53 datasets found
  1. I

    Self-citation analysis data based on PubMed Central subset (2002-2005)

    • databank.illinois.edu
    Updated Apr 27, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shubhanshu Mishra; Brent D Fegley; Jana Diesner; Vetle I. Torvik (2018). Self-citation analysis data based on PubMed Central subset (2002-2005) [Dataset]. http://doi.org/10.13012/B2IDB-9665377_V1
    Explore at:
    Dataset updated
    Apr 27, 2018
    Authors
    Shubhanshu Mishra; Brent D Fegley; Jana Diesner; Vetle I. Torvik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Dataset funded by
    U.S. National Institutes of Health (NIH)
    U.S. National Science Foundation (NSF)
    Description

    Self-citation analysis data based on PubMed Central subset (2002-2005) ---------------------------------------------------------------------- Created by Shubhanshu Mishra, Brent D. Fegley, Jana Diesner, and Vetle Torvik on April 5th, 2018 ## Introduction This is a dataset created as part of the publication titled: Mishra S, Fegley BD, Diesner J, Torvik VI (2018) Self-Citation is the Hallmark of Productive Authors, of Any Gender. PLOS ONE. It contains files for running the self citation analysis on articles published in PubMed Central between 2002 and 2005, collected in 2015. The dataset is distributed in the form of the following tab separated text files: * Training_data_2002_2005_pmc_pair_First.txt (1.2G) - Data for first authors * Training_data_2002_2005_pmc_pair_Last.txt (1.2G) - Data for last authors * Training_data_2002_2005_pmc_pair_Middle_2nd.txt (964M) - Data for middle 2nd authors * Training_data_2002_2005_pmc_pair_txt.header.txt - Header for the data * COLUMNS_DESC.txt file - Descriptions of all columns * model_text_files.tar.gz - Text files containing model coefficients and scores for model selection. * results_all_model.tar.gz - Model coefficient and result files in numpy format used for plotting purposes. v4.reviewer contains models for analysis done after reviewer comments. * README.txt file ## Dataset creation Our experiments relied on data from multiple sources including properitery data from Thompson Rueter's (now Clarivate Analytics) Web of Science collection of MEDLINE citations. Author's interested in reproducing our experiments should personally request from Clarivate Analytics for this data. However, we do make a similar but open dataset based on citations from PubMed Central which can be utilized to get similar results to those reported in our analysis. Furthermore, we have also freely shared our datasets which can be used along with the citation datasets from Clarivate Analytics, to re-create the datased used in our experiments. These datasets are listed below. If you wish to use any of those datasets please make sure you cite both the dataset as well as the paper introducing the dataset. * MEDLINE 2015 baseline: https://www.nlm.nih.gov/bsd/licensee/2015_stats/baseline_doc.html * Citation data from PubMed Central (original paper includes additional citations from Web of Science) * Author-ity 2009 dataset: - Dataset citation: Torvik, Vetle I.; Smalheiser, Neil R. (2018): Author-ity 2009 - PubMed author name disambiguated dataset. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4222651_V1 - Paper citation: Torvik, V. I., & Smalheiser, N. R. (2009). Author name disambiguation in MEDLINE. ACM Transactions on Knowledge Discovery from Data, 3(3), 1–29. https://doi.org/10.1145/1552303.1552304 - Paper citation: Torvik, V. I., Weeber, M., Swanson, D. R., & Smalheiser, N. R. (2004). A probabilistic similarity metric for Medline records: A model for author name disambiguation. Journal of the American Society for Information Science and Technology, 56(2), 140–158. https://doi.org/10.1002/asi.20105 * Genni 2.0 + Ethnea for identifying author gender and ethnicity: - Dataset citation: Torvik, Vetle (2018): Genni + Ethnea for the Author-ity 2009 dataset. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-9087546_V1 - Paper citation: Smith, B. N., Singh, M., & Torvik, V. I. (2013). A search engine approach to estimating temporal changes in gender orientation of first names. In Proceedings of the 13th ACM/IEEE-CS joint conference on Digital libraries - JCDL ’13. ACM Press. https://doi.org/10.1145/2467696.2467720 - Paper citation: Torvik VI, Agarwal S. Ethnea -- an instance-based ethnicity classifier based on geo-coded author names in a large-scale bibliographic database. International Symposium on Science of Science March 22-23, 2016 - Library of Congress, Washington DC, USA. http://hdl.handle.net/2142/88927 * MapAffil for identifying article country of affiliation: - Dataset citation: Torvik, Vetle I. (2018): MapAffil 2016 dataset -- PubMed author affiliations mapped to cities and their geocodes worldwide. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4354331_V1 - Paper citation: Torvik VI. MapAffil: A Bibliographic Tool for Mapping Author Affiliation Strings to Cities and Their Geocodes Worldwide. D-Lib magazine : the magazine of the Digital Library Forum. 2015;21(11-12):10.1045/november2015-torvik * IMPLICIT journal similarity: - Dataset citation: Torvik, Vetle (2018): Author-implicit journal, MeSH, title-word, and affiliation-word pairs based on Author-ity 2009. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4742014_V1 * Novelty dataset for identify article level novelty: - Dataset citation: Mishra, Shubhanshu; Torvik, Vetle I. (2018): Conceptual novelty scores for PubMed articles. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-5060298_V1 - Paper citation: Mishra S, Torvik VI. Quantifying Conceptual Novelty in the Biomedical Literature. D-Lib magazine : The Magazine of the Digital Library Forum. 2016;22(9-10):10.1045/september2016-mishra - Code: https://github.com/napsternxg/Novelty * Expertise dataset for identifying author expertise on articles: * Source code provided at: https://github.com/napsternxg/PubMed_SelfCitationAnalysis Note: The dataset is based on a snapshot of PubMed (which includes Medline and PubMed-not-Medline records) taken in the first week of October, 2016. Check here for information to get PubMed/MEDLINE, and NLMs data Terms and Conditions Additional data related updates can be found at Torvik Research Group ## Acknowledgments This work was made possible in part with funding to VIT from NIH grant P01AG039347 and NSF grant 1348742. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ## License Self-citation analysis data based on PubMed Central subset (2002-2005) by Shubhanshu Mishra, Brent D. Fegley, Jana Diesner, and Vetle Torvik is licensed under a Creative Commons Attribution 4.0 International License. Permissions beyond the scope of this license may be available at https://github.com/napsternxg/PubMed_SelfCitationAnalysis.

  2. f

    Namesakes

    • figshare.com
    json
    Updated Nov 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleg Vasilyev; Aysu Altun; Nidhi Vyas; Vedant Dharnidharka; Erika Lampert; John Bohannon (2021). Namesakes [Dataset]. http://doi.org/10.6084/m9.figshare.17009105.v1
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 20, 2021
    Dataset provided by
    figshare
    Authors
    Oleg Vasilyev; Aysu Altun; Nidhi Vyas; Vedant Dharnidharka; Erika Lampert; John Bohannon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    Motivation: creating challenging dataset for testing Named-Entity
    

    Linking. The Namesakes dataset consists of three closely related datasets: Entities, News and Backlinks. Entities were collected as Wikipedia text chunks corresponding to highly ambiguous entity names. The News were collected as random news text chunks, containing mentions that either belong to the Entities dataset or can be easily confused with them. Backlinks were obtained from Wikipedia dump data with intention to have mentions linked to the entities of the Entity dataset. The Entities and News are human-labeled, resolving the mentions of the entities.Methods

    Entities were collected as Wikipedia 
    

    text chunks corresponding to highly ambiguous entity names: the most popular people names, the most popular locations, and organizations with name ambiguity. In each Entities text chunk, the named entities with the name similar to the chunk Wikipedia page name are labeled. For labeling, these entities were suggested to human annotators (odetta.ai) to tag as "Same" (same as the page entity) or "Other". The labeling was done by 6 experienced annotators that passed through a preliminary trial task. The only accepted tags are the tags assigned in agreement by not less than 5 annotators, and then passed through reconciliation with an experienced reconciliator.

    The News were collected as random news text chunks, containing mentions which either belong to the Entities dataset or can be easily confused with them. In each News text chunk one mention was selected for labeling, and 3-10 Wikipedia pages from Entities were suggested as the labels for an annotator to choose from. The labeling was done by 3 experienced annotators (odetta.ai), after the annotators passed a preliminary trial task. The results were reconciled by an experienced reconciliator. All the labeling was done using Lighttag (lighttag.io).

    Backlinks were obtained from Wikipedia dump data (dumps.wikimedia.org/enwiki/20210701) with intention to have mentions linked to the entities of the Entity dataset. The backlinks were filtered to leave only mentions in a good quality text; each text was cut 1000 characters after the last mention.

    Usage NotesEntities:
    

    File: Namesakes_entities.jsonl The Entities dataset consists of 4148 Wikipedia text chunks containing human-tagged mentions of entities. Each mention is tagged either as "Same" (meaning that the mention is of this Wikipedia page entity), or "Other" (meaning that the mention is of some other entity, just having the same or similar name). The Entities dataset is a jsonl list, each item is a dictionary with the following keys and values: Key: ‘pagename’: page name of the Wikipedia page. Key ‘pageid’: page id of the Wikipedia page. Key ‘title’: title of the Wikipedia page. Key ‘url’: URL of the Wikipedia page. Key ‘text’: The text chunk from the Wikipedia page. Key ‘entities’: list of the mentions in the page text, each entity is represented by a dictionary with the keys: Key 'text': the mention as a string from the page text. Key ‘start’: start character position of the entity in the text. Key ‘end’: end (one-past-last) character position of the entity in the text. Key ‘tag’: annotation tag given as a string - either ‘Same’ or ‘Other’.

