50 datasets found
  1. u

    Hidden Room Educational Data Mining Analysis

    • produccioncientifica.uca.es
    • figshare.com
    Updated 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palomo-Duarte, Manuel; Berns, Anke; Palomo-Duarte, Manuel; Berns, Anke (2016). Hidden Room Educational Data Mining Analysis [Dataset]. https://produccioncientifica.uca.es/documentos/668fc475b9e7c03b01bde1d4
    Explore at:
    Dataset updated
    2016
    Authors
    Palomo-Duarte, Manuel; Berns, Anke; Palomo-Duarte, Manuel; Berns, Anke
    Description

    Histograms and results of k-means and Ward's clustering for Hidden Room game

    The fileset contains information from three sources:

    1. Histograms files:
    * Lexical_histogram.png (histogram of lexical error ratios)
    * Grammatical_histogram.png (histogram of grammatical error ratios)

    2. K-means clustering files:
    * elbow-lex kmeans.png (clustering by lexical aspects: error curves obtained for applying elbow method to determinate the optimal number of clusters)
    * cube-lex kmeans.png (clustering by lexical aspects: a three-dimensional representation of clusters obtained after applying k-means method)
    * Lexical_clusters (table) kmeans.xls (clustering by lexical aspects: centroids, standard deviations and number of instances assigned to each cluster)
    * elbow-gram kmeans.png (clustering by grammatical aspects: error curves obtained for applying elbow method to determinate the optimal number of clusters)
    * cube-gramm kmeans.png (clustering by grammatical aspects: a three-dimensional representation of clusters obtained after applying k-means method)
    * Grammatical_clusters (table) kmeans.xls (clustering by grammatical aspects: centroids, standard deviations and number of instances assigned to each cluster)
    * elbow-lexgram kmeans.png (clustering by lexical and grammatical aspects: error curves obtained for applying elbow method to determinate the optimal number of clusters)
    * Lexical_Grammatical_clusters (table) kmeans.xls (clustering by lexical and grammatical aspects: centroids, standard deviations and number of instances assigned to each cluster)
    * Grammatical_clusters_number_of_words (table) kmeans.xls : number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying k-means clustering to grammatical error ratios.
    * Lexical_clusters_number_of_words (table) kmeans.xls : number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying k-means clustering to lexical error ratios.
    * Lexical_Grammatical_clusters_number_of_words (table) kmeans.xls : number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying k-means clustering to lexical and grammatical error ratios.

    3. Ward’s Agglomerative Hierarchical Clustering files:
    * Lexical_Cluster_Dendrogram_ward.png (clustering by lexical aspects: dendrogram obtained after applying Ward's clustering method).
    * Grammatical_Cluster_Dendrogram_ward.png (clustering by grammatical aspects: dendrogram obtained after applying Ward's clustering method)
    * Lexical_Grammatical_Cluster_Dendrogram_ward.png (clustering by lexical and grammatical aspects: dendrogram obtained after applying Ward's clustering method)
    * Lexical_Grammatical_clusters (table) ward.xls: Centroids (from column 2 to 7) and cluster sizes (last column) obtained by applying Ward's agglomerative hierarchical clustering to lexical and grammatical error ratios.
    * Grammatical_clusters (table) ward.xls: Centroids (from column 2 to 4) and cluster sizes (last column) obtained by applying Ward's agglomerative hierarchical clustering to grammatical error ratios.
    * Lexical_clusters (table) ward.xls: Centroids (from column 2 to 4) and cluster sizes (last column) obtained by applying Ward's agglomerative hierarchical clustering to lexical error ratios.
    * Lexical_clusters_number_of_words (table) ward.xls: number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying Ward's agglomerative hierarchical clustering to lexical error ratios.
    * Grammatical_clusters_number_of_words (table) ward.xls: number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying Ward's agglomerative hierarchical clustering to grammatical error ratios.
    * Lexical_Grammatical_clusters_number_of_words (table) ward.xls: number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying Ward's agglomerative hierarchical clustering to lexical and grammatical error ratios.

  2. m

    Educational Attainment in North Carolina Public Schools: Use of statistical...

    • data.mendeley.com
    Updated Nov 14, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Herford (2018). Educational Attainment in North Carolina Public Schools: Use of statistical modeling, data mining techniques, and machine learning algorithms to explore 2014-2017 North Carolina Public School datasets. [Dataset]. http://doi.org/10.17632/6cm9wyd5g5.1
    Explore at:
    Dataset updated
    Nov 14, 2018
    Authors
    Scott Herford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Carolina
    Description

