Facebook
TwitterThe statistic shows the problems that organizations face when using big data technologies worldwide as of 2017. Around ** percent of respondents stated that inadequate analytical know-how was a major problem that their organization faced when using big data technologies as of 2017.
Facebook
TwitterThe global big data market is forecasted to grow to 103 billion U.S. dollars by 2027, more than double its expected market size in 2018. With a share of 45 percent, the software segment would become the large big data market segment by 2027. What is Big data? Big data is a term that refers to the kind of data sets that are too large or too complex for traditional data processing applications. It is defined as having one or some of the following characteristics: high volume, high velocity or high variety. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. Big data analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate new business insights. The global big data and business analytics market was valued at 169 billion U.S. dollars in 2018 and is expected to grow to 274 billion U.S. dollars in 2022. As of November 2018, 45 percent of professionals in the market research industry reportedly used big data analytics as a research method.
Facebook
TwitterThis blog post was posted by Edward L. Hunter on July 8, 2015
Facebook
TwitterThe Big Data Interagency Working Group (BD IWG) held a workshop, Measuring the Impact of Digital Repositories, on February 28 - March 1, 2017 in Arlington, VA. The aim of the workshop was to identify current assessment metrics, tools, and methodologies that are effective in measuring the impact of digital data repositories, and to identify the assessment issues, obstacles, and tools that require additional research and development (R&D). This workshop brought together leaders from academic, journal, government, and international data repository funders, users, and developers to discuss these issues...
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Big Data Market Size 2025-2029
The big data market size is valued to increase USD 193.2 billion, at a CAGR of 13.3% from 2024 to 2029. Surge in data generation will drive the big data market.
Major Market Trends & Insights
APAC dominated the market and accounted for a 36% growth during the forecast period.
By Deployment - On-premises segment was valued at USD 55.30 billion in 2023
By Type - Services segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 193.04 billion
Market Future Opportunities: USD 193.20 billion
CAGR from 2024 to 2029 : 13.3%
Market Summary
In the dynamic realm of business intelligence, the market continues to expand at an unprecedented pace. According to recent estimates, this market is projected to reach a value of USD 274.3 billion by 2022, underscoring its significant impact on modern industries. This growth is driven by several factors, including the increasing volume, variety, and velocity of data generation. Moreover, the adoption of advanced technologies, such as machine learning and artificial intelligence, is enabling businesses to derive valuable insights from their data. Another key trend is the integration of blockchain solutions into big data implementation, enhancing data security and trust.
However, this rapid expansion also presents challenges, such as ensuring data privacy and security, managing data complexity, and addressing the skills gap. Despite these challenges, the future of the market looks promising, with continued innovation and investment in data analytics and management solutions. As businesses increasingly rely on data to drive decision-making and gain a competitive edge, the importance of effective big data strategies will only grow.
What will be the Size of the Big Data Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Big Data Market Segmented?
The big data industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
On-premises
Cloud-based
Hybrid
Type
Services
Software
End-user
BFSI
Healthcare
Retail and e-commerce
IT and telecom
Others
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
Australia
China
India
Japan
South Korea
Rest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.
In the ever-evolving landscape of data management, the market continues to expand with innovative technologies and solutions. On-premises big data software deployment, a popular choice for many organizations, offers control over hardware and software functions. Despite the high upfront costs for hardware purchases, it eliminates recurring monthly payments, making it a cost-effective alternative for some. However, cloud-based deployment, with its ease of access and flexibility, is increasingly popular, particularly for businesses dealing with high-velocity data ingestion. Cloud deployment, while convenient, comes with its own challenges, such as potential security breaches and the need for companies to manage their servers.
On-premises solutions, on the other hand, provide enhanced security and control, but require significant capital expenditure. Advanced analytics platforms, such as those employing deep learning models, parallel processing, and machine learning algorithms, are transforming data processing and analysis. Metadata management, data lineage tracking, and data versioning control are crucial components of these solutions, ensuring data accuracy and reliability. Data integration platforms, including IoT data integration and ETL process optimization, are essential for seamless data flow between systems. Real-time analytics, data visualization tools, and business intelligence dashboards enable organizations to make data-driven decisions. Data encryption methods, distributed computing, and data lake architectures further enhance data security and scalability.
