27 datasets found
  1. o

    Bitcoin Historical Prices Dataset

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Nov 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sumit Banik (2020). Bitcoin Historical Prices Dataset [Dataset]. http://doi.org/10.5281/zenodo.4292990
    Explore at:
    Dataset updated
    Nov 27, 2020
    Authors
    Sumit Banik
    Description

    The following dataset contains the attributes: Date: Specific date to be observed for the corresponding price. Open: The opening price for the day High: The maximum price it has touched for the day Low: The minimum price it has touched for the day Close: The closing price for the day percent_change_24h: Percentage change for the last 24hours Volume: Volume of Bitcoin traded at the date Market Cap: Market Value of traded Bitcoin

  2. m

    Cryptocurrency dataset

    • data.mendeley.com
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Susrita Mahapatro (2025). Cryptocurrency dataset [Dataset]. http://doi.org/10.17632/5tv4bmrrf8.2
    Explore at:
    Dataset updated
    Mar 10, 2025
    Authors
    Susrita Mahapatro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset used in this research is a historical record of Bitcoin, Ethereum, and Litecoin’s daily trading activity, containing essential financial metrics for each date. This sample includes the following columns: Date: The specific day of each recorded entry, showing a continuous timeline. Open: The price of currencies at the start of the trading day. High: The highest price of currencies reached during the day. Low: The lowest price of currencies traded throughout the day. Close: The closing price of the currencies at the end of the trading day. Volume: The total trading volume, indicating the number of currencies traded that day in units. Market Cap: The total market capitalization of currencies, calculated as the total supply multiplied by the closing price.

  3. Integrated Cryptocurrency Historical Data for a Predictive Data-Driven...

    • cryptodata.center
    Updated Dec 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    cryptodata.center (2024). Integrated Cryptocurrency Historical Data for a Predictive Data-Driven Decision-Making Algorithm - Dataset - CryptoData Hub [Dataset]. https://cryptodata.center/dataset/integrated-cryptocurrency-historical-data-for-a-predictive-data-driven-decision-making-algorithm
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    CryptoDATA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cryptocurrency historical datasets from January 2012 (if available) to October 2021 were obtained and integrated from various sources and Application Programming Interfaces (APIs) including Yahoo Finance, Cryptodownload, CoinMarketCap, various Kaggle datasets, and multiple APIs. While these datasets used various formats of time (e.g., minutes, hours, days), in order to integrate the datasets days format was used for in this research study. The integrated cryptocurrency historical datasets for 80 cryptocurrencies including but not limited to Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Cardano (ADA), Tether (USDT), Ripple (XRP), Solana (SOL), Polkadot (DOT), USD Coin (USDC), Dogecoin (DOGE), Tron (TRX), Bitcoin Cash (BCH), Litecoin (LTC), EOS (EOS), Cosmos (ATOM), Stellar (XLM), Wrapped Bitcoin (WBTC), Uniswap (UNI), Terra (LUNA), SHIBA INU (SHIB), and 60 more cryptocurrencies were uploaded in this online Mendeley data repository. Although the primary attribute of including the mentioned cryptocurrencies was the Market Capitalization, a subject matter expert i.e., a professional trader has also guided the initial selection of the cryptocurrencies by analyzing various indicators such as Relative Strength Index (RSI), Moving Average Convergence/Divergence (MACD), MYC Signals, Bollinger Bands, Fibonacci Retracement, Stochastic Oscillator and Ichimoku Cloud. The primary features of this dataset that were used as the decision-making criteria of the CLUS-MCDA II approach are Timestamps, Open, High, Low, Closed, Volume (Currency), % Change (7 days and 24 hours), Market Cap and Weighted Price values. The available excel and CSV files in this data set are just part of the integrated data and other databases, datasets and API References that was used in this study are as follows: [1] https://finance.yahoo.com/ [2] https://coinmarketcap.com/historical/ [3] https://cryptodatadownload.com/ [4] https://kaggle.com/philmohun/cryptocurrency-financial-data [5] https://kaggle.com/deepshah16/meme-cryptocurrency-historical-data [6] https://kaggle.com/sudalairajkumar/cryptocurrencypricehistory [7] https://min-api.cryptocompare.com/data/price?fsym=BTC&tsyms=USD [8] https://min-api.cryptocompare.com/ [9] https://p.nomics.com/cryptocurrency-bitcoin-api [10] https://www.coinapi.io/ [11] https://www.coingecko.com/en/api [12] https://cryptowat.ch/ [13] https://www.alphavantage.co/ This dataset is part of the CLUS-MCDA (Cluster analysis for improving Multiple Criteria Decision Analysis) and CLUS-MCDAII Project: https://aimaghsoodi.github.io/CLUSMCDA-R-Package/ https://github.com/Aimaghsoodi/CLUS-MCDA-II https://github.com/azadkavian/CLUS-MCDA

