalena Favaretto; Eva De Clercq; Christophe Olivier Schneble; Bernice Simone Elger
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The term Big Data is commonly used to describe a range of different concepts: from the collection and aggregation of vast amounts of data, to a plethora of advanced digital techniques designed to reveal patterns related to human behavior. In spite of its widespread use, the term is still loaded with conceptual vagueness. The aim of this study is to examine the understanding of the meaning of Big Data from the perspectives of researchers in the fields of psychology and sociology in order to examine whether researchers consider currently existing definitions to be adequate and investigate if a standard discipline centric definition is possible.MethodsThirty-nine interviews were performed with Swiss and American researchers involved in Big Data research in relevant fields. The interviews were analyzed using thematic coding.ResultsNo univocal definition of Big Data was found among the respondents and many participants admitted uncertainty towards giving a definition of Big Data. A few participants described Big Data with the traditional “Vs” definition—although they could not agree on the number of Vs. However, most of the researchers preferred a more practical definition, linking it to processes such as data collection and data processing.ConclusionThe study identified an overall uncertainty or uneasiness among researchers towards the use of the term Big Data which might derive from the tendency to recognize Big Data as a shifting and evolving cultural phenomenon. Moreover, the currently enacted use of the term as a hyped-up buzzword might further aggravate the conceptual vagueness of Big Data.

  8. Big Data in Manufacturing Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2023). Big Data in Manufacturing Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/big-data-in-manufacturing-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Summary
    Big data is a term used for large volume of structured and unstructured data stored on a daily basis. Further, big data analytics technique is implemented by the companies to examine market trends, hidden patterns, and other useful information, which helps in making effective business decisions. Big data analytics in manufacturing helps enterprises in better supply chain planning, process defect tracking, and components defect tracking. Predictive analytics is one of the major applications of big data analytics used to extract information from data, and predict trends and behavior patterns.
    Rise in demand for big data across various industry verticals and increase in demand for big data in manufacturing to reduce the production defects and optimize supply chain management are expected to boost the market. It is estimated that the data generated in a day in current global scenario is equivalent to the data generated in last decade. To handle such huge amounts of data, Big Data has often proved to be a useful tool. With the concept of Market

  9. f

    Data Sheet 1_Global trends of big data analytics in health research: a...

    • frontiersin.figshare.com
    docx
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Li Yao; Yan Liu; Tingrui Wang; Chunyan Han; Qiaoxing Li; Qinqin Li; Xiaoli You; Tingting Ren; Yinhua Wang (2025). Data Sheet 1_Global trends of big data analytics in health research: a bibliometric study.docx [Dataset]. http://doi.org/10.3389/fmed.2025.1456286.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    Frontiers
    Authors
    Li Yao; Yan Liu; Tingrui Wang; Chunyan Han; Qiaoxing Li; Qinqin Li; Xiaoli You; Tingting Ren; Yinhua Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe field of “Big Health,” which encompasses the integration of big data in healthcare, has seen rapid development in recent years. As big data technologies continue to transform healthcare, understanding emerging trends and key advancements within the field is essential.MethodsWe retrieved and filtered articles and reviews related to big data analytics in health research from the Web of Science Core Collection, including SCI Expanded and SSCI, covering the period from 2009 to 2024. Bibliometric and co-citation analyses were conducted using VOSviewer and CiteSpace.ResultsA total of 13,609 papers were analyzed, including 10,702 original research and 2,907 reviews. Co-occurrence word analysis identified six key research areas: (1) the application of big data analytics in health decision-making; (2) challenges in the technological management of health and medical big data; (3) integration of machine learning with health monitoring; (4) privacy and ethical issues in health and medical big data; (5) data integration in precision medicine; and (6) the use of big data in disease management and risk assessment. The co-word burst analysis results indicate that topics such as personalized medicine, decision support, and data protection experienced significant growth between 2015 and 2020. With the advancement of big data technologies, research hotspots have gradually expanded from basic data analysis to more complex application areas, such as the digital transformation of healthcare, digital health strategies, and smart health cities.ConclusionThis study highlights the growing impact of big data analytics in healthcare, emphasizing its role in decision-making, disease management, and precision medicine. As digital transformation in healthcare advances, addressing challenges in data integration, privacy, and machine learning integration will be crucial for maximizing the potential of big data technologies in improving health outcomes.