Request Free Sample
The On-premises segment was valued at USD 55.30 billion in 2019 and showed a gradual increase during the forecast period.
With the integration of AI-powered insights, natural language processing, and predictive modeling, businesses can unlock valuable insights from their data, improving operational efficiency and driving growth. A recent study reveals that the market is projected to reach USD 274.3 billion by 2022, underscoring its growing importance in today's data-driven economy. This continuous evolution of big data technologies and solutions underscores the need for robust data governa
Facebook
Twitterhttps://github.com/microsoft/DataScienceProblems/blob/main/LICENSE.txthttps://github.com/microsoft/DataScienceProblems/blob/main/LICENSE.txt
Evaluate a natural language code generation model on real data science pedagogical notebooks! Data Science Problems (DSP) includes well-posed data science problems in Markdown along with unit tests to verify correctness and a Docker environment for reproducible execution. About 1/3 of notebooks in this benchmark also include data dependencies, so this benchmark not only can test a model's ability to chain together complex tasks, but also evaluate the solutions on real data! See our paper Training and Evaluating a Jupyter Notebook Data Science Assistant (https://arxiv.org/abs/2201.12901) for more details about state of the art results and other properties of the dataset.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for Big Data Analytics in the BFSI sector was valued at approximately USD 20 billion in 2023 and is expected to reach nearly USD 60 billion by 2032, growing at a robust CAGR of 12.5% during the forecast period. This significant growth can be attributed to the increasing adoption of advanced data analytics techniques in the banking, financial services, and insurance (BFSI) sector to enhance decision-making processes, optimize operations, and improve customer experiences.
One of the primary growth factors for the Big Data Analytics market in the BFSI sector is the growing need for risk management and fraud detection. Financial institutions are increasingly harnessing big data analytics to detect anomalies and patterns that could indicate fraudulent activities, thereby protecting themselves and their customers from significant financial losses. With cyber threats becoming more sophisticated, the demand for advanced analytics solutions that can provide real-time insights and predictive analytics is on the rise.
Another critical driver of market growth is the increasing regulatory requirements and compliance standards that financial institutions must adhere to. Governments and regulatory bodies worldwide are imposing stricter regulations to ensure the stability and security of financial systems. Big data analytics solutions help organizations ensure compliance with these regulations by providing comprehensive data analysis and reporting capabilities, which can identify potential compliance issues before they become critical problems.
Customer analytics is also a significant growth factor, as financial institutions strive to understand their customers better and offer personalized services. By leveraging big data analytics, banks and insurers can analyze customer behavior, preferences, and transaction history to develop tailored products and services, thereby enhancing customer satisfaction and loyalty. This customer-centric approach not only helps in retaining existing customers but also attracts new ones, further driving market growth.
Regionally, North America holds the largest market share due to the early adoption of advanced technologies and the presence of major financial institutions that are keen on investing in big data analytics solutions. The region's strong technological infrastructure and supportive regulatory environment also contribute to market growth. Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by the rapid digital transformation in emerging economies such as China and India, and increasing investments in big data analytics by regional BFSI players.
The Big Data Analytics market in the BFSI sector can be segmented by components into software and services. The software segment encompasses various analytics tools and platforms that enable financial institutions to collect, process, and analyze large volumes of data. This segment is expected to witness substantial growth owing to the increasing demand for sophisticated analytics software that can handle the complexity and scale of financial data.
Within the software segment, solutions for data visualization, predictive analytics, and machine learning are gaining significant traction. These technologies empower organizations to uncover hidden patterns, predict future trends, and make data-driven decisions. For instance, predictive analytics can help banks forecast credit risk and optimize loan portfolios, while machine learning algorithms can enhance fraud detection systems by identifying unusual transaction patterns.
The services segment includes consulting, implementation, and maintenance services offered by vendors to help BFSI institutions effectively deploy and manage big data analytics solutions. As the adoption of big data analytics grows, the demand for professional services to support the implementation and ongoing management of these solutions is also expected to rise. Consulting services are particularly important as they enable financial institutions to develop tailored analytics strategies that align with their specific business goals and regulatory requirements.