    News: File: Namesakes_news.jsonl The News dataset consists of 1000 news text chunks, each one with a single annotated entity mention. The annotation either points to the corresponding entity from the Entities dataset (if the mention is of that entity), or indicates that the mentioned entity does not belong to the Entities dataset. The News dataset is a jsonl list, each item is a dictionary with the following keys and values: Key ‘id_text’: Id of the sample. Key ‘text’: The text chunk. Key ‘urls’: List of URLs of wikipedia entities suggested to labelers for identification of the entity mentioned in the text. Key ‘entity’: a dictionary describing the annotated entity mention in the text: Key 'text': the mention as a string found by an NER model in the text. Key ‘start’: start character position of the mention in the text. Key ‘end’: end (one-past-last) character position of the mention in the text. Key 'tag': This key exists only if the mentioned entity is annotated as belonging to the Entities dataset - if so, the value is a dictionary identifying the Wikipedia page assigned by annotators to the mentioned entity: Key ‘pageid’: Wikipedia page id. Key ‘pagetitle’: page title. Key 'url': page URL.

    Backlinks dataset: The Backlinks dataset consists of two parts: dictionary Entity-to-Backlinks and Backlinks documents. The dictionary points to backlinks for each entity of the Entity dataset (if any backlinks exist for the entity). The Backlinks documents are the backlinks Wikipedia text chunks with identified mentions of the entities from the Entities dataset.

    Each mention is identified by surrounded double square brackets, e.g. "Muir built a small cabin along [[Yosemite Creek]].". However, if the mention differs from the exact entity name, the double square brackets wrap both the exact name and, separated by '|', the mention string to the right, for example: "Muir also spent time with photographer [[Carleton E. Watkins | Carleton Watkins]] and studied his photographs of Yosemite.".

    The Entity-to-Backlinks is a jsonl with 1527 items. File: Namesakes_backlinks_entities.jsonl Each item is a tuple: Entity name. Entity Wikipedia page id. Backlinks ids: a list of pageids of backlink documents.

    The Backlinks documents is a jsonl with 26903 items. File: Namesakes_backlinks_texts.jsonl Each item is a dictionary: Key ‘pageid’: Id of the Wikipedia page. Key ‘title’: Title of the Wikipedia page. Key 'content': Text chunk from the Wikipedia page, with all mentions in the double brackets; the text is cut 1000 characters after the last mention, the cut is denoted as '...[CUT]'. Key 'mentions': List of the mentions from the text, for convenience. Each mention is a tuple: Entity name. Entity Wikipedia page id. Sorted list of all character indexes at which the mention occurrences start in the text.

  3. Data from: Current and projected research data storage needs of Agricultural...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +2more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Current and projected research data storage needs of Agricultural Research Service researchers in 2016 [Dataset]. https://catalog.data.gov/dataset/current-and-projected-research-data-storage-needs-of-agricultural-research-service-researc-f33da
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel

  4. Z

    Dataset used for "A Recommender System of Buggy App Checkers for App Store...

    • data.niaid.nih.gov
    Updated Jun 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maria Gomez; Romain Rouvoy; Martin Monperrus; Lionel Seinturier (2021). Dataset used for "A Recommender System of Buggy App Checkers for App Store Moderators" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5034291
    Explore at:
    Dataset updated
    Jun 28, 2021
    Dataset provided by
    University of Lille / Inria
    Authors
    Maria Gomez; Romain Rouvoy; Martin Monperrus; Lionel Seinturier
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the dataset used for paper: "A Recommender System of Buggy App Checkers for App Store Moderators", published on the International Conference on Mobile Software Engineering and Systems (MOBILESoft) in 2015.

    Dataset Collection We built a dataset that consists of a random sample of Android app metadata and user reviews available on the Google Play Store on January and March 2014. Since the Google Play Store is continuously evolving (adding, removing and/or updating apps), we updated the dataset twice. The dataset D1 contains available apps in the Google Play Store in January 2014. Then, we created a new snapshot (D2) of the Google Play Store in March 2014.

    The apps belong to the 27 different categories defined by Google (at the time of writing the paper), and the 4 predefined subcategories (free, paid, new_free, and new_paid). For each category-subcategory pair (e.g. tools-free, tools-paid, sports-new_free, etc.), we collected a maximum of 500 samples, resulting in a median number of 1.978 apps per category.

    For each app, we retrieved the following metadata: name, package, creator, version code, version name, number of downloads, size, upload date, star rating, star counting, and the set of permission requests.

    In addition, for each app, we collected up to a maximum of the latest 500 reviews posted by users in the Google Play Store. For each review, we retrieved its metadata: title, description, device, and version of the app. None of these fields were mandatory, thus several reviews lack some of these details. From all the reviews attached to an app, we only considered the reviews associated with the latest version of the app —i.e., we discarded unversioned and old-versioned reviews. Thus, resulting in a corpus of 1,402,717 reviews (2014 Jan.).

    Dataset Stats Some stats about the datasets:

    • D1 (Jan. 2014) contains 38,781 apps requesting 7,826 different permissions, and 1,402,717 user reviews.

    • D2 (Mar. 2014) contains 46,644 apps and 9,319 different permission requests, and 1,361,319 user reviews.

    Additional stats about the datasets are available here.

    Dataset Description To store the dataset, we created a graph database with Neo4j. This dataset therefore consists of a graph describing the apps as nodes and edges. We chose a graph database because the graph visualization helps to identify connections among data (e.g., clusters of apps sharing similar sets of permission requests).

    In particular, our dataset graph contains six types of nodes: - APP nodes containing metadata of each app, - PERMISSION nodes describing permission types, - CATEGORY nodes describing app categories, - SUBCATEGORY nodes describing app subcategories, - USER_REVIEW nodes storing user reviews. - TOPIC topics mined from user reviews (using LDA).

    Furthermore, there are five types of relationships between APP nodes and each of the remaining nodes:

    • USES_PERMISSION relationships between APP and PERMISSION nodes
    • HAS_REVIEW between APP and USER_REVIEW nodes
    • HAS_TOPIC between USER_REVIEW and TOPIC nodes
    • BELONGS_TO_CATEGORY between APP and CATEGORY nodes
    • BELONGS_TO_SUBCATEGORY between APP and SUBCATEGORY nodes

    Dataset Files Info

    Neo4j 2.0 Databases

    googlePlayDB1-Jan2014_neo4j_2_0.rar

    googlePlayDB2-Mar2014_neo4j_2_0.rar We provide two Neo4j databases containing the 2 snapshots of the Google Play Store (January and March 2014). These are the original databases created for the paper. The databases were created with Neo4j 2.0. In particular with the tool version 'Neo4j 2.0.0-M06 Community Edition' (latest version available at the time of implementing the paper in 2014).

    Neo4j 3.5 Databases

    googlePlayDB1-Jan2014_neo4j_3_5_28.rar

    googlePlayDB2-Mar2014_neo4j_3_5_28.rar Currently, the version Neo4j 2.0 is deprecated and it is not available for download in the official Neo4j Download Center. We have migrated the original databases (Neo4j 2.0) to Neo4j 3.5.28. The databases can be opened with the tool version: 'Neo4j Community Edition 3.5.28'. The tool can be downloaded from the official Neo4j Donwload page.

      In order to open the databases with more recent versions of Neo4j, the databases must be first migrated to the corresponding version. Instructions about the migration process can be found in the Neo4j Migration Guide.
    
      First time the Neo4j database is connected, it could request credentials. The username and pasword are: neo4j/neo4j
    
  5. m

    Behaviour Biometrics Dataset

    • data.mendeley.com
    Updated Jun 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nonso Nnamoko (2022). Behaviour Biometrics Dataset [Dataset]. http://doi.org/10.17632/fnf8b85kr6.1
    Explore at:
    Dataset updated
    Jun 20, 2022
    Authors
    Nonso Nnamoko
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset provides a collection of behaviour biometrics data (commonly known as Keyboard, Mouse and Touchscreen (KMT) dynamics). The data was collected for use in a FinTech research project undertaken by academics and researchers at Computer Science Department, Edge Hill University, United Kingdom. The project called CyberSIgnature uses KMT dynamics data to distinguish between legitimate card owners and fraudsters. An application was developed that has a graphical user interface (GUI) similar to a standard online card payment form including fields for card type, name, card number, card verification code (cvc) and expiry date. Then, user KMT dynamics were captured while they entered fictitious card information on the GUI application.

    The dataset consists of 1,760 KMT dynamic instances collected over 88 user sessions on the GUI application. Each user session involves 20 iterations of data entry in which the user is assigned a fictitious card information (drawn at random from a pool) to enter 10 times and subsequently presented with 10 additional card information, each to be entered once. The 10 additional card information is drawn from a pool that has been assigned or to be assigned to other users. A KMT data instance is collected during each data entry iteration. Thus, a total of 20 KMT data instances (i.e., 10 legitimate and 10 illegitimate) was collected during each user entry session on the GUI application.

    The raw dataset is stored in .json format within 88 separate files. The root folder named behaviour_biometrics_dataset' consists of two sub-foldersraw_kmt_dataset' and `feature_kmt_dataset'; and a Jupyter notebook file (kmt_feature_classificatio.ipynb). Their folder and file content is described below:

    -- raw_kmt_dataset': this folder contains 88 files, each namedraw_kmt_user_n.json', where n is a number from 0001 to 0088. Each file contains 20 instances of KMT dynamics data corresponding to a given fictitious card; and the data instances are equally split between legitimate (n = 10) and illegitimate (n = 10) classes. The legitimate class corresponds to KMT dynamics captured from the user that is assigned to the card detail; while the illegitimate class corresponds to KMT dynamics data collected from other users entering the same card detail.