    The purpose of data mining analysis is always to find patterns of the data using certain kind of techiques such as classification or regression. It is not always feasible to apply classification algorithms directly to dataset. Before doing any work on the data, the data has to be pre-processed and this process normally involves feature selection and dimensionality reduction. We tried to use clustering as a way to reduce the dimension of the data and create new features. Based on our project, after using clustering prior to classification, the performance has not improved much. The reason why it has not improved could be the features we selected to perform clustering are not well suited for it. Because of the nature of the data, classification tasks are going to provide more information to work with in terms of improving knowledge and overall performance metrics. From the dimensionality reduction perspective: It is different from Principle Component Analysis which guarantees finding the best linear transformation that reduces the number of dimensions with a minimum loss of information. Using clusters as a technique of reducing the data dimension will lose a lot of information since clustering techniques are based a metric of 'distance'. At high dimensions euclidean distance loses pretty much all meaning. Therefore using clustering as a "Reducing" dimensionality by mapping data points to cluster numbers is not always good since you may lose almost all the information. From the creating new features perspective: Clustering analysis creates labels based on the patterns of the data, it brings uncertainties into the data. By using clustering prior to classification, the decision on the number of clusters will highly affect the performance of the clustering, then affect the performance of classification. If the part of features we use clustering techniques on is very suited for it, it might increase the overall performance on classification. For example, if the features we use k-means on are numerical and the dimension is small, the overall classification performance may be better. We did not lock in the clustering outputs using a random_state in the effort to see if they were stable. Our assumption was that if the results vary highly from run to run which they definitely did, maybe the data just does not cluster well with the methods selected at all. Basically, the ramification we saw was that our results are not much better than random when applying clustering to the data preprocessing. Finally, it is important to ensure a feedback loop is in place to continuously collect the same data in the same format from which the models were created. This feedback loop can be used to measure the model real world effectiveness and also to continue to revise the models from time to time as things change.

  3. Hidden Room game in University of Cadiz data clustering by DeutschUCA

    • figshare.com
    png
    Updated Apr 30, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manuel Palomo-duarte; Anke Berns (2018). Hidden Room game in University of Cadiz data clustering by DeutschUCA [Dataset]. http://doi.org/10.6084/m9.figshare.6194597.v1
    Explore at:
    pngAvailable download formats
    Dataset updated
    Apr 30, 2018
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Manuel Palomo-duarte; Anke Berns
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Cádiz
    Description
    Histograms and results of k-means and Ward's clustering for Hidden Room game (Open Simulator) in University of Cadiz (Spain) by DeutschUCAThe fileset contains information from three sources:1. Histograms files:* Lexical_histogram.png (histogram of lexical error ratios)* Grammatical_histogram.png (histogram of grammatical error ratios)2. K-means clustering files:*
    elbow-lex kmeans.png (clustering by lexical aspects: error curves
    obtained for applying elbow method to determinate the optimal number of
    clusters)* cube-lex kmeans.png (clustering by lexical aspects: a
    three-dimensional representation of clusters obtained after applying
    k-means method)* Lexical_clusters (table) kmeans.xls (clustering by
    lexical aspects: centroids, standard deviations and number of instances
    assigned to each cluster)* elbow-gram kmeans.png (clustering by
    grammatical aspects: error curves obtained for applying elbow method to
    determinate the optimal number of clusters)* cube-gramm kmeans.png
    (clustering by grammatical aspects: a three-dimensional representation
    of clusters obtained after applying k-means method)*
    Grammatical_clusters (table) kmeans.xls (clustering by grammatical
    aspects: centroids, standard deviations and number of instances assigned
    to each cluster)* elbow-lexgram kmeans.png (clustering by lexical
    and grammatical aspects: error curves obtained for applying elbow method
    to determinate the optimal number of clusters)*
    Lexical_Grammatical_clusters (table) kmeans.xls (clustering by lexical
    and grammatical aspects: centroids, standard deviations and number of
    instances assigned to each cluster)*
    Grammatical_clusters_number_of_words (table) kmeans.xls
    number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying k-means clustering to grammatical error ratios.* Lexical_clusters_number_of_words (table) kmeans.xls
    number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying k-means clustering to lexical error ratios.* Lexical_Grammatical_clusters_number_of_words (table) kmeans.xls
    number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying k-means clustering to lexical and grammatical error ratios.3. Ward’s Agglomerative Hierarchical Clustering files:* Lexical_Cluster_Dendrogram_ward.png (clustering by lexical aspects: dendrogram obtained after applying Ward's clustering method).* Grammatical_Cluster_Dendrogram_ward.png (clustering by grammatical aspects: dendrogram obtained after applying Ward's clustering method)* Lexical_Grammatical_Cluster_Dendrogram_ward.png (clustering by lexical and grammatical aspects: dendrogram obtained after applying Ward's clustering method)* Lexical_Grammatical_clusters (table) ward.xls:
    Centroids (from column 2 to 7) and cluster sizes (last column) obtained by applying Ward's agglomerative hierarchical clustering to lexical and grammatical error ratios.* Grammatical_clusters (table) ward.xls: Centroids (from column 2 to 4) and cluster sizes (last column) obtained by applying Ward's agglomerative hierarchical clustering to grammatical error ratios.* Lexical_clusters (table) ward.xls: Centroids (from column 2 to 4) and cluster sizes (last column) obtained by applying Ward's agglomerative hierarchical clustering to lexical error ratios.* Lexical_clusters_number_of_words (table) ward.xls: number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying Ward's agglomerative hierarchical clustering to lexical error ratios.* Grammatical_clusters_number_of_words (table) ward.xls: number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying Ward's agglomerative hierarchical clustering to grammatical error ratios.* Lexical_Grammatical_clusters_number_of_words (table) ward.xls: number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying Ward's agglomerative hierarchical clustering to lexical and grammatical error ratios.
  4. Artificial dataset for clustering algorithms(Complete)