Furthermore, managed services are becoming increasingly popular, as they allow organizations to outsource the management of their analytics infrastructure to specialized vendors. This not only reduces the burden on internal IT teams but also ensures that the analytics systems are maintained and updated regularly to
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Big Data in Oil and Gas Sector market size is projected to reach USD XX million by 2024 and is expected to expand at a compound annual growth rate (CAGR) of XX% from 2024 to 2031.
The global Big Data in Oil and Gas Sector market is anticipated to grow significantly, with a projected CAGR of XX% between 2024 and 2031.
North America is expected to hold a major market share of more than XX%, with a market size of USD XX million in 2024, and is forecasted to grow at a CAGR of XX% from 2024 to 2031 due to the advanced technological infrastructure and the high adoption rate of digital technologies in the oil and gas sector.
The upstream application segment held the highest Big Data in Oil and Gas Sector market revenue share in 2024, attributed to the critical role of big data in exploration and production activities, optimizing reservoir performance, and minimizing risks.
Market Dynamics - Key Drivers of the Big Data in Oil and Gas Sector
Integration of Advanced Analytics for Enhanced Decision-Making Drives the Big Data in Oil & Gas Market
The Big Data in Oil & Gas market is driven by the adoption of advanced analytics, where cost efficiency is a major achievement. Big data analytics processes complex datasets for better predictions and optimisations. Its affordability relative to other precious metals like gold and platinum further amplifies its appeal. As Big Data is further integrated, the development of the Oil & Gas Sector is buoyed by enhancing decision-making, efficiency, and safety.
For instance, ExxonMobil, in their "2020 Energy & Carbon Summary" report, highlighted the use of advanced seismic imaging and data analytics to improve the accuracy of subsurface exploration, thereby reducing drilling risks and enhancing operational efficiency.
IoT Deployment for Real-Time Monitoring and Efficiency Further Propel the Big Data in Oil & Gas Market
The rising demand for monitored infographics and data analytics is to fuel the Big Data in the Oil & Gas market. The deployment of IoT devices facilitates real-time monitoring and operational efficiency. This development aligns with the broader shift towards self-sufficiency and positive capital allocations. As IoT sensors on equipment and in operations provide critical data for predictive maintenance and decision-making, contributing to the shift from capital expenditure to operational expenditure in multiple outsourced activities for the businesses.
Schlumberger, in their "Digital Transformation in the Oil and Gas Industry" report, discussed implementing IoT solutions to monitor well operations, which has led to significant improvements in maintenance strategies and operational efficiencies.
Market Dynamics - Key Restraints of the Big Data in Oil and Gas Sector
Data Security and Privacy Concerns is a Challenge for the Big Data in Oil & Gas Market
With the companies storing all the its data on every aspect of business for a more efficient future working, there is still room for avoidable threats. The rising demand for big data might come with the threat of Data security and privacy are significant concerns with the increasing use of big data analytics, given the oil and gas sector's sensitive nature. Cyber threats limit the adoption of big data solutions, limiting the demand for Big data in the Oil & Gas market.
The International Energy Agency (IEA), in its "Digitalization & Energy" report, highlighted the cybersecurity challenges facing the energy sector, emphasizing the need for robust security measures in the adoption of digital technologies, including big data analytics.
Integration and Interoperability Challenges will Restraint the Big Data in Oil & Gas Market
Data access, analysis, and storage are becoming more and more of an issue for businesses. Compatibility and interoperability issues arise when big data technologies are integrated with legacy systems. The integration process is made more difficult by the diversity of data sources and formats. Most firms are finding it necessary to evaluate new technologies and legacy infrastructure as the needs of Big Data outpace those of traditional relational databases.
A study by Deloitte, titled "Digital Transformation: Shaping the Future of the Oil and Gas Industry", identified integration of new technologies with existin...