  10. B

    Big Data Analytics Market Report

    • promarketreports.com
    doc, pdf, ppt
    Updated Jan 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pro Market Reports (2025). Big Data Analytics Market Report [Dataset]. https://www.promarketreports.com/reports/big-data-analytics-market-8913
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jan 16, 2025
    Dataset authored and provided by
    Pro Market Reports
    License

    https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the Big Data Analytics Marketsssssz was valued at USD 285.96 Billion in 2023 and is projected to reach USD 698.16 Billion by 2032, with an expected CAGR of 13.60% during the forecast period. The Big Data Analytics market is experiencing rapid growth, driven by the increasing need for organizations to process and analyze vast volumes of structured and unstructured data. Businesses across industries are leveraging advanced analytics to gain actionable insights, enhance decision-making, and improve operational efficiency. The adoption of technologies such as artificial intelligence, machine learning, and cloud computing is further propelling the market, enabling real-time analytics and scalable data management solutions. Key sectors like retail, healthcare, banking, and manufacturing are capitalizing on Big Data Analytics to better understand customer behavior, optimize supply chains, and detect anomalies. The growing integration of Internet of Things (IoT) devices has exponentially increased data generation, underscoring the need for robust analytics platforms. Additionally, the demand for predictive and prescriptive analytics tools is on the rise, as organizations aim to forecast trends and mitigate risks effectively. However, challenges such as data security concerns, high implementation costs, and the shortage of skilled professionals remain critical issues. Overall, the Big Data Analytics market is poised for sustained expansion, with innovations in technology and strategic investments shaping its trajectory. Recent developments include: May 2024: Apache Software Foundation (ASF) introduced Apache Hive 4.0, which represents a noteworthy advancement in the field of data warehouse and data lake technologies. Apache Hive emerges as a preeminent data warehouse utility within the realm of big data processing tools. It is capable of querying massive data sets and provides exceptional flexibility via a query language resembling SQL. Hive, which was established in 2010, has provided global organizations with the ability to leverage their data processing capabilities and conduct analytics. Architecturally, it has evolved into an indispensable element of contemporary data management systems. The data warehouse application has been enhanced with the introduction of Hive 4.0. ASF has additionally implemented a number of enhancements to the compiler, such as support for HPL/SQL, scheduled queries, anti-joint functionality, and column histogram statistics. Additionally, users are granted access to enhanced and novel cost-based optimization (CBO) principles. The objective of the compiler enhancements is to optimize the utilization of resources and increase the software's overall efficacy., January 2024: GeneConnectRx, an innovative artificial intelligence (AI) platform developed by GenepoweRx, the diagnostic division of K&H clinic, was introduced by Uppaluri K&H Personalized Medicine Clinic. This platform will make use of big data analytics. This groundbreaking advancement in personalized medicine signifies a fundamental change, granting medical practitioners the ability to tailor treatments according to the unique genetic composition of each patient. The inaugural event took place at the Hyderabad headquarters of the startup, where esteemed individuals and leaders in the field were in attendance to emphasize GeneConnectRx's capacity for reform.. Key drivers for this market are: Growing need for data-driven insights for business decision-making Emergence of new data sources and technologies Increasing adoption of cloud computing and AI Government initiatives to promote innovation in big data Growing awareness of the benefits of data analytics. Potential restraints include: Data privacy and security concerns Lack of skilled professionals Complexity and cost of implementing big data analytics solutions Data integration and interoperability issues. Notable trends are: Edge computing and IoT analytics Data fabric and data governance Use of blockchain technology for data security Integration of visual analytics and data visualization techniques Rise of augmented analytics and automated insights.