    -- feature_kmt_dataset': this folder contains two sub-folders, namely:feature_kmt_json' and feature_kmt_xlsx'. Each folder contains 88 files (of the relevant format: .json or .xlsx) , each namedfeature_kmt_user_n', where n is a number from 0001 to 0088. Each file contains 20 instances of features extracted from the corresponding `raw_kmt_user_n' file including the class labels (legitimate = 1 or illegitimate = 0).

    -- `kmt_feature_classification.ipynb': this file contains python code necessary to generate features from the raw KMT files and apply simple machine learning classification task to generate results. The code is designed to run with minimal effort from the user.

  6. w

    Dataset of books called Creating worksheets

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Creating worksheets [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Creating+worksheets
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 2 rows and is filtered where the book is Creating worksheets. It features 7 columns including author, publication date, language, and book publisher.

  7. w

    Dataset of books called Creating fractals

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Creating fractals [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Creating+fractals
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is Creating fractals. It features 7 columns including author, publication date, language, and book publisher.

  8. w

    Dataset of books called Creating authentic organizations : bringing meaning...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Creating authentic organizations : bringing meaning and engagement back to work [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Creating+authentic+organizations+%3A+bringing+meaning+and+engagement+back+to+work
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is Creating authentic organizations : bringing meaning and engagement back to work. It features 7 columns including author, publication date, language, and book publisher.

  9. Market Basket Analysis

    • kaggle.com
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aslan Ahmedov (2021). Market Basket Analysis [Dataset]. https://www.kaggle.com/datasets/aslanahmedov/market-basket-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 9, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aslan Ahmedov
    Description

    Market Basket Analysis

    Market basket analysis with Apriori algorithm

    The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.

    Introduction

    Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.

    An Example of Association Rules

    Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.

    Strategy

    • Data Import
    • Data Understanding and Exploration
    • Transformation of the data – so that is ready to be consumed by the association rules algorithm
    • Running association rules
    • Exploring the rules generated
    • Filtering the generated rules
    • Visualization of Rule

    Dataset Description

    • File name: Assignment-1_Data
    • List name: retaildata
    • File format: . xlsx
    • Number of Row: 522065
    • Number of Attributes: 7

      • BillNo: 6-digit number assigned to each transaction. Nominal.
      • Itemname: Product name. Nominal.
      • Quantity: The quantities of each product per transaction. Numeric.
      • Date: The day and time when each transaction was generated. Numeric.
      • Price: Product price. Numeric.
      • CustomerID: 5-digit number assigned to each customer. Nominal.
      • Country: Name of the country where each customer resides. Nominal.

    imagehttps://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">

    Libraries in R

    First, we need to load required libraries. Shortly I describe all libraries.

    • arules - Provides the infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and association rules).
    • arulesViz - Extends package 'arules' with various visualization. techniques for association rules and item-sets. The package also includes several interactive visualizations for rule exploration.
    • tidyverse - The tidyverse is an opinionated collection of R packages designed for data science.
    • readxl - Read Excel Files in R.
    • plyr - Tools for Splitting, Applying and Combining Data.
    • ggplot2 - A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
    • knitr - Dynamic Report generation in R.
    • magrittr- Provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions.
    • dplyr - A fast, consistent tool for working with data frame like objects, both in memory and out of memory.
    • tidyverse - This package is designed to make it easy to install and load multiple 'tidyverse' packages in a single step.

    imagehttps://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">

    Data Pre-processing

    Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.

    imagehttps://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png"> imagehttps://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">

    After we will clear our data frame, will remove missing values.

    imagehttps://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">

    To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...

  10. Company Datasets for Business Profiling

    • datarade.ai
    Updated Feb 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oxylabs (2017). Company Datasets for Business Profiling [Dataset]. https://datarade.ai/data-products/company-datasets-for-business-profiling-oxylabs
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Feb 23, 2017
    Dataset authored and provided by
    Oxylabs
    Area covered
    Tunisia, Bangladesh, Andorra, Isle of Man, Moldova (Republic of), Taiwan, Nepal, Canada, Northern Mariana Islands, British Indian Ocean Territory
    Description

    Company Datasets for valuable business insights!

    Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.

    These datasets are sourced from top industry providers, ensuring you have access to high-quality information:

    • Owler: Gain valuable business insights and competitive intelligence. -AngelList: Receive fresh startup data transformed into actionable insights. -CrunchBase: Access clean, parsed, and ready-to-use business data from private and public companies. -Craft.co: Make data-informed business decisions with Craft.co's company datasets. -Product Hunt: Harness the Product Hunt dataset, a leader in curating the best new products.

    We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:

    • Company name;
    • Size;
    • Founding date;
    • Location;
    • Industry;
    • Revenue;
    • Employee count;
    • Competitors.

    You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.

    Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.

    With Oxylabs Datasets, you can count on:

    • Fresh and accurate data collected and parsed by our expert web scraping team.
    • Time and resource savings, allowing you to focus on data analysis and achieving your business goals.
    • A customized approach tailored to your specific business needs.
    • Legal compliance in line with GDPR and CCPA standards, thanks to our membership in the Ethical Web Data Collection Initiative.

    Pricing Options:

    Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.

    Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.

    Experience a seamless journey with Oxylabs:

    • Understanding your data needs: We work closely to understand your business nature and daily operations, defining your unique data requirements.
    • Developing a customized solution: Our experts create a custom framework to extract public data using our in-house web scraping infrastructure.
    • Delivering data sample: We provide a sample for your feedback on data quality and the entire delivery process.
    • Continuous data delivery: We continuously collect public data and deliver custom datasets per the agreed frequency.

    Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!

  11. z

    Requirements data sets (user stories)

    • zenodo.org
    • data.mendeley.com
    txt
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabiano Dalpiaz; Fabiano Dalpiaz (2025). Requirements data sets (user stories) [Dataset]. http://doi.org/10.17632/7zbk8zsd8y.1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 13, 2025
    Dataset provided by
    Mendeley Data
    Authors
    Fabiano Dalpiaz; Fabiano Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A collection of 22 data set of 50+ requirements each, expressed as user stories.

    The dataset has been created by gathering data from web sources and we are not aware of license agreements or intellectual property rights on the requirements / user stories. The curator took utmost diligence in minimizing the risks of copyright infringement by using non-recent data that is less likely to be critical, by sampling a subset of the original requirements collection, and by qualitatively analyzing the requirements. In case of copyright infringement, please contact the dataset curator (Fabiano Dalpiaz, f.dalpiaz@uu.nl) to discuss the possibility of removal of that dataset [see Zenodo's policies]

    The data sets have been originally used to conduct experiments about ambiguity detection with the REVV-Light tool: https://github.com/RELabUU/revv-light

    This collection has been originally published in Mendeley data: https://data.mendeley.com/datasets/7zbk8zsd8y/1

    Overview of the datasets [data and links added in December 2024]

    The following text provides a description of the datasets, including links to the systems and websites, when available. The datasets are organized by macro-category and then by identifier.

    Public administration and transparency

    g02-federalspending.txt (2018) originates from early data in the Federal Spending Transparency project, which pertain to the website that is used to share publicly the spending data for the U.S. government. The website was created because of the Digital Accountability and Transparency Act of 2014 (DATA Act). The specific dataset pertains a system called DAIMS or Data Broker, which stands for DATA Act Information Model Schema. The sample that was gathered refers to a sub-project related to allowing the government to act as a data broker, thereby providing data to third parties. The data for the Data Broker project is currently not available online, although the backend seems to be hosted in GitHub under a CC0 1.0 Universal license. Current and recent snapshots of federal spending related websites, including many more projects than the one described in the shared collection, can be found here.

    g03-loudoun.txt (2018) is a set of extracted requirements from a document, by the Loudoun County Virginia, that describes the to-be user stories and use cases about a system for land management readiness assessment called Loudoun County LandMARC. The source document can be found here and it is part of the Electronic Land Management System and EPlan Review Project - RFP RFQ issued in March 2018. More information about the overall LandMARC system and services can be found here.

    g04-recycling.txt(2017) concerns a web application where recycling and waste disposal facilities can be searched and located. The application operates through the visualization of a map that the user can interact with. The dataset has obtained from a GitHub website and it is at the basis of a students' project on web site design; the code is available (no license).

    g05-openspending.txt (2018) is about the OpenSpending project (www), a project of the Open Knowledge foundation which aims at transparency about how local governments spend money. At the time of the collection, the data was retrieved from a Trello board that is currently unavailable. The sample focuses on publishing, importing and editing datasets, and how the data should be presented. Currently, OpenSpending is managed via a GitHub repository which contains multiple sub-projects with unknown license.

    g11-nsf.txt (2018) refers to a collection of user stories referring to the NSF Site Redesign & Content Discovery project, which originates from a publicly accessible GitHub repository (GPL 2.0 license). In particular, the user stories refer to an early version of the NSF's website. The user stories can be found as closed Issues.

