https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Bureau of Labor Statistics (BLS) is a unit of the United States Department of Labor. It is the principal fact-finding agency for the U.S. government in the broad field of labor economics and statistics and serves as a principal agency of the U.S. Federal Statistical System. The BLS is a governmental statistical agency that collects, processes, analyzes, and disseminates essential statistical data to the American public, the U.S. Congress, other Federal agencies, State and local governments, business, and labor representatives. Source: https://en.wikipedia.org/wiki/Bureau_of_Labor_Statistics
Bureau of Labor Statistics including CPI (inflation), employment, unemployment, and wage data.
Update Frequency: Monthly
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:bls
https://cloud.google.com/bigquery/public-data/bureau-of-labor-statistics
Dataset Source: http://www.bls.gov/data/
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Clark Young from Unsplash.
What is the average annual inflation across all US Cities? What was the monthly unemployment rate (U3) in 2016? What are the top 10 hourly-waged types of work in Pittsburgh, PA for 2016?
The Occupational Outlook Handbook (OOH) is a nationally recognized source of career information, designed to provide valuable assistance to individuals making decisions about their future work lives. The Handbook is revised every two years. The OOH offers information on the hundreds of occupations that provide the majority of jobs in the United States. Each occupational profile describes the typical duties performed by the occupation, the work environment of that occupation, the typical education and training needed to enter the occupation, the median pay for workers in the occupation, and the job outlook over the coming decade for that occupation. For information on occupations, please visit: https://www.bls.gov/ooh/
This dataset represents the CHANGE in the number of jobs per industry category and sub-category from the previous month, not the raw counts of actual jobs. The data behind these monthly change values is from the Bureau of Labor Statistics (BLS) Current Employment Statistics (CES) program. CES data represents businesses and government agencies, providing detailed industry data on employment on nonfarm payrolls.
The Employment Projections (EP) program develops information about the labor market for the Nation as a whole for 10 years in the future. For more information visit: https://www.bls.gov/emp/
Data from the Bureau of Labor Statistics (BLS) Current Employment Statistics (CES) program. CES data represents businesses and government agencies, providing detailed industry data on employment on nonfarm payrolls.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Occupational Employment and Wage Statistics (OEWS) Survey is a federal-state cooperative program between the Bureau of Labor Statistics (BLS) and State Workforce Agencies (SWAs). The BLS provides the procedures and technical support, draws the sample, and produces the survey materials, while the SWAs collect the data. SWAs from all fifty states, plus the District of Columbia, Puerto Rico, Guam, and the Virgin Islands participate in the survey. Occupational employment and wage rate estimates at the national level are produced by BLS using data from the fifty states and the District of Columbia. Employers who respond to states' requests to participate in the OEWS survey make these estimates possible.
The OEWS survey collects data from a sample of establishments and calculates employment and wage estimates by occupation, industry, and geographic area. The semiannual survey covers all non-farm industries. Data are collected by the Employment Development Department in cooperation with the Bureau of Labor Statistics, US Department of Labor. The OEWS Program estimates employment and wages for approximately 830 occupations. It also produces employment and wage estimates for statewide, Metropolitan Statistical Areas (MSAs), and Balance of State areas. Estimates are a snapshot in time and should not be used as a time series.
The OEWS estimates are published annually.
The Local Area Unemployment Statistics (LAUS) program is a federal-state cooperative effort which produces monthly estimates of produces monthly and annual employment, unemployment, and labor force data for approximately 7,000 areas including Census regions and divisions, States, counties, metropolitan areas, and many cities.
For more information and data visit: https://www.bls.gov/lau/
The Business Employment Dynamics (BED) is a set of statistics generated from the Quarterly Census of Employment and Wages (QCEW) program. These quarterly data series consist of gross job gains and gross job losses statistics from 1992 forward. These data help to provide a picture of the dynamic state of the labor market. For more information and data visit: https://www.bls.gov/bed/
The American Time Use Survey (ATUS) provides nationally representative estimates of how, where, and with whom Americans spend their time, and is the only federal survey providing data on the full range of nonmarket activities, from childcare to volunteering.