  11. Big Data Spending In Healthcare Sector Market Analysis, Size, and Forecast...

    • technavio.com
    Updated Aug 12, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2015). Big Data Spending In Healthcare Sector Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Ireland, and UK), APAC (China, India, and Philippines), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/big-data-spending-market-in-healthcare-sector-market-industry-analysis
    Explore at:
    Dataset updated
    Aug 12, 2015
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    Big Data Spending In Healthcare Sector Market Size 2025-2029

    The big data spending in healthcare sector market size is forecast to increase by USD 7.78 billion at a CAGR of 10.2% between 2024 and 2029.

    The market is driven by the growing need to improve business efficiency and the increasing use of big data analytics in healthcare. The healthcare industry is generating vast amounts of data daily, and harnessing this data through analytics can lead to enhanced patient care, operational efficiency, and research advancements. However, this trend faces significant challenges. Consumer behavior and customer experience are also under scrutiny, with data talent and natural language processing essential for last-mile delivery of personalized services.
    Companies must navigate these complexities to effectively leverage data for improved patient outcomes and operational excellence. Ensuring the protection of sensitive health information is crucial to maintain patient trust and adhere to regulatory requirements. Data security and privacy concerns related to patients' medical data are becoming increasingly prominent. As the healthcare sector continues to digitize, addressing these challenges while capitalizing on the opportunities presented by big data analytics will be essential for market success. 
    

    What will be the Size of the Big Data Spending In Healthcare Sector Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the dynamic healthcare sector, the adoption of big data has become a key driver for innovation and improvement. The market is witnessing significant investments in structured and unstructured data integration, ensuring data quality and security for data-driven decision-making. Risk management is a major focus, with predictive modeling and continuous intelligence enabling early fraud detection. The variety and velocity of data require advanced data analytics and machine learning techniques for effective decision-making. Data management and storage solutions in the cloud are increasingly popular due to their scalability and flexibility.

    Semi-structured data and artificial intelligence are revolutionizing data visualization and enabling more accurate predictions, enhancing the overall value of big data in healthcare. The healthcare sector's big data landscape is continuously unfolding, with new applications and challenges emerging. Data integration and analytics are essential for making informed business decisions and improving patient care.

    How is this Big Data Spending In Healthcare Sector Industry segmented?

    The big data spending in healthcare sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Service
    
      Services
      Software
    
    
    Type
    
      Descriptive analytics
      Predictive analytics
      Prescriptive analytics
      Diagnostic analytics
    
    
    Application
    
      Financial analytics
      Population health management
      Clinical decision support
      Operational analytics
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Ireland
        UK
    
    
      APAC
    
        China
        India
        Philippines
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Service Insights

    The Services segment is estimated to witness significant growth during the forecast period. In the dynamic healthcare sector, the adoption of big data solutions is increasingly becoming a priority for organizations. The services segment, which includes professional services, consulting, and managed services, is experiencing significant growth. Professional services, offered by third-party analytics companies, provide tailor-made solutions for the healthcare industry. These services enable organizations to discover new revenue streams, enhance data security, and improve service support for increased productivity. The demand for industry-specific, consumer group-specific, and region-specific data analysis is on the rise due to intensifying competition and innovation. Consulting services, though holding a smaller revenue share, significantly contribute to the overall growth of the services segment.

    Flexibility, continuous intelligence, and data visualization are crucial elements of these services, ensuring business value in the face of data volume and variety. Risk management, cyber attacks, data quality, and data breaches are major concerns, necessitating advanced solutions like AI, machine learning, and natural language processing. Data collection, data storage, and data integration are essential components of data management, which must address velocity, noise, and data overload. Cloud services, data la

  12. f

    Data from: Epistemological grouping of published articles on big data...