    (Research) data and meta-data management

    g08-frictionless.txt (2016) regards the Frictionless Data project, which offers an open source dataset for building data infrastructures, to be used by researchers, data scientists, and data engineers. Links to the many projects within the Frictionless Data project are on GitHub (with a mix of Unlicense and MIT license) and web. The specific set of user stories has been collected in 2016 by GitHub user @danfowler and are stored in a Trello board.

    g14-datahub.txt (2013) concerns the open source project DataHub, which is currently developed via a GitHub repository (the code has Apache License 2.0). DataHub is a data discovery platform which has been developed over multiple years. The specific data set is an initial set of user stories, which we can date back to 2013 thanks to a comment therein.

    g16-mis.txt (2015) is a collection of user stories that pertains a repository for researchers and archivists. The source of the dataset is a public Trello repository. Although the user stories do not have explicit links to projects, it can be inferred that the stories originate from some project related to the library of Duke University.

    g17-cask.txt (2016) refers to the Cask Data Application Platform (CDAP). CDAP is an open source application platform (GitHub, under Apache License 2.0) that can be used to develop applications within the Apache Hadoop ecosystem, an open-source framework which can be used for distributed processing of large datasets. The user stories are extracted from a document that includes requirements regarding dataset management for Cask 4.0, which includes the scenarios, user stories and a design for the implementation of these user stories. The raw data is available in the following environment.

    g18-neurohub.txt (2012) is concerned with the NeuroHub platform, a neuroscience data management, analysis and collaboration platform for researchers in neuroscience to collect, store, and share data with colleagues or with the research community. The user stories were collected at a time NeuroHub was still a research project sponsored by the UK Joint Information Systems Committee (JISC). For information about the research project from which the requirements were collected, see the following record.

    g22-rdadmp.txt (2018) is a collection of user stories from the Research Data Alliance's working group on DMP Common Standards. Their GitHub repository contains a collection of user stories that were created by asking the community to suggest functionality that should part of a website that manages data management plans. Each user story is stored as an issue on the GitHub's page.

    g23-archivesspace.txt (2012-2013) refers to ArchivesSpace: an open source, web application for managing archives information. The application is designed to support core functions in archives administration such as accessioning; description and arrangement of processed materials including analog, hybrid, and
    born digital content; management of authorities and rights; and reference service. The application supports collection management through collection management records, tracking of events, and a growing number of administrative reports. ArchivesSpace is open source and its

  12. f

    Data and tools for studying isograms

    • figshare.com
    Updated Jul 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Breit (2017). Data and tools for studying isograms [Dataset]. http://doi.org/10.6084/m9.figshare.5245810.v1
    Explore at:
    application/x-sqlite3Available download formats
    Dataset updated
    Jul 31, 2017
    Dataset provided by
    figshare
    Authors
    Florian Breit
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A collection of datasets and python scripts for extraction and analysis of isograms (and some palindromes and tautonyms) from corpus-based word-lists, specifically Google Ngram and the British National Corpus (BNC).Below follows a brief description, first, of the included datasets and, second, of the included scripts.1. DatasetsThe data from English Google Ngrams and the BNC is available in two formats: as a plain text CSV file and as a SQLite3 database.1.1 CSV formatThe CSV files for each dataset actually come in two parts: one labelled ".csv" and one ".totals". The ".csv" contains the actual extracted data, and the ".totals" file contains some basic summary statistics about the ".csv" dataset with the same name.The CSV files contain one row per data point, with the colums separated by a single tab stop. There are no labels at the top of the files. Each line has the following columns, in this order (the labels below are what I use in the database, which has an identical structure, see section below):

    Label Data type Description

    isogramy int The order of isogramy, e.g. "2" is a second order isogram

    length int The length of the word in letters

    word text The actual word/isogram in ASCII

    source_pos text The Part of Speech tag from the original corpus

    count int Token count (total number of occurences)

    vol_count int Volume count (number of different sources which contain the word)

    count_per_million int Token count per million words

    vol_count_as_percent int Volume count as percentage of the total number of volumes

    is_palindrome bool Whether the word is a palindrome (1) or not (0)

    is_tautonym bool Whether the word is a tautonym (1) or not (0)

    The ".totals" files have a slightly different format, with one row per data point, where the first column is the label and the second column is the associated value. The ".totals" files contain the following data:

    Label

    Data type

    Description

    !total_1grams

    int

    The total number of words in the corpus

    !total_volumes

    int

    The total number of volumes (individual sources) in the corpus

    !total_isograms

    int

    The total number of isograms found in the corpus (before compacting)

    !total_palindromes

    int

    How many of the isograms found are palindromes

    !total_tautonyms

    int

    How many of the isograms found are tautonyms

    The CSV files are mainly useful for further automated data processing. For working with the data set directly (e.g. to do statistics or cross-check entries), I would recommend using the database format described below.1.2 SQLite database formatOn the other hand, the SQLite database combines the data from all four of the plain text files, and adds various useful combinations of the two datasets, namely:• Compacted versions of each dataset, where identical headwords are combined into a single entry.• A combined compacted dataset, combining and compacting the data from both Ngrams and the BNC.• An intersected dataset, which contains only those words which are found in both the Ngrams and the BNC dataset.The intersected dataset is by far the least noisy, but is missing some real isograms, too.The columns/layout of each of the tables in the database is identical to that described for the CSV/.totals files above.To get an idea of the various ways the database can be queried for various bits of data see the R script described below, which computes statistics based on the SQLite database.2. ScriptsThere are three scripts: one for tiding Ngram and BNC word lists and extracting isograms, one to create a neat SQLite database from the output, and one to compute some basic statistics from the data. The first script can be run using Python 3, the second script can be run using SQLite 3 from the command line, and the third script can be run in R/RStudio (R version 3).2.1 Source dataThe scripts were written to work with word lists from Google Ngram and the BNC, which can be obtained from http://storage.googleapis.com/books/ngrams/books/datasetsv2.html and [https://www.kilgarriff.co.uk/bnc-readme.html], (download all.al.gz).For Ngram the script expects the path to the directory containing the various files, for BNC the direct path to the *.gz file.2.2 Data preparationBefore processing proper, the word lists need to be tidied to exclude superfluous material and some of the most obvious noise. This will also bring them into a uniform format.Tidying and reformatting can be done by running one of the following commands:python isograms.py --ngrams --indir=INDIR --outfile=OUTFILEpython isograms.py --bnc --indir=INFILE --outfile=OUTFILEReplace INDIR/INFILE with the input directory or filename and OUTFILE with the filename for the tidied and reformatted output.2.3 Isogram ExtractionAfter preparing the data as above, isograms can be extracted from by running the following command on the reformatted and tidied files:python isograms.py --batch --infile=INFILE --outfile=OUTFILEHere INFILE should refer the the output from the previosu data cleaning process. Please note that the script will actually write two output files, one named OUTFILE with a word list of all the isograms and their associated frequency data, and one named "OUTFILE.totals" with very basic summary statistics.2.4 Creating a SQLite3 databaseThe output data from the above step can be easily collated into a SQLite3 database which allows for easy querying of the data directly for specific properties. The database can be created by following these steps:1. Make sure the files with the Ngrams and BNC data are named “ngrams-isograms.csv” and “bnc-isograms.csv” respectively. (The script assumes you have both of them, if you only want to load one, just create an empty file for the other one).2. Copy the “create-database.sql” script into the same directory as the two data files.3. On the command line, go to the directory where the files and the SQL script are. 4. Type: sqlite3 isograms.db 5. This will create a database called “isograms.db”.See the section 1 for a basic descript of the output data and how to work with the database.2.5 Statistical processingThe repository includes an R script (R version 3) named “statistics.r” that computes a number of statistics about the distribution of isograms by length, frequency, contextual diversity, etc. This can be used as a starting point for running your own stats. It uses RSQLite to access the SQLite database version of the data described above.