For more information visit https://www.bls.gov/tus/
VITAL SIGNS INDICATOR Jobs by Industry (EC1)
FULL MEASURE NAME Employment by place of work by industry sector
LAST UPDATED July 2019
DESCRIPTION Jobs by industry refers to both the change in employment levels by industry and the proportional mix of jobs by economic sector. This measure reflects the changing industry trends that affect our region’s workers.
DATA SOURCE Bureau of Labor Statistics: Current Employment Statistics 1990-2017 http://data.bls.gov
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment by place of work and by industry. Industries are classified by their North American Industry Classification System (NAICS) code. Vital Signs aggregates employment into 11 industry sectors: Farm, Mining, Logging and Construction, Manufacturing, Trade, Transportation and Utilities, Information, Financial Activities, Professional and Business Services, Educational and Health Services, Leisure and Hospitality, Government, and Other. EDD counts all public-sector jobs under Government, including public transportation, public schools, and public hospitals. The Other category includes service jobs such as auto repair and hair salons and organizations such as churches and social advocacy groups. Employment in the technology sector are classified under three categories: Professional and Business Services, Information, and Manufacturing. The latter category includes electronic and computer manufacturing. For further details of typical firms found in each sector, refer to the 2012 NAICS Manual (http://www.census.gov/cgi-bin/sssd/naics/naicsrch?chart=2012).
The Bureau of Labor Statistics (BLS) provides industry estimates for non-Bay Area metro areas. Their main industry employment estimates, the Current Employment Survey and Quarterly Census of Employment and Wages, do not provide annual estimates of farm employment. To be consistent, the metro comparison evaluates nonfarm employment for all metro areas, including the Bay Area. Industry shares are thus slightly different for the Bay Area between the historical trend and metro comparison sections.
The location quotient (LQ) is used to evaluate level of concentration or clustering of an industry within the Bay Area and within each county of the region. A location quotient greater than 1 means there is a strong concentration for of jobs in an industry sector. For the Bay Area, the LQ is calculated as the share of the region’s employment in a particular sector divided by the share of the nation’s employment in that same sector. Because BLS does not provide national farm estimates, note that there is no LQ for regional farm employment. For each county, the LQ is calculated as the share of the county’s employment in a particular sector divided by the share of the region’s employment in that same sector.
This dataset combines automation probability data with a breakdown of the number of jobs and salary in each occupation by state within the USA. Automation probability was acquired from the work of Carl Benedikt Freyand Michael A. Osborne; State employment data is from the Bureau of Labor Statistics. Note that for simplicity of analysis, all jobs where data was not available or there were less than 10 employees were marked as zero.
If you use this dataset in your research, please credit the authors.
@misc{u.s. bureau of labor statistics, title={Occupational Employment Statistics}, url={https://www.bls.gov/oes/current/oes_nat.htm}, journal={U.S. BUREAU OF LABOR STATISTICS}}
@article{frey_osborne_2017, title={The future of employment: How susceptible are jobs to computerisation?}, volume={114}, DOI={10.1016/j.techfore.2016.08.019}, journal={Technological Forecasting and Social Change}, author={Frey, Carl Benedikt and Osborne, Michael A.}, year={2017}, pages={254–280}}
License was not specified at the source.
Photo by Alex Knight on Unsplash
Multifactor productivity (MFP), also known as total factor productivity (TFP), is a measure of economic performance that compares the amount of goods and services produced (output) to the amount of combined inputs used to produce those goods and services. Inputs can include labor, capital, energy, materials, and purchased services.
For more information and data visit: https://www.bls.gov/mfp/
The Employer Costs for Employee Compensation (ECEC) is a measure of the cost of labor. The compensation series includes wages and salaries plus employer costs for individual employee benefits. Employee benefit costs are calculated as cents-per-hour-worked for individual benefits ranging from employer payments for Social Security to paid time off for holidays. The survey covers all occupations in the civilian economy, which includes the total private economy (excluding farms and households), and the public sector (excluding the Federal government). Statistics are published for the private and public sectors separately, and the data are combined in a measure for the civilian economy.
For information and data, visit: https://www.bls.gov/ncs/ect/
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a dataset that I built by scraping the United States Department of Labor's Bureau of Labor Statistics. I was looking for county-level unemployment data and realized that there was a data source for this, but the data set itself hadn't existed yet, so I decided to write a scraper and build it out myself.