    • figshare.com
    zip
    Updated Sep 27, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mayra Zegarra Rodriguez; Dalcimar Casanova; Cesar Henrique Comin; Odemir M. Bruno; Diego Raphael Amancio; Luciano da Fontoura Costa; Francisco Aparecido Rodrigues (2018). Artificial dataset for clustering algorithms(Complete) [Dataset]. http://doi.org/10.6084/m9.figshare.7139510.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 27, 2018
    Dataset provided by
    figshare
    Authors
    Mayra Zegarra Rodriguez; Dalcimar Casanova; Cesar Henrique Comin; Odemir M. Bruno; Diego Raphael Amancio; Luciano da Fontoura Costa; Francisco Aparecido Rodrigues
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This file contains a number of randomly generated datasets. The properties of each dataset are indicated in the name of each respective file: 'C' indicates the number of classes, 'F' indicates the number of features, 'Ne' indicates the number of objects contained in each class, 'A' is related to the average separation between classes and 'R' is an index used to differentiate distinct random trials. So, for instance, the file C2F10N2Ne5A1.2R0 is a dataset containing 2 classes, 10 features, 5 objects for each class and having a typical separation between classes of 1.2. The methodology used for generating the datasets is described in the accompanying reference.

  5. u

    Data from: IJEE Educational Data Mining

    • produccioncientifica.uca.es
    Updated 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palomo-Duarte, Manuel; Palomo-Duarte, Manuel (2016). IJEE Educational Data Mining [Dataset]. https://produccioncientifica.uca.es/documentos/668fc475b9e7c03b01bde195
    Explore at:
    Dataset updated
    2016
    Authors
    Palomo-Duarte, Manuel; Palomo-Duarte, Manuel
    Description

    Histograms and results of k-means and Ward's clustering for IJEE special issue

    The fileset contains information from three sources:

    1. Histograms (two files):
    * Lexical_histogram.png (histogram of lexical error ratios)
    * Grammatical_histogram.png (histogram of grammatical error ratios)

    2. K-means clustering (eight files):
    * elbow-lex.png (clustering by lexical aspects: error curves obtained for applying elbow method to determinate the optimal number of clusters)
    * cube-lex.png (clustering by lexical aspects: a three-dimensional representation of clusters obtained after applying k-means method)
    * Lexical_clusters (table).xls (clustering by lexical aspects: centroids, standard deviations and number of instances assigned to each cluster)
    * elbow-gram.png (clustering by grammatical aspects: error curves obtained for applying elbow method to determinate the optimal number of clusters)
    * cube-gramm.png (clustering by grammatical aspects: a three-dimensional representation of clusters obtained after applying k-means method)
    * Grammatical_clusters (table).xls (clustering by grammatical aspects: centroids, standard deviations and number of instances assigned to each cluster)
    * elbow-lexgram.png (clustering by lexical and grammatical aspects: error curves obtained for applying elbow method to determinate the optimal number of clusters)
    * Lexical_Grammatical_clusters (table).xls (clustering by lexical and grammatical aspects: centroids, standard deviations and number of instances assigned to each cluster)
    * Grammatical_clusters_number_of_words (table) kmeans.xls : number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying k-means clustering to grammatical error ratios.
    * Lexical_clusters_number_of_words (table) kmeans.xls : number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying k-means clustering to lexical error ratios.
    * Lexical_Grammatical_clusters_number_of_words (table) kmeans.xls : number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying k-means clustering to lexical and grammatical error ratios.

    3. Ward’s Agglomerative Hierarchical Clustering (three files):
    * Lexical_Cluster_Dendrogram_ward.png (clustering by lexical aspects: dendrogram obtained after applying Ward's clustering method).
    * Grammatical_Cluster_Dendrogram_ward.png (clustering by grammatical aspects: dendrogram obtained after applying Ward's clustering method)
    * Lexical_Grammatical_Cluster_Dendrogram_ward.png (clustering by lexical and grammatical aspects: dendrogram obtained after applying Ward's clustering method)
    * Lexical_Grammatical_clusters (table).xls: Centroids (from column 2 to 7) and cluster sizes (last column) obtained by applying Ward's agglomerative hierarchical clustering to lexical and grammatical error ratios.
    * Grammatical_clusters (table).xls: Centroids (from column 2 to 4) and cluster sizes (last column) obtained by applying Ward's agglomerative hierarchical clustering to grammatical error ratios.
    * Lexical_clusters (table).xls: Centroids (from column 2 to 4) and cluster sizes (last column) obtained by applying Ward's agglomerative hierarchical clustering to lexical error ratios.
    * Lexical_clusters_number_of_words (table) ward.xls: number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying Ward's agglomerative hierarchical clustering to lexical error ratios.
    * Grammatical_clusters_number_of_words (table) ward.xls: number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying Ward's agglomerative hierarchical clustering to grammatical error ratios.
    * Lexical_Grammatical_clusters_number_of_words (table) ward.xls: number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying Ward's agglomerative hierarchical clustering to lexical and grammatical error ratios.