  13. d

    Data from: Data and code from: Topographic wetness index as a proxy for soil...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +1more
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data and code from: Topographic wetness index as a proxy for soil moisture in a hillslope catena: flow algorithms and map generalization [Dataset]. https://catalog.data.gov/dataset/data-and-code-from-topographic-wetness-index-as-a-proxy-for-soil-moisture-in-a-hillslope-c-e5e42
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    This dataset contains all data and code necessary to reproduce the analysis presented in the manuscript: Winzeler, H.E., Owens, P.R., Read Q.D.., Libohova, Z., Ashworth, A., Sauer, T. 2022. 2022. Topographic wetness index as a proxy for soil moisture in a hillslope catena: flow algorithms and map generalization. Land 11:2018. DOI: 10.3390/land11112018. There are several steps to this analysis. The relevant scripts for each are listed below. The first step is to use the raw digital elevation data (DEM) to produce different versions of the topographic wetness index (TWI) for the study region (Calculating TWI). Then, these TWI output files are processed, along with soil moisture (volumetric water content or VWC) time series data from a number of sensors located within the study region, to create analysis-ready data objects (Processing TWI and VWC). Next, models are fit relating TWI to soil moisture (Model fitting) and results are plotted (Visualizing main results). A number of additional analyses were also done (Additional analyses). Input data The DEM of the study region is archived in this dataset as SourceDem.zip. This contains the DEM of the study region (DEM1.sgrd) and associated auxiliary files all called DEM1.* with different extensions. In addition, the DEM is provided as a .tif file called USGS_one_meter_x39y400_AR_R6_WashingtonCO_2015.tif. The remaining data and code files are archived in the repository created with a GitHub release on 2022-10-11, twi-moisture-0.1.zip. The data are found in a subfolder called data. 2017_LoggerData_HEW.csv through 2021_HEW.csv: Soil moisture (VWC) logger data for each year 2017-2021 (5 files total). 2882174.csv: weather data from a nearby station. DryPeriods2017-2021.csv: starting and ending days for dry periods 2017-2021. LoggerLocations.csv: Geographic locations and metadata for each VWC logger. Logger_Locations_TWI_2017-2021.xlsx: 546 topographic wetness indexes calculated at each VWC logger location. note: This is intermediate input created in the first step of the pipeline. Code pipeline To reproduce the analysis in the manuscript run these scripts in the following order. The scripts are all found in the root directory of the repository. See the manuscript for more details on the methods. Calculating TWI TerrainAnalysis.R: Taking the DEM file as input, calculates 546 different topgraphic wetness indexes using a variety of different algorithms. Each algorithm is run multiple times with different input parameters, as described in more detail in the manuscript. After performing this step, it is necessary to use the SAGA-GIS GUI to extract the TWI values for each of the sensor locations. The output generated in this way is included in this repository as Logger_Locations_TWI_2017-2021.xlsx. Therefore it is not necessary to rerun this step of the analysis but the code is provided for completeness. Processing TWI and VWC read_process_data.R: Takes raw TWI and moisture data files and processes them into analysis-ready format, saving the results as CSV. qc_avg_moisture.R: Does additional quality control on the moisture data and averages it across different time periods. Model fitting Models were fit regressing soil moisture (average VWC for a certain time period) against a TWI index, with and without soil depth as a covariate. In each case, for both the model without depth and the model with depth, prediction performance was calculated with and without spatially-blocked cross-validation. Where cross validation wasn't used, we simply used the predictions from the model fit to all the data. fit_combos.R: Models were fit to each combination of soil moisture averaged over 57 months (all months from April 2017-December 2021) and 546 TWI indexes. In addition models were fit to soil moisture averaged over years, and to the grand mean across the full study period. fit_dryperiods.R: Models were fit to soil moisture averaged over previously identified dry periods within the study period (each 1 or 2 weeks in length), again for each of the 546 indexes. fit_summer.R: Models were fit to the soil moisture average for the months of June-September for each of the five years, again for each of the 546 indexes. Visualizing main results Preliminary visualization of results was done in a series of RMarkdown notebooks. All the notebooks follow the same general format, plotting model performance (observed-predicted correlation) across different combinations of time period and characteristics of the TWI indexes being compared. The indexes are grouped by SWI versus TWI, DEM filter used, flow algorithm, and any other parameters that varied. The notebooks show the model performance metrics with and without the soil depth covariate, and with and without spatially-blocked cross-validation. Crossing those two factors, there are four values for model performance for each combination of time period and TWI index presented. performance_plots_bymonth.Rmd: Using the results from the models fit to each month of data separately, prediction performance was averaged by month across the five years of data to show within-year trends. performance_plots_byyear.Rmd: Using the results from the models fit to each month of data separately, prediction performance was averaged by year to show trends across multiple years. performance_plots_dry_periods.Rmd: Prediction performance was presented for the models fit to the previously identified dry periods. performance_plots_summer.Rmd: Prediction performance was presented for the models fit to the June-September moisture averages. Additional analyses Some additional analyses were done that may not be published in the final manuscript but which are included here for completeness. 2019dryperiod.Rmd: analysis, done separately for each day, of a specific dry period in 2019. alldryperiodsbyday.Rmd: analysis, done separately for each day, of the same dry periods discussed above. best_indices.R: after fitting models, this script was used to quickly identify some of the best-performing indexes for closer scrutiny. wateryearfigs.R: exploratory figures showing median and quantile interval of VWC for sensors in low and high TWI locations for each water year. Resources in this dataset:Resource Title: Digital elevation model of study region. File Name: SourceDEM.zipResource Description: .zip archive containing digital elevation model files for the study region. See dataset description for more details.Resource Title: twi-moisture-0.1: Archived git repository containing all other necessary data and code . File Name: twi-moisture-0.1.zipResource Description: .zip archive containing all data and code, other than the digital elevation model archived as a separate file. This file was generated by a GitHub release made on 2022-10-11 of the git repository hosted at https://github.com/qdread/twi-moisture (private repository). See dataset description and README file contained within this archive for more details.

  14. w

    Dataset of books called Creating great visitor experiences : a guide for...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Creating great visitor experiences : a guide for museum professionals [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Creating+great+visitor+experiences+%3A+a+guide+for+museum+professionals
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is Creating great visitor experiences : a guide for museum professionals. It features 7 columns including author, publication date, language, and book publisher.

  15. Z

    Dataset for the paper: "Monant Medical Misinformation Dataset: Mapping...

    • data.niaid.nih.gov
    Updated Apr 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ivan Srba; Branislav Pecher; Matus Tomlein; Robert Moro; Elena Stefancova; Jakub Simko; Maria Bielikova (2022). Dataset for the paper: "Monant Medical Misinformation Dataset: Mapping Articles to Fact-Checked Claims" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5996863
    Explore at:
    Dataset updated
    Apr 22, 2022
    Dataset provided by
    Faculty of Information Technology, Brno University of Technology; Kempelen Institute of Intelligent Technologies
    Kempelen Institute of Intelligent Technologies
    Authors
    Ivan Srba; Branislav Pecher; Matus Tomlein; Robert Moro; Elena Stefancova; Jakub Simko; Maria Bielikova
    Description

    Overview

    This dataset of medical misinformation was collected and is published by Kempelen Institute of Intelligent Technologies (KInIT). It consists of approx. 317k news articles and blog posts on medical topics published between January 1, 1998 and February 1, 2022 from a total of 207 reliable and unreliable sources. The dataset contains full-texts of the articles, their original source URL and other extracted metadata. If a source has a credibility score available (e.g., from Media Bias/Fact Check), it is also included in the form of annotation. Besides the articles, the dataset contains around 3.5k fact-checks and extracted verified medical claims with their unified veracity ratings published by fact-checking organisations such as Snopes or FullFact. Lastly and most importantly, the dataset contains 573 manually and more than 51k automatically labelled mappings between previously verified claims and the articles; mappings consist of two values: claim presence (i.e., whether a claim is contained in the given article) and article stance (i.e., whether the given article supports or rejects the claim or provides both sides of the argument).

    The dataset is primarily intended to be used as a training and evaluation set for machine learning methods for claim presence detection and article stance classification, but it enables a range of other misinformation related tasks, such as misinformation characterisation or analyses of misinformation spreading.

    Its novelty and our main contributions lie in (1) focus on medical news article and blog posts as opposed to social media posts or political discussions; (2) providing multiple modalities (beside full-texts of the articles, there are also images and videos), thus enabling research of multimodal approaches; (3) mapping of the articles to the fact-checked claims (with manual as well as predicted labels); (4) providing source credibility labels for 95% of all articles and other potential sources of weak labels that can be mined from the articles' content and metadata.

    The dataset is associated with the research paper "Monant Medical Misinformation Dataset: Mapping Articles to Fact-Checked Claims" accepted and presented at ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '22).

    The accompanying Github repository provides a small static sample of the dataset and the dataset's descriptive analysis in a form of Jupyter notebooks.

    Options to access the dataset

    There are two ways how to get access to the dataset:

    1. Static dump of the dataset available in the CSV format
    2. Continuously updated dataset available via REST API

    In order to obtain an access to the dataset (either to full static dump or REST API), please, request the access by following instructions provided below.

    References

    If you use this dataset in any publication, project, tool or in any other form, please, cite the following papers:

    @inproceedings{SrbaMonantPlatform, author = {Srba, Ivan and Moro, Robert and Simko, Jakub and Sevcech, Jakub and Chuda, Daniela and Navrat, Pavol and Bielikova, Maria}, booktitle = {Proceedings of Workshop on Reducing Online Misinformation Exposure (ROME 2019)}, pages = {1--7}, title = {Monant: Universal and Extensible Platform for Monitoring, Detection and Mitigation of Antisocial Behavior}, year = {2019} }

    @inproceedings{SrbaMonantMedicalDataset, author = {Srba, Ivan and Pecher, Branislav and Tomlein Matus and Moro, Robert and Stefancova, Elena and Simko, Jakub and Bielikova, Maria}, booktitle = {Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '22)}, numpages = {11}, title = {Monant Medical Misinformation Dataset: Mapping Articles to Fact-Checked Claims}, year = {2022}, doi = {10.1145/3477495.3531726}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3477495.3531726}, }

    Dataset creation process

    In order to create this dataset (and to continuously obtain new data), we used our research platform Monant. The Monant platform provides so called data providers to extract news articles/blogs from news/blog sites as well as fact-checking articles from fact-checking sites. General parsers (from RSS feeds, Wordpress sites, Google Fact Check Tool, etc.) as well as custom crawler and parsers were implemented (e.g., for fact checking site Snopes.com). All data is stored in the unified format in a central data storage.

    Ethical considerations

    The dataset was collected and is published for research purposes only. We collected only publicly available content of news/blog articles. The dataset contains identities of authors of the articles if they were stated in the original source; we left this information, since the presence of an author's name can be a strong credibility indicator. However, we anonymised the identities of the authors of discussion posts included in the dataset.

    The main identified ethical issue related to the presented dataset lies in the risk of mislabelling of an article as supporting a false fact-checked claim and, to a lesser extent, in mislabelling an article as not containing a false claim or not supporting it when it actually does. To minimise these risks, we developed a labelling methodology and require an agreement of at least two independent annotators to assign a claim presence or article stance label to an article. It is also worth noting that we do not label an article as a whole as false or true. Nevertheless, we provide partial article-claim pair veracities based on the combination of claim presence and article stance labels.

    As to the veracity labels of the fact-checked claims and the credibility (reliability) labels of the articles' sources, we take these from the fact-checking sites and external listings such as Media Bias/Fact Check as they are and refer to their methodologies for more details on how they were established.

    Lastly, the dataset also contains automatically predicted labels of claim presence and article stance using our baselines described in the next section. These methods have their limitations and work with certain accuracy as reported in this paper. This should be taken into account when interpreting them.

    Reporting mistakes in the dataset The mean to report considerable mistakes in raw collected data or in manual annotations is by creating a new issue in the accompanying Github repository. Alternately, general enquiries or requests can be sent at info [at] kinit.sk.

