Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 2 rows and is filtered where the book series is Economic census studies. It features 9 columns including author, publication date, language, and book publisher.
The 2020 decennial census tracts within Fairfax County. This data was acquired from the US Census Bureau, with fields slightly customized by Fairfax County Department of Management and Budget, Economic, Demographic, and Statistical Research unit.Contact: Department of Management & BudgetData Accessibility: Publicly AvailableUpdate Frequency: As NeededLast Revision Date: 11/2/2022Creation Date: 11/2/2022Feature Dataset Name: DIT_GIS.DSMHSMGR.FEDERAL_CENSUS_2020Layer Name: DIT_GIS.DSMHSMGR.FEDERAL_TRACT_2020
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book publisher is Cathie Marsh Centre for Census and Survey Research (CCSR. It features 7 columns including author, publication date, language, and book publisher.
This raster dataset represents the agricultural census data quality for date crop yields. Data quality categories include (0= missing, 0.25= county level census data, 0.5= interpolated with census data from within 2 degrees of latitude/longitude, 0.75= state level census data, 1= country level census data). Croplands cover ~15 million km2 of the planet and provide the bulk of the food and fiber essential to human well-being. Most global land cover datasets from satelites group croplands into just a few categories, thereby excluding information that is critical for answering key questions ranging from biodiversity conservation to food security to biogeochemical cycling. Information about agricultural land use practices like crop selection, yield, and fertilizer use is even more limited.Here we present land use data sets created by combining national, state, and county level census statistics with a recently updated global data set of croplands on a 5 minute by 5 minute (~10km x 10 km) latitude/longitude grid. Temporal resolution: Year 2000- based of average of census data between 1997-2003.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book subjects. It has 6 rows and is filtered where the books is Vanishing for the vote : suffrage, citizenship and the battle for the census. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
A broad and generalized selection of 2014-2018 US Census Bureau 2018 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The South Shetland Antarctic fur seal pup census dataset is part of long-term monitoring efforts in the South Shetland Islands archipelago (SSI), based at Cape Shirreff, Livingston Island. These efforts, which include conducting annual synoptic census counts of South Shetland Antarctic fur seals (SSAFS) throughout the region, have been primarily carried out by the Chilean Antarctic Institute (INACH) and the National Oceanic and Atmospheric Administration (NOAA) United States Antarctic Marine Living Resources Program (U.S. AMLR). These census data will continue to be collected by the U.S. AMLR program, and updated yearly.
Recent studies have demonstrated Antarctic fur seals (Arctocephalus gazella) are composed of at least four distinct subpopulations (Bonin et al. 2013, Paijmans et al. 2020), including one breeding throughout the SSI. These SSAFS are the highest latitude population of otariids in the world. As such, this subpopulation faces a unique array of environmental and ecological challenges, harbors a disproportionately large reservoir of genetic diversity for the species, and has experienced catastrophic population decline between 2008 and 2023 (Krause et al. 2023 and references therein). Therefore, ensuring access to accurate and updated population data for SSAFS is particularly important for managers and decision makers. Due to regular absences by foraging females throughout the breeding season, and the irregular haul out patterns of males and subadults, the most informative measure of fur seal population size is to annually count pups (Payne, 1979; Bengtson et al., 1990). This dataset consists of all known total synoptic Antarctic fur seal pup counts (i.e., live and dead pups) from the SSI during the austral summers since 1959. Counts from the subset breeding colonies at Cape Shirreff (CS, reported with standard deviation (±SD) where available) and the San Telmo Islets (STI) are also included. Data were collected by the U.S. AMLR Program, unless otherwise indicated.
Most of these annual census counts were conducted during the optimal biological window (late December and early January) when the vast majority of pups are born, but have not yet been subject to substantial mortality (Krause et al. 2022). The authors are confident that all counts included in this dataset are comparable and representative of South Shetland Antarctic fur seal population trends. However, census dates, or at least best estimates of the census date, are included for all records for any parties wishing to apply correction factors.