  6. Ocean Carbon States Database and Toolbox

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anastasia Romanou; Rebecca Latto; Anastasia Romanou; Rebecca Latto (2020). Ocean Carbon States Database and Toolbox [Dataset]. http://doi.org/10.5281/zenodo.996892
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anastasia Romanou; Rebecca Latto; Anastasia Romanou; Rebecca Latto
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Ocean Carbon States Database and Toolbox" includes observational and climate model datasets and matlab scripts to compute regimes of the ocean carbon cycle.

  7. f

    fdata-02-00012_Identifying Travel Regions Using Location-Based Social...

    • figshare.com
    • frontiersin.figshare.com
    pdf
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Avradip Sen; Linus W. Dietz (2023). fdata-02-00012_Identifying Travel Regions Using Location-Based Social Network Check-in Data.pdf [Dataset]. http://doi.org/10.3389/fdata.2019.00012.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Frontiers
    Authors
    Avradip Sen; Linus W. Dietz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Travel regions are not necessarily defined by political or administrative boundaries. For example, in the Schengen region of Europe, tourists can travel freely across borders irrespective of national borders. Identifying transboundary travel regions is an interesting problem which we aim to solve using mobility analysis of Twitter users. Our proposed solution comprises collecting geotagged tweets, combining them into trajectories and, thus, mining thousands of trips undertaken by twitter users. After aggregating these trips into a mobility graph, we apply a community detection algorithm to find coherent regions throughout the world. The discovered regions provide insights into international travel and can reveal both domestic and transnational travel regions.

  8. m

    Data Mining Software Market Size and Projections

    • marketresearchintellect.com
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Intellect (2025). Data Mining Software Market Size and Projections [Dataset]. https://www.marketresearchintellect.com/product/global-data-mining-software-market-size-and-forecast/
    Explore at:
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Market Research Intellect
    License

    https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy

    Area covered
    Global
    Description

    The size and share of the market is categorized based on Type (Data extraction tools, Predictive analytics software, Text mining tools, Web mining tools, Data clustering tools) and Application (Customer insights, Market research, Trend analysis, Risk management, Pattern recognition) and geographical regions (North America, Europe, Asia-Pacific, South America, and Middle-East and Africa).

  9. d

    Data from: Multi-objective optimization based privacy preserving distributed...

    • catalog.data.gov
    • data.nasa.gov
    • +1more
    Updated Dec 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2023). Multi-objective optimization based privacy preserving distributed data mining in Peer-to-Peer networks [Dataset]. https://catalog.data.gov/dataset/multi-objective-optimization-based-privacy-preserving-distributed-data-mining-in-peer-to-p
    Explore at:
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    Dashlink
    Description

    This paper proposes a scalable, local privacy preserving algorithm for distributed Peer-to-Peer (P2P) data aggregation useful for many advanced data mining/analysis tasks such as average/sum computation, decision tree induction, feature selection, and more. Unlike most multi-party privacy-preserving data mining algorithms, this approach works in an asynchronous manner through local interactions and it is highly scalable. It particularly deals with the distributed computation of the sum of a set of numbers stored at different peers in a P2P network in the context of a P2P web mining application. The proposed optimization based privacy-preserving technique for computing the sum allows different peers to specify different privacy requirements without having to adhere to a global set of parameters for the chosen privacy model. Since distributed sum computation is a frequently used primitive, the proposed approach is likely to have significant impact on many data mining tasks such as multi-party privacy-preserving clustering, frequent itemset mining, and statistical aggregate computation.

  10. f

    Improved DBSCAN clustering algorithm.

    • plos.figshare.com
    xls
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xinhuan Zhang; Les Lauber; Hongjie Liu; Junqing Shi; Jinhong Wu; Yuran Pan (2023). Improved DBSCAN clustering algorithm. [Dataset]. http://doi.org/10.1371/journal.pone.0259472.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Xinhuan Zhang; Les Lauber; Hongjie Liu; Junqing Shi; Jinhong Wu; Yuran Pan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Improved DBSCAN clustering algorithm.

  11. Data from: MusicOSet: An Enhanced Open Dataset for Music Data Mining

    • zenodo.org
    • data.niaid.nih.gov
    bin, zip
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mariana O. Silva; Mariana O. Silva; Laís Mota; Mirella M. Moro; Mirella M. Moro; Laís Mota (2021). MusicOSet: An Enhanced Open Dataset for Music Data Mining [Dataset]. http://doi.org/10.5281/zenodo.4904639
    Explore at:
    zip, binAvailable download formats
    Dataset updated
    Jun 7, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Mariana O. Silva; Mariana O. Silva; Laís Mota; Mirella M. Moro; Mirella M. Moro; Laís Mota
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    MusicOSet is an open and enhanced dataset of musical elements (artists, songs and albums) based on musical popularity classification. Provides a directly accessible collection of data suitable for numerous tasks in music data mining (e.g., data visualization, classification, clustering, similarity search, MIR, HSS and so forth). To create MusicOSet, the potential information sources were divided into three main categories: music popularity sources, metadata sources, and acoustic and lyrical features sources. Data from all three categories were initially collected between January and May 2019. Nevertheless, the update and enhancement of the data happened in June 2019.