    Dataset structure

    Raw data

    At first, the dataset contains so called raw data (i.e., data extracted by the Web monitoring module of Monant platform and stored in exactly the same form as they appear at the original websites). Raw data consist of articles from news sites and blogs (e.g. naturalnews.com), discussions attached to such articles, fact-checking articles from fact-checking portals (e.g. snopes.com). In addition, the dataset contains feedback (number of likes, shares, comments) provided by user on social network Facebook which is regularly extracted for all news/blogs articles.

    Raw data are contained in these CSV files (and corresponding REST API endpoints):

    sources.csv

    articles.csv

    article_media.csv

    article_authors.csv

    discussion_posts.csv

    discussion_post_authors.csv

    fact_checking_articles.csv

    fact_checking_article_media.csv

    claims.csv

    feedback_facebook.csv

    Note: Personal information about discussion posts' authors (name, website, gravatar) are anonymised.

    Annotations

    Secondly, the dataset contains so called annotations. Entity annotations describe the individual raw data entities (e.g., article, source). Relation annotations describe relation between two of such entities.

    Each annotation is described by the following attributes:

    category of annotation (annotation_category). Possible values: label (annotation corresponds to ground truth, determined by human experts) and prediction (annotation was created by means of AI method).

    type of annotation (annotation_type_id). Example values: Source reliability (binary), Claim presence. The list of possible values can be obtained from enumeration in annotation_types.csv.

    method which created annotation (method_id). Example values: Expert-based source reliability evaluation, Fact-checking article to claim transformation method. The list of possible values can be obtained from enumeration methods.csv.

    its value (value). The value is stored in JSON format and its structure differs according to particular annotation type.

    At the same time, annotations are associated with a particular object identified by:

    entity type (parameter entity_type in case of entity annotations, or source_entity_type and target_entity_type in case of relation annotations). Possible values: sources, articles, fact-checking-articles.

    entity id (parameter entity_id in case of entity annotations, or source_entity_id and target_entity_id in case of relation annotations).

    The dataset provides specifically these entity annotations:

    Source reliability (binary). Determines validity of source (website) at a binary scale with two options: reliable source and unreliable source.

    Article veracity. Aggregated information about veracity from article-claim pairs.

    The dataset provides specifically these relation annotations:

    Fact-checking article to claim mapping. Determines mapping between fact-checking article and claim.

    Claim presence. Determines presence of claim in article.

    Claim stance. Determines stance of an article to a claim.

    Annotations are contained in these CSV files (and corresponding REST API endpoints):

    entity_annotations.csv

    relation_annotations.csv

    Note: Identification of human annotators authors (email provided in the annotation app) is anonymised.

  16. o

    Getting Started Creating Data Dictionaries: How to Create a Shareable...

    • osf.io
    Updated Jan 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erin Buchanan; Sarah Crain; Ari Wynn; Hannah Johnson; Hannah Hooven (Stash); Marietta Papadatou-Pastou; Peder Isager; Rickard Carlsson; Balazs Aczel (2021). Getting Started Creating Data Dictionaries: How to Create a Shareable Dataset [Dataset]. http://doi.org/10.17605/OSF.IO/3Y2EX
    Explore at:
    Dataset updated
    Jan 27, 2021
    Dataset provided by
    Center For Open Science
    Authors
    Erin Buchanan; Sarah Crain; Ari Wynn; Hannah Johnson; Hannah Hooven (Stash); Marietta Papadatou-Pastou; Peder Isager; Rickard Carlsson; Balazs Aczel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As researchers embrace open and transparent data sharing, they will need to provide information about their data that effectively helps others understand its contents. Without proper documentation, data stored in online repositories such as OSF will often be rendered unfindable and unreadable by other researchers and indexing search engines. Data dictionaries and codebooks provide a wealth of information about variables, data collection, and other important facets of a dataset. This information, called metadata, provides key insights into how the data might be further used in research and facilitates search engine indexing to reach a broader audience of interested parties. This tutorial first explains the terminology and standards surrounding data dictionaries and codebooks. We then present a guided workflow of the entire process from source data (e.g., survey answers on Qualtrics) to an openly shared dataset accompanied by a data dictionary or codebook that follows an agreed-upon standard. Finally, we explain how to use freely available web applications to assist this process of ensuring that psychology data are findable, accessible, interoperable, and reusable (FAIR; Wilkinson et al., 2016).

  17. d

    Replication Data for 'Big G'

    • search.dataone.org
    Updated Mar 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cox, Lydia; Mueller, Gernot; Pasten, Ernesto; Schoenle, Raphael; Weber, Michael (2024). Replication Data for 'Big G' [Dataset]. http://doi.org/10.7910/DVN/8RCMZP
    Explore at:
    Dataset updated
    Mar 6, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Cox, Lydia; Mueller, Gernot; Pasten, Ernesto; Schoenle, Raphael; Weber, Michael
    Description

    The files described below replicate the results of "Big G". They are divided into three parts, which can be found in three different sub-folders: (1) FiveFacts, (2) ModelSimulation, and (3) VAR. ************************************************************************************* ******************* PART 1: Five Facts on Government spending *********************** ************************************************************************************* Folder: FiveFacts This folder contains code to replicate Figures 1-4 and Tables 1-4 in Section 3 of the paper. _ Data Set-Up _ In order to run the included script files, the main dataset needs to be assembled. The data on federal procurement contracts used in this paper is all publicly available from USASpending.gov. The base dataset used for all of the empirical results in this paper consists of the universe of procurement contract transactions from 2001-2019---around 30 GB of data. Due to its size, the data requires a substantial amount of computing power to work with. Our approach was to load the data into a SQL database on a server, following the instructions provided by USASpending.gov, which can be found here: https://files.usaspending.gov/database_download/usaspending-db-setup.pdf. As a result, the replication code cannot feasibly start with the raw dataset, though we have provided the raw files at an annual basis at [INSERT URL FOR SITE HERE]. The files "setup_data_1.R", "setup_data_2.R", "setup_data_3.R", and "setup_data_4.R" pull from the SQL database and create intermediate files that are provided with this replication package. You will NOT be able to run the "set_up" files without setting up your own SQL database, but you CAN run the Figure and Table replication code (described below) using the intermediate files created in the setup files. _ Figures _ Figure 1 + Step 1: Run 'create_contract_proxy.R,' which creates a dataset called 'contracts_for_ramey_merge.dta' + Step 2: Run ramey_zubairy_replication.do, which is a file TAKEN DIRECTLY FROM THE REPLICATION PACKAGE for Ramey & Zubairy (JPE, 2018), found at the link below. We merge our dataset into theirs, and re-run their regressions on our data. Ramey & Zubairy (2018) replication: https://econweb.ucsd.edu/~vramey/research/Ramey_Zubairy_replication_codes.zip. Figure 2 + 'Figure_2a.R' produces Figure 2a using 'intermediate_file_1.RData' + 'Figure_2b.R' produces Figure 2b using 'intermediate_file_2.RData' Figure 3 + 'Figure_3a.R' produces Figure 3a using 'intermediate_file_3.RData' + 'Figure_3b.R' produces Figure 3b using 'intermediate_file_2.RData' Figure 4 + 'Figure_4.R' produces Figures 4a and 4b using 'intermediate_file_3.RData' _ Tables _ Table 1 + 'Table_1.do' produces Table 1 using 'contracts_for_ramey_merge.dta' Table 2 + 'Table_2_upper' produces the top portion of Table 2 using the 'sectors_unbalanced.dta' file created in 'setup_data_4.R' + 'Table_2_lower' produces the lower portion of Table 2 using the 'firms_unbalanced.dta' file created in 'setup_data_4.R' Table 3 + 'Table_3.R' produces Table 3 using 'intermediate_file_1.RData'. Table 4 + Components for Table 4 can be found in 'Figure_3a.R' and 'Figure_3b.R' (noted in those files). ************************************************************************************* ************************** PART 2: Model Simulation ********************************* ************************************************************************************* Folder: "ModelSimulation" + Matlab file MAIN_generateIRFs.m generates Figures 5 and 6 in the paper. It calls the mod file modelG.mod + Matlab file MAIN_generateIRFs_htm.m generates Figure A.21 in the Appendix. It calls the mod file modelG_htm.mod + Both files run on Dynare 5.4. ************************************************************************************* ******************************** PART 3: VAR **************************************** ************************************************************************************* Folder: "VAR" (see README in VAR folder for more detail). Data Setup: "setup_var_data.R," like the files in the FiveFacts folder, will not run. They create a dataset of contracts by month and naics2 sector from the SQL database. + 'VAR.do' runs the VAR that produces Figure 7.

  18. i

    VPN-nonVPN dataset

    • impactcybertrust.org
    Updated Jan 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    External Data Source (2019). VPN-nonVPN dataset [Dataset]. http://doi.org/10.23721/100/1478793
    Explore at:
    Dataset updated
    Jan 19, 2019
    Authors
    External Data Source
    Description

    To generate a representative dataset of real-world traffic in ISCX we defined a set of tasks, assuring that our dataset is rich enough in diversity and quantity. We created accounts for users Alice and Bob in order to use services like Skype, Facebook, etc. Below we provide the complete list of different types of traffic and applications considered in our dataset for each traffic type (VoIP, P2P, etc.)

    We captured a regular session and a session over VPN, therefore we have a total of 14 traffic categories: VOIP, VPN-VOIP, P2P, VPN-P2P, etc. We also give a detailed description of the different types of traffic generated:

    Browsing: Under this label we have HTTPS traffic generated by users while browsing or performing any task that includes the use of a browser. For instance, when we captured voice-calls using hangouts, even though browsing is not the main activity, we captured several browsing flows.

    Email: The traffic samples generated using a Thunderbird client, and Alice and Bob Gmail accounts. The clients were configured to deliver mail through SMTP/S, and receive it using POP3/SSL in one client and IMAP/SSL in the other.