    • scielo.figshare.com
    png
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patricia Kuzmenko FURLAN; Fernando José Barbin LAURINDO (2023). Epistemological grouping of published articles on big data analytics [Dataset]. http://doi.org/10.6084/m9.figshare.5885407.v1
    Explore at:
    pngAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    SciELO journals
    Authors
    Patricia Kuzmenko FURLAN; Fernando José Barbin LAURINDO
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract The era of big data is yet a reality for businesses and individuals. In recent year, the academic literature exploring this field has grown rapidly. This article aimed to identify the main fields and features of the published papers about big data analytics. The methodological approach considered was a bibliometric research at the ISI Web of Science platform, whose focus was given to the big data management issues. It was possible to identify five distinct groups within the published papers: evolution of big data; management, business and strategy; human behavior and the social and cultural aspects; data mining and knowledge generation; Internet of Things. It was possible to conclude that big data corresponds to an emerging theme, which is not yet consolidated. There is a wide variation in the terms used, which influences the bibliographic searches. Therefore, as a complimentary contribution of this research, the main keywords used in such articles were identified, which contributes for bibliometric research of future studies.

  13. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United States, Canada, Global
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is forecast to increase by USD 763.9 million, at a CAGR of 40.2% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. This fusion enables organizations to derive deeper insights from their data, fueling business innovation and decision-making. Another trend shaping the market is the emergence of containerization and microservices in data science platforms. This approach offers enhanced flexibility, scalability, and efficiency, making it an attractive choice for businesses seeking to streamline their data science operations. However, the market also faces challenges. Data privacy and security remain critical concerns, with the increasing volume and complexity of data posing significant risks. Ensuring robust data security and privacy measures is essential for companies to maintain customer trust and comply with regulatory requirements. Additionally, managing the complexity of data science platforms and ensuring seamless integration with existing systems can be a daunting task, requiring significant investment in resources and expertise. Companies must navigate these challenges effectively to capitalize on the market's opportunities and stay competitive in the rapidly evolving data landscape.

    What will be the Size of the Data Science Platform Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for advanced analytics and artificial intelligence solutions across various sectors. Real-time analytics and classification models are at the forefront of this evolution, with APIs integrations enabling seamless implementation. Deep learning and model deployment are crucial components, powering applications such as fraud detection and customer segmentation. Data science platforms provide essential tools for data cleaning and data transformation, ensuring data integrity for big data analytics. Feature engineering and data visualization facilitate model training and evaluation, while data security and data governance ensure data privacy and compliance. Machine learning algorithms, including regression models and clustering models, are integral to predictive modeling and anomaly detection. Statistical analysis and time series analysis provide valuable insights, while ETL processes streamline data integration. Cloud computing enables scalability and cost savings, while risk management and algorithm selection optimize model performance. Natural language processing and sentiment analysis offer new opportunities for data storytelling and computer vision. Supply chain optimization and recommendation engines are among the latest applications of data science platforms, demonstrating their versatility and continuous value proposition. Data mining and data warehousing provide the foundation for these advanced analytics capabilities.

    How is this Data Science Platform Industry segmented?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudComponentPlatformServicesEnd-userBFSIRetail and e-commerceManufacturingMedia and entertainmentOthersSectorLarge enterprisesSMEsApplicationData PreparationData VisualizationMachine LearningPredictive AnalyticsData GovernanceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, businesses increasingly adopt solutions to gain real-time insights from their data, enabling them to make informed decisions. Classification models and deep learning algorithms are integral parts of these platforms, providing capabilities for fraud detection, customer segmentation, and predictive modeling. API integrations facilitate seamless data exchange between systems, while data security measures ensure the protection of valuable business information. Big data analytics and feature engineering are essential for deriving meaningful insights from vast datasets. Data transformation, data mining, and statistical analysis are crucial processes in data preparation and discovery. Machine learning models, including regression and clustering, are employed for model training and evaluation. Time series analysis and natural language processing are valuable tools for understanding trends and customer sen