Facebook
TwitterAs of March 2025, there were a reported 5,426 data centers in the United States, the most of any country worldwide. A further 529 were located in Germany, while 523 were located in the United Kingdom. What is a data center? A data center is a network of computing and storage resources that enables the delivery of shared software applications and data. These facilities can house large amounts of critical and important data, and therefore are vital to the daily functions of companies and consumers alike. As a result, whether it is a cloud, colocation, or managed service, data center real estate will have increasing importance worldwide. Hyperscale data centers In the past, data centers were highly controlled physical infrastructures, but the cloud has since changed that model. A cloud data service is a remote version of a data center – located somewhere away from a company's physical premises. Cloud IT infrastructure spending has grown and is forecast to rise further in the coming years. The evolution of technology, along with the rapid growth in demand for data across the globe, is largely driven by the leading hyperscale data center providers.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Big Data Services Market Size 2025-2029
The big data services market size is forecast to increase by USD 604.2 billion, at a CAGR of 54.4% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing adoption of big data in various industries, particularly in blockchain technology. The ability to process and analyze vast amounts of data in real-time is revolutionizing business operations and decision-making processes. However, this market is not without challenges. One of the most pressing issues is the need to cater to diverse client requirements, each with unique data needs and expectations. This necessitates customized solutions and a deep understanding of various industries and their data requirements. Additionally, ensuring data security and privacy in an increasingly interconnected world poses a significant challenge. Companies must navigate these obstacles while maintaining compliance with regulations and adhering to ethical data handling practices. To capitalize on the opportunities presented by the market, organizations must focus on developing innovative solutions that address these challenges while delivering value to their clients. By staying abreast of industry trends and investing in advanced technologies, they can effectively meet client demands and differentiate themselves in a competitive landscape.
What will be the Size of the Big Data Services Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the ever-increasing volume, velocity, and variety of data being generated across various sectors. Data extraction is a crucial component of this dynamic landscape, enabling entities to derive valuable insights from their data. Human resource management, for instance, benefits from data-driven decision making, operational efficiency, and data enrichment. Batch processing and data integration are essential for data warehousing and data pipeline management. Data governance and data federation ensure data accessibility, quality, and security. Data lineage and data monetization facilitate data sharing and collaboration, while data discovery and data mining uncover hidden patterns and trends.
Real-time analytics and risk management provide operational agility and help mitigate potential threats. Machine learning and deep learning algorithms enable predictive analytics, enhancing business intelligence and customer insights. Data visualization and data transformation facilitate data usability and data loading into NoSQL databases. Government analytics, financial services analytics, supply chain optimization, and manufacturing analytics are just a few applications of big data services. Cloud computing and data streaming further expand the market's reach and capabilities. Data literacy and data collaboration are essential for effective data usage and collaboration. Data security and data cleansing are ongoing concerns, with the market continuously evolving to address these challenges.
The integration of natural language processing, computer vision, and fraud detection further enhances the value proposition of big data services. The market's continuous dynamism underscores the importance of data cataloging, metadata management, and data modeling for effective data management and optimization.
How is this Big Data Services Industry segmented?
The big data services industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ComponentSolutionServicesEnd-userBFSITelecomRetailOthersTypeData storage and managementData analytics and visualizationConsulting servicesImplementation and integration servicesSupport and maintenance servicesSectorLarge enterprisesSmall and medium enterprises (SMEs)GeographyNorth AmericaUSMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW).