The data are published as a standardized Darwin Core Archive, which contains count data for SSAFS pups from the specified locations during the specified seasons. This dataset is published under the license CC0. Please follow the guidelines from the SCAR Data Policy (SCAR, 2023) when using the data. If you have any questions regarding this dataset, please contact us via the contact information provided in the metadata or via data-biodiversity-aq@naturalsciences.be. Issues with the dataset can be reported at https://github.com/us-amlr/ssafs-pup-census.
This dataset is maintained by the U.S. Antarctic Marine Living Resources Program, funded by NOAA.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Description: Since 2009, the departmental directorate of the Marne territories has been carrying out a census of the land resources available within the main urban areas of the Marne. This census concerns land rights of way for known or probable brownfields of all types (industrial, railway, military, etc.). The area retained for brownfields is 2 000 m², threshold defined as potentially an issue. This census is not exhaustive. Census conducted until October 2018. Genealogy: A first census of brownfields was carried out from the databases of the Ministry of Ecology, Sustainable Development and Energy “BASIAS” and “Basol”, listing polluted sites. Visits by the territorial referents (RT) of the departmental directorate of the territories were then carried out on site and made it possible to complete the first census. The data is geolocated in the form of polygons using the parcelal cD (default of digitised cadastre). Metadata: ID: identification of wasteland by number ENTITE: current state (fridge or wasteland converted) CD_INSEE: INSEE code NOM_COM: name of the municipality DESCRIPTION: current state of land or built at census date ACTIV: past or new activity for brownfields ENTER: name of company and/or owner, who is or was installed ADDRESS: address of the wasteland PROJECT: project in progress at census date if known COMMENT: further information on the situation of the wasteland at the last date of its census. SOURCE: Source of information. Date_MAJ: date of update The geolocation data is in the form of a polygon.
Abstract:
The 50-hectare plot at Barro Colorado Island, Panama, is a 1000 meter by 500 meter rectangle of forest inside of which all woody trees and shrubs with stems at least 1 cm in stem diameter have been censused. Every individual tree in the 50 hectares was permanently numbered with an aluminum tag in 1982, and every individual has been revisited six times since (in 1985, 1990, 1995, 2000, 2005, and 2010). In each census, every tree was measured, mapped and identified to species. Details of the census method are presented in Condit (Tropical forest census plots: Methods and results from Barro Colorado Island, Panama and a comparison with other plots; Springer-Verlag, 1998), and a description of the seven-census results in Condit, Chisholm, and Hubbell (Thirty years of forest census at Barro Colorado and the Importance of Immigration in maintaining diversity; PLoS ONE, 7:e49826, 2012).
Description:
CITATION TO DATABASE: Condit, R., Lao, S., Pérez, R., Dolins, S.B., Foster, R.B. Hubbell, S.P. 2012. Barro Colorado Forest Census Plot Data, 2012 Version. DOI http://dx.doi.org/10.5479/data.bci.20130603
CO-AUTHORS: Stephen Hubbell and Richard Condit have been principal investigators of the project for over 30 years. They are fully responsible for the field methods and data quality. As such, both request that data users contact them and invite them to be co-authors on publications relying on the data. More recent versions of the data, often with important updates, can be requested directly from R. Condit (conditr@gmail.com).
ACKNOWLEDGMENTS: The following should be acknowledged in publications for contributions to the 50-ha plot project: R. Foster as plot founder and the first botanist able to identify so many trees in a diverse forest; R. Pérez and S. Aguilar for species identification; S. Lao for data management; S. Dolins for database design; plus hundreds of field workers for the census work, now over 2 million tree measurements; the National Science Foundation, Smithsonian Tropical Research Institute, and MacArthur Foundation for the bulk of the financial support.
File 1. RoutputFull.pdf: Detailed documentation of the 'full' tables in Rdata format (File 5).
File 2. RoutputStem.pdf: Detailed documentation of the 'stem' tables in Rdata format (File 7).
File 3. ViewFullTable.zip: A zip archive with a single ascii text file named ViewFullTable.txt holding a table with all census data from the BCI 50-ha plot. Each row is a single measurement of a single stem, with columns indicating the census, date, species name, plus tree and stem identifiers; all seven censuses are included. A full description of all columns in the table can be found at http://dx.doi.org/10.5479/data.bci.20130604 (ViewFullTable, pp. 21-22 of the pdf).