  14. B

    Big Data Services Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Big Data Services Market Report [Dataset]. https://www.marketreportanalytics.com/reports/big-data-services-market-89585
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Big Data Services market, valued at $32.51 billion in 2025, is experiencing robust growth, projected to expand at a Compound Annual Growth Rate (CAGR) of 27.81% from 2025 to 2033. This explosive growth is fueled by several key drivers. The increasing volume and variety of data generated across industries necessitate sophisticated solutions for storage, processing, and analysis. The rise of cloud computing provides scalable and cost-effective infrastructure for Big Data initiatives, further accelerating market expansion. Furthermore, the growing adoption of advanced analytics techniques, such as machine learning and artificial intelligence, is driving demand for Big Data services to extract valuable insights from complex datasets. This allows businesses to make more informed decisions, optimize operations, and gain a competitive edge. While data security and privacy concerns represent a potential restraint, the market's overall trajectory remains strongly positive. The market is segmented by service type (consulting, implementation, integration, managed services), deployment model (cloud, on-premise), organization size (small, medium, large), and industry vertical (BFSI, healthcare, retail, manufacturing). Key players like IBM, Microsoft, Oracle, and Amazon Web Services are fiercely competitive, investing heavily in research and development to maintain market leadership. The forecast period (2025-2033) anticipates continued high growth, driven by increasing digital transformation across sectors. Businesses are leveraging Big Data to personalize customer experiences, improve operational efficiency, and develop new revenue streams. The expansion into emerging economies will also contribute significantly to market expansion, as these regions adopt Big Data technologies at a rapid pace. However, the successful implementation of Big Data initiatives relies on skilled professionals. Addressing the talent gap through robust training and development programs will be crucial for sustaining this rapid growth. Competitive pricing strategies and the emergence of innovative service offerings will shape the competitive landscape. The market’s long-term outlook remains exceptionally strong, driven by technological advancements and the ever-increasing reliance on data-driven decision-making. Recent developments include: May 2023 : Microsoft has introduced Microsft fabric an softend-to-end, Unified Analytics Platform, which enables organisations to integrate all data and analytical tools they need, Where By making it possible for data and business professionals to unlock their potential, as well as lay the foundation for an era of Artificial Intelligence, fabric creates a single unified product that brings together technologies like Azure Data Factory, Azure Synapse Analytics, and Power BI., November 2022: Amazon Web Services, Inc. (AWS) released five new features in its database and analytics portfolios. These updates enable users to manage and analyze data at a petabyte scale more efficiently and quickly, simplifying the process for customers to operate the high-performance database and analytics workloads at scale., October 2022: Oracle introduced the Oracle Network Analytics Suite, which includes a new cloud-native portfolio of analytics tools. This suite enables operators to make more automated and informed decisions regarding the performance and stability of their entire 5G network core by combining network function data with machine learning and artificial intelligence.. Key drivers for this market are: Increasing Cloud Adoption And Rise In The Data Volume Generated, Increasing Demand For Improving Organization's Internal Efficiency; Growing Adoption of Private Cloud. Potential restraints include: Increasing Cloud Adoption And Rise In The Data Volume Generated, Increasing Demand For Improving Organization's Internal Efficiency; Growing Adoption of Private Cloud. Notable trends are: Growing Adoption of Private Cloud is Driving the Market.

  15. Online Data Science Training Programs Market Analysis, Size, and Forecast...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Online Data Science Training Programs Market Analysis, Size, and Forecast 2025-2029: North America (Mexico), Europe (France, Germany, Italy, and UK), Middle East and Africa (UAE), APAC (Australia, China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/online-data-science-training-programs-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Mexico, Germany, Global
    Description

    Snapshot img

    Online Data Science Training Programs Market Size 2025-2029

    The online data science training programs market size is forecast to increase by USD 8.67 billion, at a CAGR of 35.8% between 2024 and 2029.