By Component Insights
The solution segment is estimated to witness significant growth during the forecast period.Big data services have become indispensable for businesses seeking operational efficiency and customer insight. The vast expanse of structured and unstructured data presents an opportunity for organizations to analyze consumer behaviors across multiple channels. Big data solutions facilitate the integration and processing of data from various sources, enabling businesses to gain a deeper understanding of customer sentiment towards their products or services. Data governance ensures data quality and security, while data federation and data lineage provide transparency and traceability. Artificial intelligence and machine learning algo
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Market Analysis of Hadoop Big-Data Analytics Tool The Hadoop big-data analytics market is projected to grow at a CAGR of 11.9% during the forecast period 2025-2033, reaching a market size of $3666.6 million by 2033. The growth is attributed to increasing data volumes, the adoption of cloud computing, and the growing need for real-time analytics. Industries such as banking, retail, healthcare, and manufacturing are major contributors to this growth. Key trends shaping the market include the rise of artificial intelligence (AI) and machine learning (ML), which enhance the accuracy and efficiency of data analysis. Additionally, the growing popularity of self-service analytics tools empowers non-technical users to leverage data. However, challenges such as data privacy concerns, data quality issues, and the need for skilled professionals hinder growth. Competition in the market is intense, with major players including Cloudera, MapR Technologies, IBM, Amazon Web Services, and Microsoft. The market is expected to witness further consolidation as vendors seek strategic partnerships and acquisitions to expand their offerings. Hadoop is an open-source, distributed computing framework designed for processing and analyzing large volumes of data. With its ability to handle zettabytes of data, Hadoop has become an essential tool for businesses seeking to gain insights from their data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Profiling of individuals based on inborn, acquired, and assigned characteristics is central for decision making in health care. In the era of omics and big smart data, it becomes urgent to differentiate between different data governance affordances for different profiling activities. Typically, diagnostic profiling is in the focus of researchers and physicians, and other types are regarded as undesired side-effects; for example, in the connection of health care insurance risk calculations. Profiling in a legal sense is addressed, for example, by the EU data protection law. It is defined in the General Data Protection Regulation as automated decision making. This term does not correspond fully with profiling in biomedical research and healthcare, and the impact on privacy has hardly ever been examined. But profiling is also an issue concerning the fundamental right of non-discrimination, whenever profiles are used in a way that has a discriminatory effect on individuals. Here, we will focus on genetic profiling, define related notions as legal and subject-matter definitions frequently differ, and discuss the ethical and legal challenges.
Facebook
TwitterThis dataset was created by Nidhi Singh Baghel
Facebook
TwitterIn 2024, spending on digital transformation (DX) is projected to reach 2.5 trillion U.S. dollars. By 2027, global digital transformation spending is forecast to reach 3.9 trillion U.S. dollars. What is digital transformation? Digital transformation refers to the adoption of digital technology to transform business processes and services from non-digital to digital. This encompasses, among others, moving data to the cloud, using technological devices and tools for communication and collaboration, as well as automating processes. What is driving digital transformation? Digital transformation growth is due to several contributing factors. Among these was COVID-19 pandemic, which has increased the digital transformation tempo in organizations around the globe in 2020 considerably. Although the pandemic is over, working from home among organizations globally has not only remained, but also increased, increasing the drive for digital transformation. Other contributing causes include customer demand and the need to be on par with competitors. Overall, utilizing technologies for digital transformation render organizations more agile in responding to changing markets and enhance innovation, thereby making them more resilient.
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global big data analytics in healthcare market size is USD 30251.2 million in 2024 and will expand at a compound annual growth rate (CAGR) of 17.20% from 2024 to 2031.
North America held the major market of more than 40% of the global revenue with a market size of USD 12100.48 million in 2024 and will grow at a compound annual growth rate (CAGR) of 15.4% from 2024 to 2031.
Europe accounted for a share of over 30% of the global market size of USD 9075.36 million.
Asia Pacific held the market of around 23% of the global revenue with a market size of USD 6957.78 million in 2024 and will grow at a compound annual growth rate (CAGR) of 19.2% from 2024 to 2031.
Latin America's market has more than 5% of the global revenue, with a market size of USD 16.6 million in 2024, and will grow at a compound annual growth rate (CAGR) of 12.4% from 2024 to 2031.
Middle East and Africa held the major market of around 2% of the global revenue with a market size of USD 605.02 million in 2024 and will grow at a compound annual growth rate (CAGR) of 16.9% from 2024 to 2031.
The hospitals & clinics category held the highest big data analytics in healthcare market revenue share in 2024.
Market Dynamics of Big Data Analytics in Healthcare Market
Key Drivers for Big Data Analytics in Healthcare Market
Growing Use of EMR and EHR to Increase the Demand Globally:
One aspect that has contributed to the widespread implementation of EHR is government backing for their adoption, given their advantages over traditional paper-based health records. Adoption of EHRs benefits ambulatory practices and patients alike because they enhance patient care, facilitate faster access to records, and improve care coordination; increase practice efficiency and reduce costs through reduced paperwork; foster patient participation and transparency; and improve diagnostic and patient outcomes through accurate prescribing. For instance, To safeguard and legitimize digital healthcare data, the Indian government introduced the Digital Information Security in Healthcare Act (DISHA) in March 2019. The purpose of DISHA is to control the creation, gathering, storing, processing, sharing, and ownership of individually identifiable health information and patient health data. (Source: https://www.znetlive.com/blog/digital-information-security-healthcare-act-disha/).