    Chat: The chat label identifies instant-messaging applications. Under this label we have Facebook and Hangouts via web browsers, Skype, and IAM and ICQ using an application called pidgin [14].

    Streaming: The streaming label identifies multimedia applications that require a continuous and steady stream of data. We captured traffic from Youtube (HTML5 and flash versions) and Vimeo services using Chrome and Firefox.

    File Transfer: This label identifies traffic applications whose main purpose is to send or receive files and documents. For our dataset we captured Skype file transfers, FTP over SSH (SFTP) and FTP over SSL (FTPS) traffic sessions.

    VoIP: The Voice over IP label groups all traffic generated by voice applications. Within this label we captured voice calls using Facebook, Hangouts and Skype.

    TraP2P: This label is used to identify file-sharing protocols like Bittorrent. To generate this traffic we downloaded different .torrent files from a public a repository and captured traffic sessions using the uTorrent and Transmission applications.

    The traffic was captured using Wireshark and tcpdump, generating a total amount of 28GB of data. For the VPN, we used an external VPN service provider and connected to it using OpenVPN (UDP mode). To generate SFTP and FTPS traffic we also used an external service provider and Filezilla as a client.

    To facilitate the labeling process, when capturing the traffic all unnecessary services and applications were closed. (The only application executed was the objective of the capture, e.g., Skype voice-call, SFTP file transfer, etc.) We used a filter to capture only the packets with source or destination IP, the address of the local client (Alice or Bob).

    The full research paper outlining the details of the dataset and its underlying principles:

    Gerard Drapper Gil, Arash Habibi Lashkari, Mohammad Mamun, Ali A. Ghorbani, "Characterization of Encrypted and VPN Traffic Using Time-Related Features", In Proceedings of the 2nd International Conference on Information Systems Security and Privacy(ICISSP 2016) , pages 407-414, Rome, Italy.
    ISCXFlowMeter has been written in Java for reading the pcap files and create the csv file based on selected features. The UNB ISCX Network Traffic (VPN-nonVPN) dataset consists of labeled network traffic, including full packet in pcap format and csv (flows generated by ISCXFlowMeter) also are publicly available for researchers.

    For more information contact cic@unb.ca.

    The UNB ISCX Network Traffic Dataset content
    Traffic: Content
    Web Browsing: Firefox and Chrome
    Email: SMPTS, POP3S and IMAPS
    Chat: ICQ, AIM, Skype, Facebook and Hangouts
    Streaming: Vimeo and Youtube
    File Transfer: Skype, FTPS and SFTP using Filezilla and an external service
    VoIP: Facebook, Skype and Hangouts voice calls (1h duration)
    P2P: uTorrent and Transmission (Bittorrent)
    ; cic@unb.ca.

  19. An Analysis of Engineering-as-Marketing Tools

    • kaggle.com
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). An Analysis of Engineering-as-Marketing Tools [Dataset]. https://www.kaggle.com/datasets/thedevastator/an-analysis-of-engineering-as-marketing-tools
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 12, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    An Analysis of Engineering-as-Marketing Tools

    Strategies for Expanding Business Reach

    By Ian Greenleigh [source]

    About this dataset

    The engineering-as-marketing tools available today allow startups to maximize and take advantage of the engineering talents they possess. By creating useful tools such as calculators, widgets and microsites, businesses can get in front of potential customers and lead them to their products or services.

    This dataset provides a comprehensive list of companies who are using engineering as a marketing strategy and the respective tools these companies have created for it. For each company you get information about their name, product/service, tool name, what the tool does and a URL for further information about it. Additionally there is an extra notes field providing more details about each company’s market habit or any other additional facts that could be relevant in understanding better the use cases these companies are leading with this new way of doing marketing through engineering driven strategies.

    With this data you will be able to take a closer look at how effectively this strategy is working while being able to compare different approaches taken inside each industry vertical in order to maximize conversions among leads generated by all these amazing pieces work made possible by software engineers everywhere devoted every day making our lives easier constantly!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    Analyzing this data allows users to gain insights into how successful companies are using engineering-as-marketing techniques to generate leads and expand their customer base. It also provides a valuable resource for other organizations wanting to learn more about how other organizations have achieved success with such practices.

    This dataset can be used in many ways such as:

    • Analyzing different trends in which engineering-as-marketing techniques are being used across multiple industries
    • Examining whether certain techniques lead to higher lead generation or increased customer base
    • Comparing effectiveness between companies using different types of tools etc.

      To get started with this dataset, simply load it up into some kind of data analysis software package that supports csv file processing capabilities such as Tableau or R Studio. Then define each column appropriately by adding appropriate labels onto them so that they can be understood easily when looked at from a first glance perspective by yourself or other members on your team who are looking over your datasets before any analyses start happening on those files within your chosen data analysis software package . Now you should be all set up for analyzing this dataset!

    Research Ideas

    • Leveraging this data to understand the effectiveness of engineering-as-marketing for various companies.
    • Creating a sentiment analysis of customers’ responses to engineering-as-marketing tools in order to determine which tools are most popular and successful.
    • Analyzing what types of engineering-as-marketing tools have been most successful with specific customer segments, to inform future product development and marketing tactics

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: Engineering as Marketing.csv | Column name | Description | |:-------------------|:-------------------------------------------------------------------| | Company name | The name of the company. (String) | | What co does | A brief description of what the company does. (String) | | Tool name | The name of the engineering-as-marketing tool. (String) | | What tool does | A brief description of what the tool does. (String) | | URL | The URL of the engineering-as-marketing tool. (String) | | Notes | Additional notes about the engineering-as-marketing tool. (String) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Ian Greenleigh.

  20. Creating a 7,000 strains genotype-phenotype dataset of E. coli and...

    • zenodo.org
    zip
    Updated Aug 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manon Morin; Manon Morin (2024). Creating a 7,000 strains genotype-phenotype dataset of E. coli and antimicrobial resistance phenotypes [Dataset]. http://doi.org/10.5281/zenodo.12692732
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 21, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Manon Morin; Manon Morin
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Description

    This Zenodo repository contains the data (except for the input fastq files available on SRA and intermediary files generated during the variant calling process) and code to recapitulate the study from https://doi.org/10.57844/arcadia-d2cf-ebe5 and the associated GitHub repository, where the code, pipelines, and analysis are described in more detail.

    Work summary

    In this work, we established a framework for compiling large genotype-phenotype datasets and produced a large-scale dataset of more than 7,000 E. coli strains and antimicrobial resistance phenotypes.

    We leveraged the genetic information and antimicrobial resistance (AMR) phenotype data available for the bacterium Escherichia coli to construct our dataset and took advantage of the existing knowledge about genetic variations and AMR phenotypes to validate our approach and dataset. We performed variant calling and compiled a genotype-phenotype dataset for more than 7,000 E. coli strains. Briefly, variant calling consists of identifying all genetic variations and their associated genotypes in a population compared to a reference genome. This is performed by aligning sequencing reads for each strain of the population against a reference genome, then identifying polymorphic regions in the population, and finally characterizing variants and their genotypes at each of these polymorphic regions.

    We have generated a dataset that successfully revealed significant genetic diversity and identified 2.4 million variants. By focusing on non-silent variants within genes associated with AMR, we confirmed the dataset's accuracy.

    We hope this study is a foundational resource for conducting large-scale genotype-phenotype studies that will offer valuable insights for genetics investigations, informing the development of treatments and prevention strategies for AMR. This resource is invaluable for microbiologists and epidemiologists seeking to understand AMR mechanisms and improve genotype-phenotype predictions in pathogenic E. coli outbreaks. Additionally, it's of particular interest to geneticists and evolutionary biologists, providing a dataset to develop strategies for studying genetic interactions and broader applications in phenotype-phenotype predictions and phylogenetic research.

    Data organization

    Data are organized in the compressed folder. Briefly, they’re divided into two main folders.

    The first folder, dataset_generation, includes the code and information necessary to build the genotype dataset and perform the variant calling. It covers major steps like the generation of the reference pangenome used for variant calling, the variant calling pipeline applied to each of the 7,000 strains, the filtering of false positive variants, and the annotation of the variants.

    The second section, dataset_analysis, includes the code and information used to process and analyze the dataset and generate figures for the Pub (https://doi.org/10.57844/arcadia-d2cf-ebe5). It includes the preliminary analysis of AMR phenotypes within the population and the analysis of variants regarding known AMR phenotypes.

    Files description

    The following table provides a list and description of the different files and their locations.