File 4. ViewTax.txt: An ascii text table with information on all tree species recorded in the 50-ha plot. There are columns with taxonomics names (family, genus, species, and subspecies), plus the taxonomic authority. The column 'Mnemonic' gives a shortened code identifying each species, a code used in the R tables (Files 5, 7). The column 'IDLevel' indicates the depth to which the species is identified: if IDLevel='species', it is a fully identified, but if IDLevel='genus', the genus is known but not the species. IDLevel can also be 'family', or 'none' in case the species is not even known to family.
File 5. bci.full.Rdata31Aug2012.zip: A zip archive holding seven R Analytical Tables, versions of the BCI 50 ha plot census data in R format. These are designed for data analysis. There are seven files, one for each of the 7 censuses: 'bci.full1.rdata' for the first census through 'bci.full7.rdata' for the seventh census. Each of the seven files is a table having one record per individual tree, and each includes a record for every tree found over the entire seven censuses (i.e. whether or not they were observed alive in the given census, there is a record). Detailed documentation of these tables is given in RoutputFull.pdf (File 1).
File 6. bci.spptable.rdata: A list of the 1064 species found across all tree plots and inventories in Panama, in R format. This is a superset of species found in the BCI censuses: every BCI species is included, plus additional species never observed at BCI. The column 'sp' in this table is a code identifying the species in the R census tables (File 5, 7), and matching 'mnemomic' in ViewFullTable (File 3).
File 7. bci.stem.Rdata31Aug2012.zip: A zip archive holding seven R Analytical Tables, versions of the BCI 50 ha plot census data in R format. These are designed for data analysis. There are seven files, one for each of the 7 censuses: 'bci.stem1.rdata' for the first census through 'bci.stem7.rdata' for the seventh census. Each of the seven files is a table having one record per individual stem, necessary because some individual... Visit https://dataone.org/datasets/urn%3Auuid%3Afba3cfc8-f946-4ef7-8d56-30bea8867829 for complete metadata about this dataset.
The 2020 decennial census designated places within Fairfax County. This data was acquired from the US Census Bureau, with fields slightly customized by Fairfax County Department of Management and Budget, Economic, Demographic, and Statistical Research unit.Contact: Department of Management & BudgetData Accessibility: Publicly AvailableUpdate Frequency: As NeededLast Revision Date: 1/6/2023Creation Date: 1/6/2023Feature Dataset Name: DIT_GIS.DSMHSMGR.FEDERAL_CENSUS_2020Layer Name: DIT_GIS.DSMHSMGR.FEDERAL_CDP_2020
The 2020 decennial census block groups within Fairfax County. This data was acquired from the US Census Bureau, with fields slightly customized by Fairfax County Department of Management and Budget, Economic, Demographic, and Statistical Research unit.Contact: Department of Management & BudgetData Accessibility: Publicly AvailableUpdate Frequency: As NeededLast Revision Date: 1/6/2023Creation Date: 1/6/2023Feature Dataset Name: DIT_GIS.DSMHSMGR.FEDERAL_CENSUS_2020Layer Name: DIT_GIS.DSMHSMGR.FEDERAL_BLOCKGROUP_2020
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book series. It has 1 row and is filtered where the books is 1981 census : ward and borough indices for Greater London. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
A broad and generalized selection of 2013-2017 US Census Bureau 2017 5-year American Community Survey race, ethnicity and citizenship data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of the race and/or ethnicity of populations in New Mexico, along with citizenship status and nativity. The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
The 2020 decennial census blocks within Fairfax County. This data was acquired from the US Census Bureau, with fields slightly customized by Fairfax County Department of Management and Budget, Economic, Demographic, and Statistical Research unit.