  4. Daily Bitcoin (BTC) market cap history up to May 13, 2025

    • statista.com
    • ai-chatbox.pro
    Updated May 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Daily Bitcoin (BTC) market cap history up to May 13, 2025 [Dataset]. https://www.statista.com/statistics/377382/bitcoin-market-capitalization/
    Explore at:
    Dataset updated
    May 14, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    By 2025, the Bitcoin market cap had grown to over 2,000 billion USD as the cryptocurrency kept growing. Market capitalization is calculated by multiplying the total number of Bitcoins in circulation by the Bitcoin price. The Bitcoin market capitalization increased from approximately one billion U.S. dollars in 2013 to several times this amount since its surge in popularity. Dominance The Bitcoin market cap takes up a significant portion of the overall cryptocurrency market cap. This is referred to as "dominance". Within the crypto world, this so-called "dominance" ratio is one of the oldest and most investigated metrics available. It measures the coin's market cap relative to the overall crypto market — effectively showing how strong Bitcoin compared to all the other cryptocurrencies that are not BTC, called "altcoins". The Bitcoin dominance was above 50 percent. Maximum supply and scarcity Bitcoin is unusual from other cryptocurrencies in that its maximum supply is getting closer. By 2025, well over 19 million out of all 21 million possible Bitcoin had been created. Bitcoin's supply is expected to reach its maximum around the year 2140, likely making mining more energy-intensive.

  5. Cryptocurrency Prices Dataset

    • kaggle.com
    Updated Feb 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jahaidul Islam (2023). Cryptocurrency Prices Dataset [Dataset]. http://doi.org/10.34740/kaggle/ds/2906550
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 18, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Jahaidul Islam
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The Cryptocurrency Prices dataset includes prices and market capitalization data for popular cryptocurrencies, such as Bitcoin, Ethereum, Litecoin, and Ripple. The data covers daily prices and market capitalization from the inception of each cryptocurrency up to the present day.

    The dataset is well-suited for exploratory data analysis, time series analysis, and predictive modeling tasks related to cryptocurrencies. It can be used to examine historical price trends, correlations between different cryptocurrencies, and the overall market capitalization of the cryptocurrency market. Additionally, the data can be used to build models that predict future prices or market capitalization> of specific cryptocurrencies.

    Each row of the dataset represents a single day of trading for a particular cryptocurrency. The columns of the dataset include the following:

    • Cryptocurrency Name
    • Open Price: the opening price of the cryptocurrency on the trading day
    • Volume: the volume of the cryptocurrency traded on the trading day
    • Market Cap: the total market capitalization of the cryptocurrency on the trading day
    • CMC Rank
    • Dominance
    • Year till date Price Change Percentage

    The dataset includes data for multiple cryptocurrencies, such as Bitcoin, Ethereum, Litecoin, Ripple, and many others. Each cryptocurrency has its own set of data columns in the dataset.

    This dataset can be helpful for data analysts, data scientists, traders, investors, and anyone interested in exploring the cryptocurrency market. It is intended to facilitate research and analysis of the market and the underlying factors affecting various cryptocurrency prices and market capitalization.