    The attractive features of MusicOSet include:

    • Integration and centralization of different musical data sources
    • Calculation of popularity scores and classification of hits and non-hits musical elements, varying from 1962 to 2018
    • Enriched metadata for music, artists, and albums from the US popular music industry
    • Availability of acoustic and lyrical resources
    • Unrestricted access in two formats: SQL database and compressed .csv files
    |    Data    | # Records |
    |:-----------------:|:---------:|
    | Songs       | 20,405  |
    | Artists      | 11,518  |
    | Albums      | 26,522  |
    | Lyrics      | 19,664  |
    | Acoustic Features | 20,405  |
    | Genres      | 1,561   |
  12. d

    Data from: Local L2 Thresholding Based Data Mining in Peer-to-Peer Systems

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Dec 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2023). Local L2 Thresholding Based Data Mining in Peer-to-Peer Systems [Dataset]. https://catalog.data.gov/dataset/local-l2-thresholding-based-data-mining-in-peer-to-peer-systems
    Explore at:
    Dataset updated
    Dec 6, 2023
    Dataset provided by
    Dashlink
    Description

    In a large network of computers, wireless sensors, or mobile devices, each of the components (hence, peers) has some data about the global status of the system. Many of the functions of the system, such as routing decisions, search strategies, data cleansing, and the assignment of mutual trust, depend on the global status. Therefore, it is essential that the system be able to detect, and react to, changes in its global status. Computing global predicates in such systems is usually very costly. Mainly because of their scale, and in some cases (e.g., sensor networks) also because of the high cost of communication. The cost further increases when the data changes rapidly (due to state changes, node failure, etc.) and computation has to follow these changes. In this paper we describe a two step approach for dealing with these costs. First, we describe a highly efficient local algorithm which detect when the L2 norm of the average data surpasses a threshold. Then, we use this algorithm as a feedback loop for the monitoring of complex predicates on the data – such as the data’s k-means clustering. The efficiency of the L2 algorithm guarantees that so long as the clustering results represent the data (i.e., the data is stationary) few resources are required. When the data undergoes an epoch change – a change in the underlying distribution – and the model no longer represents it, the feedback loop indicates this and the model is rebuilt. Furthermore, the existence of a feedback loop allows using approximate and “best-effort ” methods for constructing the model; if an ill-fit model is built the feedback loop would indicate so, and the model would be rebuilt.

  13. f

    Main procedures of K-means.

    • figshare.com
    xls
    Updated Jun 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Qiwei Wang; Xiaoya Zhu; Manman Wang; Fuli Zhou; Shuang Cheng (2023). Main procedures of K-means. [Dataset]. http://doi.org/10.1371/journal.pone.0286034.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Qiwei Wang; Xiaoya Zhu; Manman Wang; Fuli Zhou; Shuang Cheng
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The coronavirus disease 2019 pandemic has impacted and changed consumer behavior because of a prolonged quarantine and lockdown. This study proposed a theoretical framework to explore and define the influencing factors of online consumer purchasing behavior (OCPB) based on electronic word-of-mouth (e-WOM) data mining and analysis. Data pertaining to e-WOM were crawled from smartphone product reviews from the two most popular online shopping platforms in China, Jingdong.com and Taobao.com. Data processing aimed to filter noise and translate unstructured data from complex text reviews into structured data. The machine learning based K-means clustering method was utilized to cluster the influencing factors of OCPB. Comparing the clustering results and Kotler’s five products level, the influencing factors of OCPB were clustered around four categories: perceived emergency context, product, innovation, and function attributes. This study contributes to OCPB research by data mining and analysis that can adequately identify the influencing factors based on e-WOM. The definition and explanation of these categories may have important implications for both OCPB and e-commerce.

  14. d

    Data from: A Generic Local Algorithm for Mining Data Streams in Large...

    • datasets.ai
    • data.nasa.gov
    • +2more
    33
    Updated Sep 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2024). A Generic Local Algorithm for Mining Data Streams in Large Distributed Systems [Dataset]. https://datasets.ai/datasets/a-generic-local-algorithm-for-mining-data-streams-in-large-distributed-systems
    Explore at:
    33Available download formats
    Dataset updated
    Sep 21, 2024
    Dataset authored and provided by
    National Aeronautics and Space Administration
    Description

    In a large network of computers or wireless sensors, each of the components (henceforth, peers) has some data about the global state of the system. Much of the system's functionality such as message routing, information retrieval and load sharing relies on modeling the global state. We refer to the outcome of the function (e.g., the load experienced by each peer) as the emph{model} of the system. Since the state of the system is constantly changing, it is necessary to keep the models up-to-date. Computing global data mining models e.g. decision trees, k-means clustering in large distributed systems may be very costly due to the scale of the system and due to communication cost, which may be high. The cost further increases in a dynamic scenario when the data changes rapidly. In this paper we describe a two step approach for dealing with these costs. First, we describe a highly efficient emph{local} algorithm which can be used to monitor a wide class of data mining models. Then, we use this algorithm as a feedback loop for the monitoring of complex functions of the data such as its k-means clustering. The theoretical claims are corroborated with a thorough experimental analysis.

  15. d

    SDOstreamclust: Stream Clustering Robust to Concept Drift - Evaluation Tests...