    File nameLocationDescription
    variant_calling_pipelinedataset_generation/scripts/Snakefile: performs variant calling from raw paired-end sequencing files and generate one vcf.gz file per sample
    snakemake_ECOR72_annotationSnakefile: performs Prokka annotation on inputs whole genome fastq files
    ECOR72_and_DP_threshold_analysis.RmdR markdown: analyses the coverage of known present and absebt loci in the ECOR population
    average_coverage_41.csvdataset_generation/data/dp_threshold/Pangenome loci read coverage information for 40 ECOR strains
    average_coverage_last32.csvPangenome loci read coverage information for 32 ECOR strains
    whole_pan_ecor_presence_absence.csvReformated pangenome loci presence-absence in ECOR strains
    pangenome_genomes_SRA_GCA.csvCorrespondance table between ECOR72 strains genome names and raw sequencing files SRA accession number
    index_loci_pangenome_good.txtList of indexed positions in the pangenome
    list_ecor_txtfiles.txtList of txt files (containing the DP information per nucleotide) to use - This corresponds to the files for each 72 ECOR strains
    ECOR72_SRA_and_assembly_accessions.csvdataset_generation/data/List of Genome accession number and the SRA accession number of the associated sequencing files for the 72 ECOR strains
    sample_list_SRA.csvList of SRA accession numbers of the E. coli strains used for variant calling
    gene_presence_absence.csvdataset_generation/results/pangenome_cds/Roary output of presence-absence of the pangenome cds loci in the ECOR72 strains
    genes.gffAnnotation file of the pangenome cds sequences (Prokka output)
    pangenome_cds.faRoary output cds_pangenome sequencing file
    summary_statistics.txtRoary statistics output of creations of the cds pangenome
    roary_outputRoary output folder
    IGR_presence_absence.csvdataset_generation/results/pangenome_igr/Piggy output of presence-absence of the pangenome igr loci in the ECOR72 strains
    pangenome_igr.fastaPiggy output igr_pangenome sequencing file
    piggy_outputPiggy output folder
    whole_pangenome.fastadataset_generation/results/pangenome_whole/whole pangenome sequences
    annot_summary_filtered.htmldataset_generation/results/vcf/Summary of snpEff annotations
    annotated_output.vcf.gzsnpEff annotated vcf file
    annotated_output.vcf.gz.csiindexed annotated vcf file
    filtered_output.vcf.gzfiltered vcf file (removed low coveraged and low quality variants)
    filtered_output.vcf.gz.csiindexed filtered vcf files
    output.non_silent.vcf.gzvcf file containing only the nonsilent variants in the pangenome cds loci
    merged_output_listN.vcg.gzintermediary vcf files of 1000 merged strains vcf - these intermediary merged files are numbered from 1 to 7
    merged_output_all.vcf.gzfinal vcf.gz files of all merged vcf files in this study
    List_N_merging.txtdataset_generation/data/vcf_merging/List of the 1000 vcf.gz files to be merged together. There are 7 lists, numbered from 1 to 7
    ecor72_array.txtdataset_generation/results/ecor72_DP/Consolidate DP information per nucleotide for each ECOR strain
    variants_pos.tsvdataset_analysis/data/variant_analysis/List of all the variants found in the population and identified by their locus and position within the locus
    allele_freqs.txtVariant frequency informations
    variants_non_silent_pos.tsvList of all the non-silent variants found in the population and identified by their locus and position within the locus
    allele_non_silent_freqs.txtNon-silent variant frequency informations
    cds_eggNog.tsveggNog output file of the pangenome annotation
    COG_functional_categories.csvCorrespondance between COG functional categories and higher-order annotation
    BVBRC_genome_May31.csvdataset_analysis/data/dataset_analysisList of E. coli with available genomes as reported in BCBRV database
    BVBRC_genome_amr_May31.csvE. coli antimicrobial resistance information available in BCBRV database
    antibiotic_class.csvAntibiotic name and Antibiotic class information
    resistance_output.non_silent.vcf.gzdataset_analysis/data/antimicrobial_resistance_analysisvcf.gz file of the loci expected to be associated with antimicrobial resistance
    antibiotic_resistance_freq.csvFrequency information for the non-silent variant in the selected antimicrobial genes
    SRA_to_genome_name.csvcorrespondence between strain SRA accession number and genome name (as reported in BVBRC)
    Dataset_metainfo_AMR_analysis.Rmddataset_analysis/scriptsR markdown: conducts the characterization of the population and analysis of the AMR phenotype distribution
    Variant_population_analysis.RmdR markdown: conducts the analysis and investigation of identified variants in the population
    Antimicrobial_resistance_investigation.RmdR markdown: conducts the antimicrobial resistance investigation

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Shubhanshu Mishra; Brent D Fegley; Jana Diesner; Vetle I. Torvik (2018). Self-citation analysis data based on PubMed Central subset (2002-2005) [Dataset]. http://doi.org/10.13012/B2IDB-9665377_V1

Self-citation analysis data based on PubMed Central subset (2002-2005)

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 27, 2018
Authors
Shubhanshu Mishra; Brent D Fegley; Jana Diesner; Vetle I. Torvik
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Dataset funded by
U.S. National Institutes of Health (NIH)
U.S. National Science Foundation (NSF)
Description

Self-citation analysis data based on PubMed Central subset (2002-2005) ---------------------------------------------------------------------- Created by Shubhanshu Mishra, Brent D. Fegley, Jana Diesner, and Vetle Torvik on April 5th, 2018 ## Introduction This is a dataset created as part of the publication titled: Mishra S, Fegley BD, Diesner J, Torvik VI (2018) Self-Citation is the Hallmark of Productive Authors, of Any Gender. PLOS ONE. It contains files for running the self citation analysis on articles published in PubMed Central between 2002 and 2005, collected in 2015. The dataset is distributed in the form of the following tab separated text files: * Training_data_2002_2005_pmc_pair_First.txt (1.2G) - Data for first authors * Training_data_2002_2005_pmc_pair_Last.txt (1.2G) - Data for last authors * Training_data_2002_2005_pmc_pair_Middle_2nd.txt (964M) - Data for middle 2nd authors * Training_data_2002_2005_pmc_pair_txt.header.txt - Header for the data * COLUMNS_DESC.txt file - Descriptions of all columns * model_text_files.tar.gz - Text files containing model coefficients and scores for model selection. * results_all_model.tar.gz - Model coefficient and result files in numpy format used for plotting purposes. v4.reviewer contains models for analysis done after reviewer comments. * README.txt file ## Dataset creation Our experiments relied on data from multiple sources including properitery data from Thompson Rueter's (now Clarivate Analytics) Web of Science collection of MEDLINE citations. Author's interested in reproducing our experiments should personally request from Clarivate Analytics for this data. However, we do make a similar but open dataset based on citations from PubMed Central which can be utilized to get similar results to those reported in our analysis. Furthermore, we have also freely shared our datasets which can be used along with the citation datasets from Clarivate Analytics, to re-create the datased used in our experiments. These datasets are listed below. If you wish to use any of those datasets please make sure you cite both the dataset as well as the paper introducing the dataset. * MEDLINE 2015 baseline: https://www.nlm.nih.gov/bsd/licensee/2015_stats/baseline_doc.html * Citation data from PubMed Central (original paper includes additional citations from Web of Science) * Author-ity 2009 dataset: - Dataset citation: Torvik, Vetle I.; Smalheiser, Neil R. (2018): Author-ity 2009 - PubMed author name disambiguated dataset. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4222651_V1 - Paper citation: Torvik, V. I., & Smalheiser, N. R. (2009). Author name disambiguation in MEDLINE. ACM Transactions on Knowledge Discovery from Data, 3(3), 1–29. https://doi.org/10.1145/1552303.1552304 - Paper citation: Torvik, V. I., Weeber, M., Swanson, D. R., & Smalheiser, N. R. (2004). A probabilistic similarity metric for Medline records: A model for author name disambiguation. Journal of the American Society for Information Science and Technology, 56(2), 140–158. https://doi.org/10.1002/asi.20105 * Genni 2.0 + Ethnea for identifying author gender and ethnicity: - Dataset citation: Torvik, Vetle (2018): Genni + Ethnea for the Author-ity 2009 dataset. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-9087546_V1 - Paper citation: Smith, B. N., Singh, M., & Torvik, V. I. (2013). A search engine approach to estimating temporal changes in gender orientation of first names. In Proceedings of the 13th ACM/IEEE-CS joint conference on Digital libraries - JCDL ’13. ACM Press. https://doi.org/10.1145/2467696.2467720 - Paper citation: Torvik VI, Agarwal S. Ethnea -- an instance-based ethnicity classifier based on geo-coded author names in a large-scale bibliographic database. International Symposium on Science of Science March 22-23, 2016 - Library of Congress, Washington DC, USA. http://hdl.handle.net/2142/88927 * MapAffil for identifying article country of affiliation: - Dataset citation: Torvik, Vetle I. (2018): MapAffil 2016 dataset -- PubMed author affiliations mapped to cities and their geocodes worldwide. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4354331_V1 - Paper citation: Torvik VI. MapAffil: A Bibliographic Tool for Mapping Author Affiliation Strings to Cities and Their Geocodes Worldwide. D-Lib magazine : the magazine of the Digital Library Forum. 2015;21(11-12):10.1045/november2015-torvik * IMPLICIT journal similarity: - Dataset citation: Torvik, Vetle (2018): Author-implicit journal, MeSH, title-word, and affiliation-word pairs based on Author-ity 2009. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4742014_V1 * Novelty dataset for identify article level novelty: - Dataset citation: Mishra, Shubhanshu; Torvik, Vetle I. (2018): Conceptual novelty scores for PubMed articles. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-5060298_V1 - Paper citation: Mishra S, Torvik VI. Quantifying Conceptual Novelty in the Biomedical Literature. D-Lib magazine : The Magazine of the Digital Library Forum. 2016;22(9-10):10.1045/september2016-mishra - Code: https://github.com/napsternxg/Novelty * Expertise dataset for identifying author expertise on articles: * Source code provided at: https://github.com/napsternxg/PubMed_SelfCitationAnalysis Note: The dataset is based on a snapshot of PubMed (which includes Medline and PubMed-not-Medline records) taken in the first week of October, 2016. Check here for information to get PubMed/MEDLINE, and NLMs data Terms and Conditions Additional data related updates can be found at Torvik Research Group ## Acknowledgments This work was made possible in part with funding to VIT from NIH grant P01AG039347 and NSF grant 1348742. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ## License Self-citation analysis data based on PubMed Central subset (2002-2005) by Shubhanshu Mishra, Brent D. Fegley, Jana Diesner, and Vetle Torvik is licensed under a Creative Commons Attribution 4.0 International License. Permissions beyond the scope of this license may be available at https://github.com/napsternxg/PubMed_SelfCitationAnalysis.

Search
Clear search
Close search
Google apps
Main menu