  6. s

    Data from: Bitcoin Cash

    • data.smartidf.services
    • smartregionidf.outscale-euw2.opendatasoft.com
    • +2more
    csv, excel, json
    Updated Apr 11, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Bitcoin Cash [Dataset]. https://data.smartidf.services/explore/dataset/bitcoin-cash/
    Explore at:
    excel, json, csvAvailable download formats
    Dataset updated
    Apr 11, 2022
    Description

    Daily cryptocurrency data (transaction count, on-chain transaction volume, value of created coins, price, market cap, and exchange volume) in CSV format. The data sample stretches back to December 2013. Daily on-chain transaction volume is calculated as the sum of all transaction outputs belonging to the blocks mined on the given day. “Change” outputs are not included. Transaction count figure doesn’t include coinbase transactions. Zcash figures for on-chain volume and transaction count reflect data collected for transparent transactions only. In the last month, 10.5% (11/18/17) of ZEC transactions were shielded, and these are excluded from the analysis due to their private nature. Thus transaction volume figures in reality are higher than the estimate presented here, and NVT and exchange to transaction value lower. Data on shielded and transparent transactions can be found here and here. Decred data doesn’t include tickets and voting transactions. Monero transaction volume is impossible to calculate due to RingCT which hides transaction amounts.

  7. Bitcoin Price Prediction dataset

    • kaggle.com
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shahid Ali (2024). Bitcoin Price Prediction dataset [Dataset]. https://www.kaggle.com/datasets/shahidk3075/bitcoin-price-prediction-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Shahid Ali
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset is curated for those who are interested in predicting Bitcoin prices using historical data. It contains comprehensive information on Bitcoin's market behavior over time, including daily prices, trading volumes, and other relevant financial indicators. This dataset can be used to develop and test predictive models, analyze trends, and gain insights into the cryptocurrency market.

    Features: Date: The date corresponding to each entry. Open: The opening price of Bitcoin for the given date. High: The highest price reached by Bitcoin on the given date. Low: The lowest price reached by Bitcoin on the given date. Close: The closing price of Bitcoin for the given date. Volume: The total volume of Bitcoin traded on the given date. Market Cap: The total market capitalization of Bitcoin on the given date. Adjusted Close: The closing price adjusted for any dividends or stock splits. Usage: This dataset can be used for various purposes, including:

    Time Series Analysis: Understanding how Bitcoin prices fluctuate over time. Predictive Modeling: Building models to predict future prices based on historical data. Market Research: Analyzing trends and patterns in the cryptocurrency market.

  8. Top10_Cryptocurrencies_03_2025

    • kaggle.com
    Updated Apr 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Albert5913 (2025). Top10_Cryptocurrencies_03_2025 [Dataset]. http://doi.org/10.34740/kaggle/dsv/11615391
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 29, 2025
    Dataset provided by
    Kaggle
    Authors
    Albert5913
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    This dataset provides daily historical data for 10 major cryptocurrencies. Each row represents a single trading day, covering the maximum range that was available at the time of extraction.

    Key Features

    Closing Price and Volume: For each cryptocurrency, two columns are provided:

    xxx_closing_price – The daily closing price in USD

    xxx_volume – The daily trading volume

    Date Format: Each date is listed in “dd/mm/yy” format for easy reading.

    Top 10 Cryptocurrencies: Includes well-known coins such as Bitcoin, Ethereum, and others with high market capitalization.

    • Potential Uses

    1.Exploratory data analysis or visualizations of crypto market trends

    2.Time-series modeling, forecasting, or anomaly detection

    3.Comparative studies between multiple cryptocurrencies

  9. d

    MLP-based Learnable Window Size Dataset for Bitcoin Market Price

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajabi, Shahab (2023). MLP-based Learnable Window Size Dataset for Bitcoin Market Price [Dataset]. http://doi.org/10.7910/DVN/5YBLKV
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Rajabi, Shahab
    Description

    The dataset of this paper is collected based on Google, Blockchain, and the Bitcoin market. Generally, there is a total of 26 features, however, a feature whose correlation rate is lower than 0.3 between the variations of price and the variations of feature has been eliminated. Hence, a total of 21 practical features including Market capitalization, Trade-volume, Transaction-fees USD, Average confirmation time, Difficulty, High price, Low price, Total hash rate, Block-size, Miners-revenue, N-transactions-total, Google searches, Open price, N-payments-per Block, Total circulating Bitcoin, Cost-per-transaction percent, Fees-USD-per transaction, N-unique-addresses, N-transactions-per block, and Output-volume have been selected. In addition to the values of these features, for each feature, a new one is created that includes the difference between the previous day and the day before the previous day as a supportive feature. From the point of view of the number and history of the dataset used, a total of 1275 training data were used in the proposed model to extract patterns of Bitcoin price and they were collected from 12 Nov 2018 to 4 Jun 2021.