    • b2find.dkrz.de
    Updated Sep 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). SDOstreamclust: Stream Clustering Robust to Concept Drift - Evaluation Tests - Dataset - B2FIND [Dataset]. https://b2find.dkrz.de/dataset/7e9eb5b9-f166-567e-a521-f3b3be884bf2
    Explore at:
    Dataset updated
    Sep 17, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SDOstreamclust Evaluation Tests conducted for the paper: Stream Clustering Robust to Concept Drift Context and methodology SDOstreamclust is a stream clustering algorithm able to process data incrementally or per batches. It is a combination of the previous SDOstream (anomaly detection in data streams) and SDOclust (static clustering). SDOstreamclust holds the characteristics of SDO algoritmhs: lightweight, intuitive, self-adjusting, resistant to noise, capable of identifying non-convex clusters, and constructed upon robust parameters and interpretable models. Moreover, it shows excellent adaptation to concept drift In this repository, SDOclust is evaluated with 165 datasets (both synthetic and real) and compared with CluStream, DBstream, DenStream, StreamKMeans. This repository is framed within the research on the following domains: algorithm evaluation, stream clustering, unsupervised learning, machine learning, data mining, streaming data analysis. Datasets and algorithms can be used for experiment replication and for further evaluation and comparison. Docker A Docker version is also available in: https://hub.docker.com/r/fiv5/sdostreamclust Technical details Experiments are conducted in Python v3.8.14. The file and folder structure is as follows:- [algorithms] contains a script with functions related to algorithm configurations. [data] contains datasets in ARFF format. [results] contains CSV files with algorithms' performances obtained from running the "run.sh" script (as shown in the paper). "dependencies.sh" lists and installs python dependencies. "pysdoclust-stream-main.zip" contains the SDOstreamclust python package. "README.md" shows details and intructions to use this repository. "run.sh" runs the complete experiments. "run_comp.py"for running experiments specified by arguments. "TSindex.py" implements functions for the Temporal Silhouette index. Note: if codes in SDOstreamclust are modified, SWIG (v4.2.1) wrappers have to be rebuilt and SDOstreamclust consequently reinstalled with pip.

  16. Data from: A Proposed Churn Prediction Model

    • figshare.com
    pdf
    Updated Feb 24, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mona Nasr; Essam Shaaban; Yehia Helmy; Dr. Ayman Khedr (2019). A Proposed Churn Prediction Model [Dataset]. http://doi.org/10.6084/m9.figshare.7763183.v2
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 24, 2019
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Mona Nasr; Essam Shaaban; Yehia Helmy; Dr. Ayman Khedr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Churn prediction aims to detect customers intended to leave a service provider. Retaining one customer costs an organization from 5 to 10 times than gaining a new one. Predictive models can provide correct identification of possible churners in the near future in order to provide a retention solution. This paper presents a new prediction model based on Data Mining (DM) techniques. The proposed model is composed of six steps which are; identify problem domain, data selection, investigate data set, classification, clustering and knowledge usage. A data set with 23 attributes and 5000 instances is used. 4000 instances used for training the model and 1000 instances used as a testing set. The predicted churners are clustered into 3 categories in case of using in a retention strategy. The data mining techniques used in this paper are Decision Tree, Support Vector Machine and Neural Network throughout an open source software name WEKA.

  17. Multi-objective optimization based privacy preserving distributed data...

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.staging.idas-ds1.appdat.jsc.nasa.gov (2025). Multi-objective optimization based privacy preserving distributed data mining in Peer-to-Peer networks - Dataset - NASA Open Data Portal [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/multi-objective-optimization-based-privacy-preserving-distributed-data-mining-in-peer-to-p
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    This paper proposes a scalable, local privacy preserving algorithm for distributed Peer-to-Peer (P2P) data aggregation useful for many advanced data mining/analysis tasks such as average/sum computation, decision tree induction, feature selection, and more. Unlike most multi-party privacy-preserving data mining algorithms, this approach works in an asynchronous manner through local interactions and it is highly scalable. It particularly deals with the distributed computation of the sum of a set of numbers stored at different peers in a P2P network in the context of a P2P web mining application. The proposed optimization based privacy-preserving technique for computing the sum allows different peers to specify different privacy requirements without having to adhere to a global set of parameters for the chosen privacy model. Since distributed sum computation is a frequently used primitive, the proposed approach is likely to have significant impact on many data mining tasks such as multi-party privacy-preserving clustering, frequent itemset mining, and statistical aggregate computation.

  18. Z

    ELKI Multi-View Clustering Data Sets Based on the Amsterdam Library of...

    • data.niaid.nih.gov
    • elki-project.github.io
    • +1more
    Updated May 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Schubert, Erich (2024). ELKI Multi-View Clustering Data Sets Based on the Amsterdam Library of Object Images (ALOI) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6355683
    Explore at:
    Dataset updated
    May 2, 2024
    Dataset provided by
    Zimek, Arthur
    Schubert, Erich
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These data sets were originally created for the following publications:

    M. E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek Can Shared-Neighbor Distances Defeat the Curse of Dimensionality? In Proceedings of the 22nd International Conference on Scientific and Statistical Database Management (SSDBM), Heidelberg, Germany, 2010.

    H.-P. Kriegel, E. Schubert, A. Zimek Evaluation of Multiple Clustering Solutions In 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with ECML PKDD 2011, Athens, Greece, 2011.