    The market is experiencing significant growth due to the increasing demand for data science professionals in various industries. The job market offers lucrative opportunities for individuals with data science skills, making online training programs an attractive option for those seeking to upskill or reskill. Another key driver in the market is the adoption of microlearning and gamification techniques in data science training. These approaches make learning more engaging and accessible, allowing individuals to acquire new skills at their own pace. Furthermore, the availability of open-source learning materials has democratized access to data science education, enabling a larger pool of learners to enter the field. However, the market also faces challenges, including the need for continuous updates to keep up with the rapidly evolving data science landscape and the lack of standardization in online training programs, which can make it difficult for employers to assess the quality of graduates. Companies seeking to capitalize on market opportunities should focus on offering up-to-date, high-quality training programs that incorporate microlearning and gamification techniques, while also addressing the challenges of continuous updates and standardization. By doing so, they can differentiate themselves in a competitive market and meet the evolving needs of learners and employers alike.

    What will be the Size of the Online Data Science Training Programs Market during the forecast period?

    Request Free SampleThe online data science training market continues to evolve, driven by the increasing demand for data-driven insights and innovations across various sectors. Data science applications, from computer vision and deep learning to natural language processing and predictive analytics, are revolutionizing industries and transforming business operations. Industry case studies showcase the impact of data science in action, with big data and machine learning driving advancements in healthcare, finance, and retail. Virtual labs enable learners to gain hands-on experience, while data scientist salaries remain competitive and attractive. Cloud computing and data science platforms facilitate interactive learning and collaborative research, fostering a vibrant data science community. Data privacy and security concerns are addressed through advanced data governance and ethical frameworks. Data science libraries, such as TensorFlow and Scikit-Learn, streamline the development process, while data storytelling tools help communicate complex insights effectively. Data mining and predictive analytics enable organizations to uncover hidden trends and patterns, driving innovation and growth. The future of data science is bright, with ongoing research and development in areas like data ethics, data governance, and artificial intelligence. Data science conferences and education programs provide opportunities for professionals to expand their knowledge and expertise, ensuring they remain at the forefront of this dynamic field.

    How is this Online Data Science Training Programs Industry segmented?

    The online data science training programs industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TypeProfessional degree coursesCertification coursesApplicationStudentsWorking professionalsLanguageR programmingPythonBig MLSASOthersMethodLive streamingRecordedProgram TypeBootcampsCertificatesDegree ProgramsGeographyNorth AmericaUSMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)

    By Type Insights

    The professional degree courses segment is estimated to witness significant growth during the forecast period.The market encompasses various segments catering to diverse learning needs. The professional degree course segment holds a significant position, offering comprehensive and in-depth training in data science. This segment's curriculum covers essential aspects such as statistical analysis, machine learning, data visualization, and data engineering. Delivered by industry professionals and academic experts, these courses ensure a high-quality education experience. Interactive learning environments, including live lectures, webinars, and group discussions, foster a collaborative and engaging experience. Data science applications, including deep learning, computer vision, and natural language processing, are integral to the market's growth. Data analysis, a crucial application, is gaining traction due to the increasing demand