Growing Need to Lower Medical Expenses to Propel Market Growth:
These days, rising operating costs are a problem for many hospitals and health organizations. Medical practices can operate more efficiently thanks to healthcare analytics. Reduced transcribing expenses, less time spent on paperwork, better billing documentation, fewer or no chart pulls, and storage, and better patient outcomes and care can all help cut down on operating expenses. It is said that putting this into practice saves a lot of money. Moreover, hospitals and medical practitioners can reduce unnecessary and excessive spending by utilizing analytical tools. Research has also shown that medical errors can result in billion-dollar expenses, including higher medical malpractice lawsuit costs and additional expenses for patients who require therapy to recover from errors in medicine. In addition, The application of predictive analytics can improve patient care and lower the likelihood of disease in the future. Thus, it is anticipated that the growing demand to lower operating costs in the healthcare sector will contribute to the expansion of big data analytics in healthcare market.
Key Restraint Factor for the Big Data Analytics in Healthcare Market
Rising Concerns About Safety Could Prevent Market Expansion:
The technology creates serious questions about data security and privacy, as well as about issues like fake data creation, the need for real-time protection, and its desire. Some of the current areas that require attention are the remote warehouse, improper identity management, inadequate acquisitions in the information security and systems, human error, networked appliances, and Internet of Things applications. Attempting to get around these problems is extremely difficult for associations. It is anticipated that the growing frequency of data loss incidents and cyberattacks on businesses that store customer data would hinder the industry's ability to grow. Furthermore, it is anticipated that upholding data privacy regulations such as the EU General...
Facebook
TwitterThe revenue is forecast to experience significant growth in all regions in 2029. From the selected regions, the ranking by revenue in the data center market is forecast to be led by the United States with 212.06 billion U.S. dollars. In contrast, the ranking is trailed by the United Kingdom with 23.76 billion U.S. dollars, recording a difference of 188.3 billion U.S. dollars to the United States. Find further statistics on other topics such as a comparison of the revenue in the world and a comparison of the revenue in the United States.The Statista Market Insights cover a broad range of additional markets.
Facebook
TwitterOn January 13–15, 2021, the Big Data Interagency Working Group (BD IWG) of the Networking and Information Technology Research and Development Program held a workshop on Pioneering the Future of Federally Supported Data Repositories to explore opportunities and challenges for the future of federally supported data repositories (FSDRs). FSDRs facilitate access to federally funded research data and play a pivotal role in enabling machine learning, artificial intelligence, and other data-driven science and discovery. FSDRs also play a critical role as building blocks for a future data ecosystem that emerged during the workshop...
Facebook
Twitterhttps://www.shibatadb.com/license/data/proprietary/v1.0/license.txthttps://www.shibatadb.com/license/data/proprietary/v1.0/license.txt
Yearly citation counts for the publication titled "Variable Generation Power Forecasting as a Big Data Problem".
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Practice problems or data science projects are one of the best ways to learn data science. You don’t learn data science until you start working on problems yourself.
BigMart Sales Prediction practice problem was launched about a month back, and 624 data scientists have already registered with 77 among those making submissions. If you’re finding it difficult to start or if you feel stuck somewhere, this article is meant just for you. Today I am going to take you through the entire journey of getting started with this data set.
I hope that this article will help more and more people start their data science journey!
Facebook
Twitterhttp://www.gnu.org/licenses/agpl-3.0.htmlhttp://www.gnu.org/licenses/agpl-3.0.html
We do the fraud-detection based on this dataset mainly to complete the project of data science problems in different features of Airbnb Boston dataset. Hope every one can enjoy👍
Facebook
TwitterThe statistic shows the problems that organizations face when using big data technologies worldwide as of 2017. Around ** percent of respondents stated that inadequate analytical know-how was a major problem that their organization faced when using big data technologies as of 2017.