    The outlier data set versions were introduced in:

    E. Schubert, R. Wojdanowski, A. Zimek, H.-P. Kriegel On Evaluation of Outlier Rankings and Outlier Scores In Proceedings of the 12th SIAM International Conference on Data Mining (SDM), Anaheim, CA, 2012.

    They are derived from the original image data available at https://aloi.science.uva.nl/

    The image acquisition process is documented in the original ALOI work: J. M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders, The Amsterdam library of object images, Int. J. Comput. Vision, 61(1), 103-112, January, 2005

    Additional information is available at: https://elki-project.github.io/datasets/multi_view

    The following views are currently available:

        Feature type
        Description
        Files
    
    
        Object number
        Sparse 1000 dimensional vectors that give the true object assignment
        objs.arff.gz
    
    
        RGB color histograms
        Standard RGB color histograms (uniform binning)
        aloi-8d.csv.gz aloi-27d.csv.gz aloi-64d.csv.gz aloi-125d.csv.gz aloi-216d.csv.gz aloi-343d.csv.gz aloi-512d.csv.gz aloi-729d.csv.gz aloi-1000d.csv.gz
    
    
        HSV color histograms
        Standard HSV/HSB color histograms in various binnings
        aloi-hsb-2x2x2.csv.gz aloi-hsb-3x3x3.csv.gz aloi-hsb-4x4x4.csv.gz aloi-hsb-5x5x5.csv.gz aloi-hsb-6x6x6.csv.gz aloi-hsb-7x7x7.csv.gz aloi-hsb-7x2x2.csv.gz aloi-hsb-7x3x3.csv.gz aloi-hsb-14x3x3.csv.gz aloi-hsb-8x4x4.csv.gz aloi-hsb-9x5x5.csv.gz aloi-hsb-13x4x4.csv.gz aloi-hsb-14x5x5.csv.gz aloi-hsb-10x6x6.csv.gz aloi-hsb-14x6x6.csv.gz
    
    
        Color similiarity
        Average similarity to 77 reference colors (not histograms) 18 colors x 2 sat x 2 bri + 5 grey values (incl. white, black)
        aloi-colorsim77.arff.gz (feature subsets are meaningful here, as these features are computed independently of each other)
    
    
        Haralick features
        First 13 Haralick features (radius 1 pixel)
        aloi-haralick-1.csv.gz
    
    
        Front to back
        Vectors representing front face vs. back faces of individual objects
        front.arff.gz
    
    
        Basic light
        Vectors indicating basic light situations
        light.arff.gz
    
    
        Manual annotations
        Manually annotated object groups of semantically related objects such as cups
        manual1.arff.gz
    

    Outlier Detection Versions

    Additionally, we generated a number of subsets for outlier detection:

        Feature type
        Description
        Files
    
    
        RGB Histograms
        Downsampled to 100000 objects (553 outliers)
        aloi-27d-100000-max10-tot553.csv.gz aloi-64d-100000-max10-tot553.csv.gz
    
    
    
        Downsampled to 75000 objects (717 outliers)
        aloi-27d-75000-max4-tot717.csv.gz aloi-64d-75000-max4-tot717.csv.gz
    
    
    
        Downsampled to 50000 objects (1508 outliers)
        aloi-27d-50000-max5-tot1508.csv.gz aloi-64d-50000-max5-tot1508.csv.gz
    
  19. Inductive Monitoring System (IMS)

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • data.nasa.gov
    • +1more
    Updated Feb 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Inductive Monitoring System (IMS) [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/inductive-monitoring-system-ims
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    IMS: Inductive Monitoring System The Inductive Monitoring System (IMS) is a tool that uses a data mining technique called clustering to extract models of normal system operation from archived data. IMS works with vectors of data values. IMS analyzes data collected during periods of normal system operation to build a system model. It characterizes how the parameters relate to one another during normal operation by finding areas in the vector space where nominal data tends to fall. These areas are called nominal operating regions and correspond to clusters of similar points found by the IMS clustering algorithm. These nominal operating regions are stored in a knowledge base that IMS uses for real-time telemetry monitoring or archived data analysis. During the monitoring operation, IMS reads real-time or archived data values, formats them into the predefined vector structure, and searches the knowledge base of nominal operating regions to see how well the new data fits the nominal system characterization. For each input vector, IMS returns the distance that vector falls from the nearest nominal operating region. Data that matches the normal training data well will have a deviation distance of zero. If one or more of the data parameters is slightly outside of expected values, a small non-zero result is returned. As incoming data deviates further from the normal system data, indicating a possible malfunction, IMS will return a higher deviation value to alert users of the anomaly. IMS also calculates the contribution of each individual parameter to the overall deviation, which can help isolate the cause of the anomaly.

  20. Z

    Financial News dataset for text mining

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Oct 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    turenne nicolas (2021). Financial News dataset for text mining [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5569112
    Explore at:
    Dataset updated
    Oct 23, 2021
    Dataset authored and provided by
    turenne nicolas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    please cite this dataset by :

    Nicolas Turenne, Ziwei Chen, Guitao Fan, Jianlong Li, Yiwen Li, Siyuan Wang, Jiaqi Zhou (2021) Mining an English-Chinese parallel Corpus of Financial News, BNU HKBU UIC, technical report

    The dataset comes from Financial Times news website (https://www.ft.com/)

    news are written in both languages Chinese and English.