  10. Bitcoin Price History - Dataset, Chart, 5 Years, 10 Years, by Month, Halving...

    • moneymetals.com
    csv, json, xls, xml
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Money Metals Exchange (2024). Bitcoin Price History - Dataset, Chart, 5 Years, 10 Years, by Month, Halving [Dataset]. https://www.moneymetals.com/bitcoin-price
    Explore at:
    json, xml, csv, xlsAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    Money Metals
    Authors
    Money Metals Exchange
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 2009 - Sep 12, 2023
    Area covered
    World
    Measurement technique
    Tracking market benchmarks and trends
    Description

    In March 2024 Bitcoin BTC reached a new all-time high with prices exceeding 73000 USD marking a milestone for the cryptocurrency market This surge was due to the approval of Bitcoin exchange-traded funds ETFs in the United States allowing investors to access Bitcoin without directly holding it This development increased Bitcoin’s credibility and brought fresh demand from institutional investors echoing previous price surges in 2021 when Tesla announced its 15 billion investment in Bitcoin and Coinbase was listed on the Nasdaq By the end of 2022 Bitcoin prices dropped sharply to 15000 USD following the collapse of cryptocurrency exchange FTX and its bankruptcy which caused a loss of confidence in the market By August 2024 Bitcoin rebounded to approximately 64178 USD but remained volatile due to inflation and interest rate hikes Unlike fiat currency like the US dollar Bitcoin’s supply is finite with 21 million coins as its maximum supply By September 2024 over 92 percent of Bitcoin had been mined Bitcoin’s value is tied to its scarcity and its mining process is regulated through halving events which cut the reward for mining every four years making it harder and more energy-intensive to mine The next halving event in 2024 will reduce the reward to 3125 BTC from its current 625 BTC The final Bitcoin is expected to be mined around 2140 The energy required to mine Bitcoin has led to criticisms about its environmental impact with estimates in 2021 suggesting that one Bitcoin transaction used as much energy as Argentina Bitcoin’s future price is difficult to predict due to the influence of large holders known as whales who own about 92 percent of all Bitcoin These whales can cause dramatic market swings by making large trades and many retail investors still dominate the market While institutional interest has grown it remains a small fraction compared to retail Bitcoin is vulnerable to external factors like regulatory changes and economic crises leading some to believe it is in a speculative bubble However others argue that Bitcoin is still in its early stages of adoption and will grow further as more institutions and governments recognize its potential as a hedge against inflation and a store of value 2024 has also seen the rise of Bitcoin Layer 2 technologies like the Lightning Network which improve scalability by enabling faster and cheaper transactions These innovations are crucial for Bitcoin’s wider adoption especially for day-to-day use and cross-border remittances At the same time central bank digital currencies CBDCs are gaining traction as several governments including China and the European Union have accelerated the development of their own state-controlled digital currencies while Bitcoin remains decentralized offering financial sovereignty for those who prefer independence from government control The rise of CBDCs is expected to increase interest in Bitcoin as a hedge against these centralized currencies Bitcoin’s journey in 2024 highlights its growing institutional acceptance alongside its inherent market volatility While the approval of Bitcoin ETFs has significantly boosted interest the market remains sensitive to events like exchange collapses and regulatory decisions With the limited supply of Bitcoin and improvements in its transaction efficiency it is expected to remain a key player in the financial world for years to come Whether Bitcoin is currently in a speculative bubble or on a sustainable path to greater adoption will ultimately be revealed over time.

  11. A

    ‘Crypto Fear and Greed Index’ analyzed by Analyst-2

    • analyst-2.ai
    Updated May 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2018). ‘Crypto Fear and Greed Index’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-crypto-fear-and-greed-index-e01d/latest
    Explore at:
    Dataset updated
    May 28, 2018
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Crypto Fear and Greed Index’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/adelsondias/crypto-fear-and-greed-index on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Crypto Fear and Greed Index

    Each day, the website https://alternative.me/crypto/fear-and-greed-index/ publishes this index based on analysis of emotions and sentiments from different sources crunched into one simple number: The Fear & Greed Index for Bitcoin and other large cryptocurrencies.