Contact: Department of Management & Budget
Data Accessibility: Publicly Available
Update Frequency: As Needed
Last Revision Date: 1/6/2023
Creation Date: 1/6/2023
Feature Dataset Name: DIT_GIS.DSMHSMGR.FEDERAL_CENSUS_2020
Layer Name: DIT_GIS.DSMHSMGR.FEDERAL_BLOCK_2020
This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by modified ZIP Code Tabulation Area (ZCTA) of residence. Modified ZCTA reflects the first non-missing address within NYC for each person reported with an antibody test result. This unit of geography is similar to ZIP codes but combines census blocks with smaller populations to allow more stable estimates of population size for rate calculation. It can be challenging to map data that are reported by ZIP Code. A ZIP Code doesn’t refer to an area, but rather a collection of points that make up a mail delivery route. Furthermore, there are some buildings that have their own ZIP Code, and some non-residential areas with ZIP Codes. To deal with the challenges of ZIP Codes, the Health Department uses ZCTAs which solidify ZIP codes into units of area. Often, data reported by ZIP code are actually mapped by ZCTA. The ZCTA geography was developed by the U.S. Census Bureau. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-modzcta.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level.
These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents.
In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders)
Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning.
Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020.
Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certainly be miscalculating or counting the same values multiple times. To analyze the most current data, only use the latest extract date. Antibody tests that are missing dates are not included in the dataset; as dates are identified, these events are added. Lags between occurrence and report of cases and tests can be assessed by comparing counts and rates across multiple data extract dates.
For further details, visit:
• https://www1.nyc.gov/site/doh/covid/covid-19-data.page
• https://github.com/nychealth/coronavirus-data
• https://data.cityofnewyork.us/Health/Modified-Zip-Code-Tabulation-Areas-MODZCTA-/pri4-ifjk
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This dataset contains COVID-19 positive confirmed cases aggregated by several different geographic areas and by day. COVID-19 cases are mapped to the residence of the individual and shown on the date the positive test was collected. In addition, 2016-2020 American Community Survey (ACS) population estimates are included to calculate the cumulative rate per 10,000 residents.
Dataset covers cases going back to 3/2/2020 when testing began. This data may not be immediately available for recently reported cases and data will change to reflect as information becomes available. Data updated daily.
Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas
B. HOW THE DATASET IS CREATED Addresses from the COVID-19 case data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area for a given date.
The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a cumulative rate which is equal to ([cumulative count up to that date] / [acs_population]) * 10000) representing the number of total cases per 10,000 residents (as of the specified date).
COVID-19 case data undergo quality assurance and other data verification processes and are continually updated to maximize completeness and accuracy of information. This means data may change for previous days as information is updated.
C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 05:00 Pacific Time.
D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
This dataset can be used to track the spread of COVID-19 throughout the city, in a variety of geographic areas. Note that the new cases column in the data represents the number of new cases confirmed in a certain area on the specified day, while the cumulative cases column is the cumulative total of cases in a certain area as of the specified date.
Privacy rules in effect To protect privacy, certain rules are in effect: 1. Any area with a cumulative case count less than 10 are dropped for all days the cumulative count was less than 10. These will be null values. 2. Once an area has a cumulative case count of 10 or greater, that area will have a new row of case data every day following. 3. Cases are dropped altogether for areas where acs_population < 1000 4. Deaths data are not included in this dataset for privacy reasons. The low COVID-19 death rate in San Francisco, along with other publicly available information on deaths, means that deaths data by geography and day is too granular and potentially risky. Read more in our privacy guidelines
Rate suppression in effect where counts lower than 20 Rates are not calculated unless the cumulative case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology.
A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website.
Rows included for Citywide case counts Rows are included for the Citywide case counts and incidence rate every day. These Citywide rows can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongoing data quality efforts result in improved mapping on a rolling bases.