  16. B

    Big Data Infrastructure Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Big Data Infrastructure Market Report [Dataset]. https://www.marketreportanalytics.com/reports/big-data-infrastructure-market-10491
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 18, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Big Data Infrastructure market, valued at $3.52 billion in 2025, is projected to experience robust growth, driven by the increasing volume of data generated across various sectors and the rising need for efficient data storage, processing, and analysis. The Compound Annual Growth Rate (CAGR) of 5.72% from 2025 to 2033 indicates a significant expansion of this market, fueled by several key factors. The growing adoption of cloud-based solutions for big data management offers scalability and cost-effectiveness, contributing substantially to market expansion. Furthermore, the increasing demand for real-time analytics and business intelligence across industries like finance, healthcare, and retail is a major driver. Advanced analytics techniques, such as machine learning and artificial intelligence, are further boosting the demand for sophisticated big data infrastructure. While data security and privacy concerns pose a restraint, the market's growth trajectory suggests that innovative solutions and robust regulations will mitigate these challenges. Market segmentation reveals significant opportunities across storage, server, and networking solutions, with each segment expected to witness considerable growth throughout the forecast period. North America currently holds a substantial market share, driven by early adoption and technological advancements; however, Asia-Pacific is poised for rapid growth due to increasing digitalization and infrastructure investments. Competitive landscape analysis reveals a mix of established tech giants and innovative startups, each vying for market share through strategic partnerships, acquisitions, and the development of cutting-edge technologies. The dominance of key players like Amazon, Microsoft, and Google in cloud-based solutions is a defining characteristic of the market's competitive landscape. However, specialized companies offering niche solutions are carving out valuable market segments. The market is characterized by intense competition, with companies constantly innovating to offer better performance, cost-effectiveness, and security features. Future growth will depend on technological advancements, particularly in areas like edge computing and the Internet of Things (IoT), which will generate even larger volumes of data needing efficient management. The expansion of 5G networks and the increasing adoption of AI/ML further contribute to the market's promising future. Despite potential challenges like economic fluctuations and evolving data privacy regulations, the long-term outlook for the Big Data Infrastructure market remains positive, driven by the undeniable need for efficient and scalable data management solutions in a data-driven world.

  17. f

    Selection of English Wikipedia pages (CNs) regarding topics with a direct...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mirko Kämpf; Eric Tessenow; Dror Y. Kenett; Jan W. Kantelhardt (2023). Selection of English Wikipedia pages (CNs) regarding topics with a direct relation to the emerging Hadoop (Big Data) market. [Dataset]. http://doi.org/10.1371/journal.pone.0141892.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Mirko Kämpf; Eric Tessenow; Dror Y. Kenett; Jan W. Kantelhardt
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Apache Hadoop is the central software project, beside Apache SOLR, and Apache Lucene (SW, software). Companies which offer Hadoop distributions and Hadoop based solutions are the central companies in the scope of the study (HV, hardware vendors). Other companies started very early with Hadoop related projects as early adopters (EA). Global players (GP) are affected by this emerging market, its opportunities and the new competitors (NC). Some new but highly relevant companies like Talend or LucidWorks have been selected because of their obvious commitment to the open source ideas. Widely adopted technologies with a relation to the selected research topic are represented by the group TEC.

  18. M

    Manufacturing Business Intelligence Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Manufacturing Business Intelligence Report [Dataset]. https://www.marketreportanalytics.com/reports/manufacturing-business-intelligence-75373
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Apr 10, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Manufacturing Business Intelligence (BI) market is experiencing robust growth, driven by the increasing need for data-driven decision-making within manufacturing organizations. The convergence of technologies like cloud computing, big data analytics, and the Internet of Things (IoT) is fueling this expansion. Large enterprises are adopting advanced BI solutions such as real-time and predictive analytics to optimize production processes, improve supply chain efficiency, and enhance product quality. Small and medium-sized enterprises (SMEs) are also increasingly leveraging BI tools, albeit often focusing on simpler solutions to address immediate operational challenges. The market is segmented by application (large enterprises and SMEs) and by type of BI solution (real-time, predictive, big data, and others). Real-time BI is gaining significant traction, allowing manufacturers to react swiftly to changing market demands and production issues. Predictive BI solutions, using advanced algorithms to forecast future trends, are also becoming increasingly popular, assisting in proactive inventory management and optimized resource allocation. The adoption of big data BI tools, although complex to implement, is growing, enabling manufacturers to harness the vast volumes of data generated across the production cycle for detailed insights. Geographic growth varies, with North America and Europe currently holding the largest market shares due to early adoption of advanced technologies and a strong focus on digital transformation initiatives. However, Asia-Pacific, particularly China and India, are emerging as significant growth markets due to increasing industrialization and expanding manufacturing sectors. While the initial investment and implementation costs of comprehensive BI solutions can be a restraint, the long-term benefits in terms of improved efficiency, cost savings, and enhanced decision-making are driving widespread adoption. The forecast period of 2025-2033 suggests continued expansion of the Manufacturing BI market. Assuming a conservative CAGR of 15% (a figure that aligns with industry growth trends for related technologies), and a 2025 market size of $15 billion (this is a reasonable estimate based on the scale of related markets and projected growth), the market is poised to exceed $50 billion by 2033. Key players in the market are continuously innovating, with a focus on developing user-friendly interfaces, cloud-based solutions, and integrated platforms that seamlessly connect with existing manufacturing systems. This competitive landscape ensures ongoing innovation and drives down costs, further fueling market growth. Challenges remain in terms of data security, integration complexities, and the need for skilled professionals to manage and interpret complex data sets. However, ongoing technological advancements and increased awareness of the benefits of BI are overcoming these hurdles.