    Why Measure Fear and Greed?

    The crypto market behaviour is very emotional. People tend to get greedy when the market is rising which results in FOMO (Fear of missing out). Also, people often sell their coins in irrational reaction of seeing red numbers. With our Fear and Greed Index, we try to save you from your own emotional overreactions. There are two simple assumptions:

    • Extreme fear can be a sign that investors are too worried. That could be a buying opportunity.
    • When Investors are getting too greedy, that means the market is due for a correction.

    Therefore, we analyze the current sentiment of the Bitcoin market and crunch the numbers into a simple meter from 0 to 100. Zero means "Extreme Fear", while 100 means "Extreme Greed". See below for further information on our data sources.

    Data Sources

    We are gathering data from the five following sources. Each data point is valued the same as the day before in order to visualize a meaningful progress in sentiment change of the crypto market.

    First of all, the current index is for bitcoin only (we offer separate indices for large alt coins soon), because a big part of it is the volatility of the coin price.

    But let’s list all the different factors we’re including in the current index:

    Volatility (25 %)

    We’re measuring the current volatility and max. drawdowns of bitcoin and compare it with the corresponding average values of the last 30 days and 90 days. We argue that an unusual rise in volatility is a sign of a fearful market.

    Market Momentum/Volume (25%)

    Also, we’re measuring the current volume and market momentum (again in comparison with the last 30/90 day average values) and put those two values together. Generally, when we see high buying volumes in a positive market on a daily basis, we conclude that the market acts overly greedy / too bullish.

    Social Media (15%)

    While our reddit sentiment analysis is still not in the live index (we’re still experimenting some market-related key words in the text processing algorithm), our twitter analysis is running. There, we gather and count posts on various hashtags for each coin (publicly, we show only those for Bitcoin) and check how fast and how many interactions they receive in certain time frames). A unusual high interaction rate results in a grown public interest in the coin and in our eyes, corresponds to a greedy market behaviour.

    Surveys (15%) currently paused

    Together with strawpoll.com (disclaimer: we own this site, too), quite a large public polling platform, we’re conducting weekly crypto polls and ask people how they see the market. Usually, we’re seeing 2,000 - 3,000 votes on each poll, so we do get a picture of the sentiment of a group of crypto investors. We don’t give those results too much attention, but it was quite useful in the beginning of our studies. You can see some recent results here.

    Dominance (10%)

    The dominance of a coin resembles the market cap share of the whole crypto market. Especially for Bitcoin, we think that a rise in Bitcoin dominance is caused by a fear of (and thus a reduction of) too speculative alt-coin investments, since Bitcoin is becoming more and more the safe haven of crypto. On the other side, when Bitcoin dominance shrinks, people are getting more greedy by investing in more risky alt-coins, dreaming of their chance in next big bull run. Anyhow, analyzing the dominance for a coin other than Bitcoin, you could argue the other way round, since more interest in an alt-coin may conclude a bullish/greedy behaviour for that specific coin.

    Trends (10%)

    We pull Google Trends data for various Bitcoin related search queries and crunch those numbers, especially the change of search volumes as well as recommended other currently popular searches. For example, if you check Google Trends for "Bitcoin", you can’t get much information from the search volume. But currently, you can see that there is currently a +1,550% rise of the query „bitcoin price manipulation“ in the box of related search queries (as of 05/29/2018). This is clearly a sign of fear in the market, and we use that for our index.

    There's a story behind every dataset and here's your opportunity to share yours.

    Copyright disclaimer

    This dataset is produced and maintained by the administrators of https://alternative.me/crypto/fear-and-greed-index/.

    This published version is an unofficial copy of their data, which can be also collected using their API (e.g., GET https://api.alternative.me/fng/?limit=10&format=csv&date_format=us).

    --- Original source retains full ownership of the source dataset ---

  12. Bitcoin Historical On-Chain Data (2014-2024)

    • kaggle.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arthur Bubolz (2024). Bitcoin Historical On-Chain Data (2014-2024) [Dataset]. https://www.kaggle.com/datasets/arthurgomesbubolz/bitcoin-historical-on-chain-data-2014-2024/discussion?sort=undefined
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Arthur Bubolz
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Description: This dataset was created using information from CoinMarketCap and Blockchair. Its primary objective is to provide a robust database of historical Bitcoin structural data, enabling comprehensive analysis of the Bitcoin blockchain over time.