    FTIE.zip contains all documents in a file individually

    FT-en-zh.rar contains all documents in one file

    Below is a sample document in the dataset defined by these fields and syntax :

    id;time;english_title;chinese_title;integer;english_body;chinese_body

    1021892;2008-09-10T00:00:00Z;FLAW IN TWIN TOWERS REVEALED;科学家发现纽约双子塔倒塌的根本原因;1;Scientists have discovered the fundamental reason the Twin Towers collapsed on September 11 2001. The steel used in the buildings softened fatally at 500?C – far below its melting point – as a result of a magnetic change in the metal. @ The finding, announced at the BA Festival of Science in Liverpool yesterday, should lead to a new generation of steels capable of retaining strength at much higher temperatures.;科学家发现了纽约世贸双子大厦(Twin Towers)在2001年9月11日倒塌的根本原因。由于磁性变化,大厦使用的钢在500摄氏度——远远低于其熔点——时变软,从而产生致命后果。 @ 这一发现在昨日利物浦举行的BA科学节(BA Festival of Science)上公布。这应会推动能够在更高温度下保持强度的新一代钢铁的问世。

    The dataset contains 60,473 bilingual documents.

    Time range is from 2007 and 2020.

    This dataset has been used for parallel bilingual news mining in Finance domain.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Palomo-Duarte, Manuel; Berns, Anke; Palomo-Duarte, Manuel; Berns, Anke (2016). Hidden Room Educational Data Mining Analysis [Dataset]. https://produccioncientifica.uca.es/documentos/668fc475b9e7c03b01bde1d4

Hidden Room Educational Data Mining Analysis

Explore at:
Dataset updated
2016
Authors
Palomo-Duarte, Manuel; Berns, Anke; Palomo-Duarte, Manuel; Berns, Anke
Description

Histograms and results of k-means and Ward's clustering for Hidden Room game

The fileset contains information from three sources:

1. Histograms files:
* Lexical_histogram.png (histogram of lexical error ratios)
* Grammatical_histogram.png (histogram of grammatical error ratios)

2. K-means clustering files:
* elbow-lex kmeans.png (clustering by lexical aspects: error curves obtained for applying elbow method to determinate the optimal number of clusters)
* cube-lex kmeans.png (clustering by lexical aspects: a three-dimensional representation of clusters obtained after applying k-means method)
* Lexical_clusters (table) kmeans.xls (clustering by lexical aspects: centroids, standard deviations and number of instances assigned to each cluster)
* elbow-gram kmeans.png (clustering by grammatical aspects: error curves obtained for applying elbow method to determinate the optimal number of clusters)
* cube-gramm kmeans.png (clustering by grammatical aspects: a three-dimensional representation of clusters obtained after applying k-means method)
* Grammatical_clusters (table) kmeans.xls (clustering by grammatical aspects: centroids, standard deviations and number of instances assigned to each cluster)
* elbow-lexgram kmeans.png (clustering by lexical and grammatical aspects: error curves obtained for applying elbow method to determinate the optimal number of clusters)
* Lexical_Grammatical_clusters (table) kmeans.xls (clustering by lexical and grammatical aspects: centroids, standard deviations and number of instances assigned to each cluster)
* Grammatical_clusters_number_of_words (table) kmeans.xls : number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying k-means clustering to grammatical error ratios.
* Lexical_clusters_number_of_words (table) kmeans.xls : number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying k-means clustering to lexical error ratios.
* Lexical_Grammatical_clusters_number_of_words (table) kmeans.xls : number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying k-means clustering to lexical and grammatical error ratios.

3. Ward’s Agglomerative Hierarchical Clustering files:
* Lexical_Cluster_Dendrogram_ward.png (clustering by lexical aspects: dendrogram obtained after applying Ward's clustering method).
* Grammatical_Cluster_Dendrogram_ward.png (clustering by grammatical aspects: dendrogram obtained after applying Ward's clustering method)
* Lexical_Grammatical_Cluster_Dendrogram_ward.png (clustering by lexical and grammatical aspects: dendrogram obtained after applying Ward's clustering method)
* Lexical_Grammatical_clusters (table) ward.xls: Centroids (from column 2 to 7) and cluster sizes (last column) obtained by applying Ward's agglomerative hierarchical clustering to lexical and grammatical error ratios.
* Grammatical_clusters (table) ward.xls: Centroids (from column 2 to 4) and cluster sizes (last column) obtained by applying Ward's agglomerative hierarchical clustering to grammatical error ratios.
* Lexical_clusters (table) ward.xls: Centroids (from column 2 to 4) and cluster sizes (last column) obtained by applying Ward's agglomerative hierarchical clustering to lexical error ratios.
* Lexical_clusters_number_of_words (table) ward.xls: number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying Ward's agglomerative hierarchical clustering to lexical error ratios.
* Grammatical_clusters_number_of_words (table) ward.xls: number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying Ward's agglomerative hierarchical clustering to grammatical error ratios.
* Lexical_Grammatical_clusters_number_of_words (table) ward.xls: number of words (from column 2 to 4) and sizes (last column) obtained per each cluster by applying Ward's agglomerative hierarchical clustering to lexical and grammatical error ratios.

Search
Clear search
Close search
Google apps
Main menu