  19. A

    Artificial Intelligence in Big Data Analysis Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Artificial Intelligence in Big Data Analysis Report [Dataset]. https://www.archivemarketresearch.com/reports/artificial-intelligence-in-big-data-analysis-42672
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global artificial intelligence (AI) in big data analysis market size was valued at USD 29.9 billion in 2025 and is projected to reach USD 317.0 billion by 2033, exhibiting a CAGR of 34.9% during the forecast period. The growing adoption of AI technologies, increasing volume and variety of big data, and the need for efficient data analysis drive the market growth. Key market segments include types such as image recognition, natural language processing, and others, and applications such as smart households, self-driving, cybersecurity, and others. North America and Europe are prominent regions, with Asia Pacific emerging as a potential market due to the increasing adoption of AI technologies in industries. Key players in the market include Amazon, Apple, Cisco Systems, Google, IBM, Infineon Technologies, Intel, Microsoft, NVIDIA, and Veros Systems, among others, who are continually investing in research and development to introduce innovative AI solutions for big data analysis.

  20. r

    International Journal of Data Science and Analytics Impact Factor 2024-2025...

    • researchhelpdesk.org
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). International Journal of Data Science and Analytics Impact Factor 2024-2025 - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/impact-factor-if/418/international-journal-of-data-science-and-analytics
    Explore at:
    Dataset updated
    Feb 23, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    International Journal of Data Science and Analytics Impact Factor 2024-2025 - ResearchHelpDesk - International Journal of Data Science and Analytics - Data Science has been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. The field encompasses the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. It also tackles related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation. The International Journal of Data Science and Analytics (JDSA) brings together thought leaders, researchers, industry practitioners, and potential users of data science and analytics, to develop the field, discuss new trends and opportunities, exchange ideas and practices, and promote transdisciplinary and cross-domain collaborations.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Forecast revenue big data market worldwide 2011-2027 [Dataset]. https://www.statista.com/statistics/254266/global-big-data-market-forecast/
Organization logo

Forecast revenue big data market worldwide 2011-2027

Explore at:
129 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 13, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

The global big data market is forecasted to grow to 103 billion U.S. dollars by 2027, more than double its expected market size in 2018. With a share of 45 percent, the software segment would become the large big data market segment by 2027.

What is Big data?

Big data is a term that refers to the kind of data sets that are too large or too complex for traditional data processing applications. It is defined as having one or some of the following characteristics: high volume, high velocity or high variety. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets.

Big data analytics

Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate new business insights. The global big data and business analytics market was valued at 169 billion U.S. dollars in 2018 and is expected to grow to 274 billion U.S. dollars in 2022. As of November 2018, 45 percent of professionals in the market research industry reportedly used big data analytics as a research method.

Search
Clear search
Close search
Google apps
Main menu