    Columns Explanation: - timestamp: The date when the block was added to the blockchain. - Weight Mean: The average weight of the blocks, reflecting the size of the block in weight units. - Difficulty Mean: The average mining difficulty during the period, indicating how hard it was to mine new blocks. - Reward Mean: The average reward given to miners for adding a block to the blockchain, usually denominated in Bitcoin. - Transaction Sum: The total number of transactions included in the blocks. - Witness Sum: The total size of witness data, which includes information used to verify transactions in SegWit (Segregated Witness) blocks. - Input Sum: The total amount of Bitcoin input into transactions within the blocks. - Output Sum: The total amount of Bitcoin output from transactions within the blocks. - Fee Total Sum: The total transaction fees collected from all transactions in the blocks. - Total Blocks: The total number of blocks mined during the specified period. - volume: The total volume of Bitcoin traded within the period. - marketCap: The market capitalization of Bitcoin, calculated as the current price multiplied by the circulating supply. - open: The opening price of Bitcoin at the start of the period. - close: The closing price of Bitcoin at the end of the period.

    Note: The marketCap and volume columns correspond to the previous day (timestamp - 1), as these values are only accurately known at the end of the day.

  13. Data from: Horizon of cryptocurrency before vs during COVID-19 - Dataset -...

    • cryptodata.center
    Updated Dec 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    cryptodata.center (2024). Data from: Horizon of cryptocurrency before vs during COVID-19 - Dataset - CryptoData Hub [Dataset]. https://cryptodata.center/dataset/data-from-horizon-of-cryptocurrency-before-vs-during-covid-19
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    CryptoDATA
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Investment cannot be separated from the level of return and risk inherent in assets. Today, investment instruments are not only stocks, currencies, bonds, deposits, savings and others. The beginning of Bitcoin’s emergence as a pioneer of Cryptocurrency was in 2009. Crypto assets are emerging rapidly and are accompanied by an increase in the number of transactions each period. The growth in the market capitalization value of crypto assets has also grown significantly. During COVID-19, many investments, such as stocks, experienced a decline due to market uncertainty. The results of this study prove that with the existence of COVID-19, the crypto market is not affected. Crypto is an attraction characterized by a high degree of fluctuation, and there is no limit to transactions in the open market 24 hours to trade. The Cryptocurrency market is currently a market that can provide short-term benefits to risk-taking investors, while the market in other investment instruments is declining. 78% of the value capitalization of the top 200 cryptocurrencies is represented by the top 9 cryptos used as samples in this study. So that if there is a decrease in these 9 cryptos, it will also have an impact on the overall capitalization value of crypto in the market. The future development of Cryptocurrencies will no longer be digital assets traded with many speculators who can control prices, it can even be digital money that can be used worldwide without any transaction fees and is controlled on a blockchain system. (2023-01-12)

  14. Exploring the Bitcoin Cryptocurrency Market

    • kaggle.com
    Updated Dec 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanish Gupta (2020). Exploring the Bitcoin Cryptocurrency Market [Dataset]. https://www.kaggle.com/tanishgupta26/exploring-the-bitcoin-cryptocurrency-market/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 18, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tanish Gupta
    Description

    To better understand the growth and impact of Bitcoin and other cryptocurrencies you will, in this dataset, explore the market capitalization of different cryptocurrencies.

  15. Bitcoin Cash - Dataset - CryptoData Hub

    • cryptodata.center
    Updated Dec 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    cryptodata.center (2024). Bitcoin Cash - Dataset - CryptoData Hub [Dataset]. https://cryptodata.center/dataset/bitcoin-cash
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    CryptoDATA
    Description

    Daily cryptocurrency data (transaction count, on-chain transaction volume, value of created coins, price, market cap, and exchange volume) in CSV format. The data sample stretches back to December 2013. Daily on-chain transaction volume is calculated as the sum of all transaction outputs belonging to the blocks mined on the given day. “Change” outputs are not included. Transaction count figure doesn’t include coinbase transactions. Zcash figures for on-chain volume and transaction count reflect data collected for transparent transactions only. In the last month, 10.5% (11/18/17) of ZEC transactions were shielded, and these are excluded from the analysis due to their private nature. Thus transaction volume figures in reality are higher than the estimate presented here, and NVT and exchange to transaction value lower. Data on shielded and transparent transactions can be found here and here. Decred data doesn’t include tickets and voting transactions. Monero transaction volume is impossible to calculate due to RingCT which hides transaction amounts.