This data represents the Local Area Unemployment Statistics from 1990-2016, broken down by state and month. The data itself is pulled from this mapping site:
https://data.bls.gov/map/MapToolServlet?survey=la&map=county&seasonal=u
Further, the ever-evolving and ever-improving codebase that pulled this data is available here:
https://github.com/jayrav13/bls_local_area_unemployment
Of course, a huge shoutout to bls.gov and their open and transparent data. I've certainly been inspired to dive into US-related data recently and having this data open further enables my curiosities.
I was excited about building this data set out because I was pretty sure something similar didn't exist - curious to see what folks can do with it once they run with it! A curious question I had was surrounding Unemployment vs 2016 Presidential Election outcome down to the county level. A comparison can probably lead to interesting questions and discoveries such as trends in local elections that led to their most recent election outcome, etc.
Version 1 of this is as a massive JSON blob, normalized by year / month / state. I intend to transform this into a CSV in the future as well.
Labor force and unemployment estimates for States and local areas are developed by State workforce agencies to measure local labor market conditions under a Federal-State cooperative program. The Department of Labor develops the concepts, definitions, and technical procedures which are used by State agencies for preparation of labor force and unemployment estimates.
These estimates are derived from a variety of sources, including the Current Population Survey, the Current Employment Statistics survey, the Quarterly Census of Employment and Wages, various programs at the Census Bureau, and unemployment insurance claims data from the State workforce agencies.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset uses seasonally adjusted data from the US Bureau of Labor Statistics to present information on Maryland's labor force participation rate, employment rate, and unemployment rate.
The ATUS-CPS dataset contains information about each household member of all individuals selected to participate in ATUS. The information on the ATUS-CPS dataset was collected 2 to 5 months before the ATUS interview.
For the data dictionary and survey methodology, visit: http://www.bls.gov/tus/atusintcodebk14.pdf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘BLS Jobs Data - Change from the Previous Month’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/0b021ff3-2cb3-4a10-83d8-89673850f301 on 26 January 2022.
--- Dataset description provided by original source is as follows ---
This dataset represents the CHANGE in the number of jobs per industry category and sub-category from the previous month, not the raw counts of actual jobs. The data behind these monthly change values is from the Bureau of Labor Statistics (BLS) Current Employment Statistics (CES) program. CES data represents businesses and government agencies, providing detailed industry data on employment on nonfarm payrolls.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Quarterly Census of Employment and Wages (QCEW) program provides several different types of data files. These files are available for download. Data classified using the North American Industry Classification System (NAICS) are available from 1990 forward [in this archived dataset, through 2024], and on a more limited basis from 1975 to 1989. NAICS-based data files from 1990 to 2000 were re-constructed from data classified under the Standard Industrial Classification (SIC) system. NAICS-based data files from 1975 to 1989 contain only totals by-ownership. NAICS data can be downloaded from the NAICS-Based Data Files table below.Data classified using the Standard Industrial Classification (SIC) system is available from 1975 through 2000. SIC data can be downloaded from the second table below titled SIC-Based Data Files.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Bureau of Labor Statistics (BLS) is a unit of the United States Department of Labor. It is the principal fact-finding agency for the U.S. government in the broad field of labor economics and statistics and serves as a principal agency of the U.S. Federal Statistical System. The BLS is a governmental statistical agency that collects, processes, analyzes, and disseminates essential statistical data to the American public, the U.S. Congress, other Federal agencies, State and local governments, business, and labor representatives. Source: https://en.wikipedia.org/wiki/Bureau_of_Labor_Statistics
Bureau of Labor Statistics including CPI (inflation), employment, unemployment, and wage data.
Update Frequency: Monthly
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:bls
https://cloud.google.com/bigquery/public-data/bureau-of-labor-statistics
Dataset Source: http://www.bls.gov/data/
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Clark Young from Unsplash.
What is the average annual inflation across all US Cities? What was the monthly unemployment rate (U3) in 2016? What are the top 10 hourly-waged types of work in Pittsburgh, PA for 2016?