Related dataset See the dataset of the most recent cumulative counts for all geographic areas here: https://data.sfgov.org/COVID-19/COVID-19-Cases-and-Deaths-Summarized-by-Geography/tpyr-dvnc
E. CHANGE LOG
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Island Areas: Race Status of Ownership for American Samoa, Commonwealth of the Northern Mariana Islands, Guam, Puerto Rico, and U.S. Virgin Islands: 2022.Table ID.ISLANDAREAS2022.IA2200SUBJ13.Survey/Program.Economic Census of Island Areas.Year.2022.Dataset.ECNIA Economic Census of Island Areas.Release Date.2024-12-19.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.2022 Economic Census of Island Areas tables are released on a flow basis from June through December 2024.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe.The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in Puerto Rico, the U.S. Virgin Islands, Guam, the Commonwealth of the Northern Mariana Islands, or America Samoa, have paid employees, and are classified in one of eighteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS)..Methodology.Data Items and Other Identifying Records.Number of establishmentsSales, value of shipments, or revenue ($1,000)Annual payroll ($1,000)First-quarter payroll ($1,000)Number of employeesRange indicating imputed percentage of total sales, value of shipments, or revenueRange indicating imputed percentage of total annual payrollRange indicating imputed percentage of total employeesEach record includes a RACE_GROUP code, which represents a specific race status of ownership category.The data are shown for race status of ownership.Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the Economic Census of Island Areas are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed..Geography Coverage.The data are shown for employer establishments and firms that vary by industry:the Territory level for American Samoathe Territory level for Guamthe Territory level for the Commonwealth of the Northern Mariana Islandsthe Territory level for Puerto Ricothe Territory level for US Virgin IslandsFor information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2-digit 2022 NAICS code levels for selected economic census sectors and geographies.For information about NAICS, see Economic Census Code Lists..Sampling.The Economic Census of Island Areas is a complete enumeration of establishments located in the islands (i.e., all establishments on the sampling frame are included in the sample). Therefore, the accuracy of tabulations is not affected by sampling error..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY24-0044).The primary method of disclosure avoidance protection is noise infusion. Under this method, the quantitative data values such as sales or payroll for each establishment are perturbed prior to tabulation by applying a random noise multiplier (i.e., factor). Each establishment is assigned a single noise factor, which is applied to all its quantitative data value. Using this method, most published cell totals are perturbed by at most a few percentage points.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing establishments are not presented. For more information on disclosure avoidance, see Methodology for the 2022 Economic Census- Island Areas..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, see Methodology for the 2022 Economic Census- Island Areas.For more information about survey questionnaires, Primary Business Activity/NAICS codes, and NAPCS codes, see Economic Census Technical Documentation..Weights.Because the Economic Census of Island Areas is a complete enumeration, there is no sample weighting..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/sector00.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to pro...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Construction: Location of Construction Establishments by Employment Size for the U.S. and States: 2022.Table ID.ECNLOCCONS2022.EC2223LOCCONS.Survey/Program.Economic Census.Year.2022.Dataset.ECN Sector Statistics Economic Census: Construction: Location of Construction Establishments by Employment Size for the U.S. and States.Source.U.S. Census Bureau, 2022 Economic Census, Sector Statistics.Release Date.2025-05-15.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.The data in this file come from the 2022 Economic Census data files released on a flow basis starting in January 2024 with First Look Statistics. Preliminary U.S. totals released in January 2024 are superseded with final data shown in the releases of later economic census statistics through March 2026.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe.The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS)..Methodology.Data Items and Other Identifying Records.Employment size of establishmentsNumber of establishmentsDefinitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the economic census are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization. For some industries, the reporting units are instead groups of all establishments in the same industry belonging to the same firm..Geography Coverage.The data are shown for the U.S. and State levels that vary by industry. For information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2- through 6-digit 2022 NAICS code levels for U.S. and States. For information about NAICS, see Economic Census Code Lists..Sampling.The 2022 Economic Census sample includes all active operating establishments of multi-establishment firms and approximately 1.7 million single-establishment firms, stratified by industry and state. Establishments selected to the sample receive a questionnaire. For all data on this table, establishments not selected into the sample are represented with administrative data. For more information about the sample design, see 2022 Economic Census Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY23-099).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business’ data or identity.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing firms or three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the 2022 Economic Census Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, survey questionnaires, Primary Business Activity/NAICS codes, NAPCS codes, and more, see Economic Census Technical Documentation..Weights.No weighting applied as establishments not sampled are represented with administrative data..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/sector23/.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.X - Not applicableA - Relative standard error of 100% or morer - Reviseds - Relative standard error exceeds 40%For a complete list of symbols, see Economic Census Data Dictionary..Data-Specifi...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 2 rows and is filtered where the book series is Economic census studies. It features 9 columns including author, publication date, language, and book publisher.