  16. f

    S1 File -

    • plos.figshare.com
    application/x-rar
    Updated Jul 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Yeganeh; Sandile Charles Shongwe (2023). S1 File - [Dataset]. http://doi.org/10.1371/journal.pone.0288627.s001
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Jul 20, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Ali Yeganeh; Sandile Charles Shongwe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The implementation of statistical techniques in on-line surveillance of financial markets has been frequently studied more recently. As a novel approach, statistical control charts which are famous tools for monitoring industrial processes, have been applied in various financial applications in the last three decades. The aim of this study is to propose a novel application of control charts called profile monitoring in the surveillance of the cryptocurrency markets. In this way, a new control chart is proposed to monitor the price variation of a pair of two most famous cryptocurrencies i.e., Bitcoin (BTC) and Ethereum (ETH). Parameter estimation, tuning and sensitivity analysis are conducted assuming that the random explanatory variable follows a symmetric normal distribution. The triggered signals from the proposed method are interpreted to convert the BTC and ETH at proper times to increase their total value. Hence, the proposed method could be considered a financial indicator so that its signal can lead to a tangible increase of the pair of assets. The performance of the proposed method is investigated through different parameter adjustments and compared with some common technical indicators under a real data set. The results show the acceptable and superior performance of the proposed method.

  17. Bitcoin (BTC) investor sentiment up to April 21, 2025

    • statista.com
    • ai-chatbox.pro
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Bitcoin (BTC) investor sentiment up to April 21, 2025 [Dataset]. https://www.statista.com/statistics/1343514/bitcoin-sentiment/
    Explore at:
    Dataset updated
    Apr 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Bitcoin's market sentiment was bullish in June 2022, as is shown in the development of the cryptocurrency's NVT ratio. The Network Value to Transactions or NVT ratio is somewhat comparable to a P/E ratio, in that it compares the number of transactions of a particular coin on a set day against that coin's market cap. A low NVT ratio means that that transaction volume of a cryptocurrency is growing faster than the coin's market cap - meaning investor sentiment is bullish, or optimistic - whereas a high ratio refers to a network that has a relatively high network value but low network activity - meaning sentiment is bearish, or negative.

  18. A

    ‘Ethereum Cryptocurrency Historical Dataset ’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Sep 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Ethereum Cryptocurrency Historical Dataset ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-ethereum-cryptocurrency-historical-dataset-c5e9/08834dae/?iid=003-775&v=presentation
    Explore at:
    Dataset updated
    Sep 30, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Ethereum Cryptocurrency Historical Dataset ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/kaushiksuresh147/ethereum-cryptocurrency-historical-dataset on 30 September 2021.

    --- Dataset description provided by original source is as follows ---

    https://www.bernardmarr.com/img/What%20Is%20The%20Difference%20Between%20Bitcoin%20and%20Ethereum.png">

    Context

    Ethereum a decentralized, open-source blockchain featuring smart contract functionality was proposed in 2013 by programmer Vitalik Buterin. Development was crowdfunded in 2014, and the network went live on 30 July 2015, with 72 million coins premined.

    Some interesting facts about Ethereum(ETH): - Ether (ETH) is the native cryptocurrency of the platform. It is the second-largest cryptocurrency by market capitalization, after Bitcoin. Ethereum is the most actively used blockchain. - Some of the world’s leading corporations joined the EEA(Ethereum Alliance, is a collaboration of many block start-ups) and supported “further development.” Some of the most famous companies are Samsung SDS, Toyota Research Institute, Banco Santander, Microsoft, J.P.Morgan, Merck GaA, Intel, Deloitte, DTCC, ING, Accenture, Consensys, Bank of Canada, and BNY Mellon.

    Content

    The dataset consists of ETH prices from March-2016 to the current date(1830days) and the dataset will be updated on a weekly basis.

    Information regarding the data

    The data totally consists of 1813 records(1813 days) with 7 columns. The description of the features is given below

    | No |Columns | Descriptions | | -- | -- | -- | | 1 | Date | Date of the ETH prices | | 2 | Price | Prices of ETH(dollars) | | 3 | Open | Opening price of ETH on the respective date(Dollars) | | 4 | High | Highest price of ETH on the respective date(Dollars) | | 5 | Low | Lowest price of ETH on the respective date(Dollars) | | 6 | Vol. | Volume of ETH on the respective date(Dollars). | | 7 | Change % | Percentage of Change in ETH prices on the respective date | |

    Acknowledgements

    The dataset was extracted from investing.com

    Inspiration

    Experts say that ethereum has a huge potential in the future. Do you believe it? Well, let's find it by building our own creative models to predict if the statement is true.

    --- Original source retains full ownership of the source dataset ---

  19. Cryptocurrency Historical Prices

    • kaggle.com
    zip
    Updated Aug 8, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SRK (2017). Cryptocurrency Historical Prices [Dataset]. https://www.kaggle.com/sudalairajkumar/cryptocurrencypricehistory
    Explore at:
    zip(242898 bytes)Available download formats
    Dataset updated
    Aug 8, 2017
    Authors
    SRK
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    In the last few days, I have been hearing a lot of buzz around cryptocurrencies. Things like Block chain, Bitcoin, Bitcoin cash, Ethereum, Ripple etc are constantly coming in the news articles I read. So I wanted to understand more about it and this post helped me get started. Once the basics are done, the DS guy sleeping inside me (always lazy.!) woke up and started raising questions like

    1. How many such cryptocurrencies are there and what are their prices and valuations?
    2. Why is there a sudden surge in the interest in recent days? Is it due to the increase in the price in the last few days? etc.

    For getting answers to all these questions (and if possible to predict the future prices ;)), I started getting the data from coinmarketcap about the cryptocurrencies.

    Content

    This dataset has the historical price information of some of the top cryptocurrencies by market capitalization. The currencies included are

    • Bitcoin
    • Ethereum
    • Ripple
    • Bitcoin cash
    • Bitconnect
    • Dash
    • Ethereum Classic
    • Iota
    • Litecoin
    • Monero
    • Nem
    • Neo
    • Numeraire
    • Stratis
    • Waves

    In case if you are interested in the prices of some other currencies, please post in comments section and I will try to add them in the next version. I am planning to revise it once in a week.

    Dataset has one csv file for each currency. Price history is available on a daily basis from April 28, 2013 till Aug 07, 2017. The columns in the csv file are

    • Date : date of observation
    • Open : Opening price on the given day
    • High : Highest price on the given day
    • Low : Lowest price on the given day
    • Close : Closing price on the given day
    • Volume : Volume of transactions on the given day
    • Market Cap : Market capitalization in USD

    Acknowledgements

    This data is taken from coinmarketcap and it is free to use the data.

    Cover Image : Photo by Thomas Malama on Unsplash

    Inspiration

    Some of the questions which could be inferred from this dataset are:

    1. How did the historical prices / market capitalizations of various currencies change over time?
    2. Predicting the future price of the currencies
    3. Which currencies are more volatile and which ones are more stable?
    4. How does the price fluctuations of currencies correlate with each other?
    5. Seasonal trend in the price fluctuations
  20. k

    Will the S&P Bitcoin index redefine the crypto markets? (Forecast)

    • kappasignal.com
    Updated Apr 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the S&P Bitcoin index redefine the crypto markets? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/will-s-bitcoin-index-redefine-crypto.html
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the S&P Bitcoin index redefine the crypto markets?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sumit Banik (2020). Bitcoin Historical Prices Dataset [Dataset]. http://doi.org/10.5281/zenodo.4292990

Bitcoin Historical Prices Dataset

Explore at:
26 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 27, 2020
Authors
Sumit Banik
Description

The following dataset contains the attributes: Date: Specific date to be observed for the corresponding price. Open: The opening price for the day High: The maximum price it has touched for the day Low: The minimum price it has touched for the day Close: The closing price for the day percent_change_24h: Percentage change for the last 24hours Volume: Volume of Bitcoin traded at the date Market Cap: Market Value of traded Bitcoin

Search
Clear search
Close search
Google apps
Main menu