Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Conversion Of Format And Classes To Coco is a dataset for object detection tasks - it contains Objects annotations for 7,460 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
https://www.kcl.ac.uk/researchsupport/assets/DataAccessAgreement-Description.pdfhttps://www.kcl.ac.uk/researchsupport/assets/DataAccessAgreement-Description.pdf
This dataset contains annotated images for object detection for containers and hands in a first-person view (egocentric view) during drinking activities. Both YOLOV8 format and COCO format are provided.Please refer to our paper for more details.Purpose: Training and testing the object detection model.Content: Videos from Session 1 of Subjects 1-20.Images: Extracted from the videos of Subjects 1-20 Session 1.Additional Images:~500 hand/container images from Roboflow Open Source data.~1500 null (background) images from VOC Dataset and MIT Indoor Scene Recognition Dataset:1000 indoor scenes from 'MIT Indoor Scene Recognition'400 other unrelated objects from VOC DatasetData Augmentation:Horizontal flipping±15% brightness change±10° rotationFormats Provided:COCO formatPyTorch YOLOV8 formatImage Size: 416x416 pixelsTotal Images: 16,834Training: 13,862Validation: 1,975Testing: 997Instance Numbers:Containers: Over 10,000Hands: Over 8,000
Original dataset credit: https://cocodataset.org/#home
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Railway Track Coco Format is a dataset for object detection tasks - it contains Sleepers Fasteners Track annotations for 304 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
detection-datasets/coco dataset hosted on Hugging Face and contributed by the HF Datasets community
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Ruby09
Released under CC0: Public Domain
COCO-WholeBody is an extension of COCO dataset with whole-body annotations. There are 4 types of bounding boxes (person box, face box, left-hand box, and right-hand box) and 133 keypoints (17 for body, 6 for feet, 68 for face and 42 for hands) annotations for each person in the image.
Dataset Description
This dataset has been converted to COCO format and contains bounding box annotations for content detection.
Dataset Structure
The dataset is split into training and validation sets:
Training set: 583 images Validation set: 146 images
Format
The dataset follows the COCO format with the following structure:
images: Contains the image files annotations.json: Contains the COCO format annotations dataset.yaml: Configuration file for training… See the full description on the dataset page: https://huggingface.co/datasets/zigg-ai/content-regions-1k-coco.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
COCO Dataset Limited (Person Only) is a dataset for object detection tasks - it contains People annotations for 5,438 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Ear acupoint key point detection data set, MS COCO format, divided into training set and test set, and written a sample config configuration file for openMMLab mmPose and mmDet Markers: Zhang Zihao, Tian Wenbo
耳朵穴位关键点检测数据集,MS COCO格式,划分好了训练集和测试集,并写好了样例config配置文件 链接: https://pan.baidu.com/s/1swTLpArj7XEDXW4d0lo7Mg 提取码: 741p 标注人:张子豪、田文博
I share this dataset for the openMMLab 2rd AI Camp.
This dataset was created by serereuk
CocoDoom is a collection of pre-recorded data extracted from Doom gaming sessions along with annotations in the MS Coco format.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
## Overview
YOLO Coco Data Format is a dataset for object detection tasks - it contains Objects annotations for 692 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
coco2017
Image-text pairs from MS COCO2017.
Data origin
Data originates from cocodataset.org While coco-karpathy uses a dense format (with several sentences and sendids per row), coco-karpathy-long uses a long format with one sentence (aka caption) and sendid per row. coco-karpathy-long uses the first five sentences and therefore is five times as long as coco-karpathy. phiyodr/coco2017: One row corresponds one image with several sentences. phiyodr/coco2017-long: One row… See the full description on the dataset page: https://huggingface.co/datasets/phiyodr/coco2017.
COCO Captions contains over one and a half million captions describing over 330,000 images. For the training and validation images, five independent human generated captions are be provided for each image.
A RGB-D dataset converted from SUN-RGBD into COCO-style instance segmentation format. To transform SUN-RGBD into an instance segmentation benchmark (i.e., SUN-RGBDIS), we employed a pipeline similar to that of NYUDv2-IS. We selected 17 categories from the original 37 classes, carefully omitting non-instance categories like ceilings and walls. Images lacking any identifiable object instances were filtered out to maintain dataset relevance for instance segmentation tasks. We systematically convert segmentation annotations into COCO format, generating precise bounding boxes, instance masks, and object attributes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides annotated very-high-resolution satellite RGB images extracted from Google Earth to train deep learning models to perform instance segmentation of Juniperus communis L. and Juniperus sabina L. shrubs. All images are from the high mountain of Sierra Nevada in Spain. The dataset contains 810 images (.jpg) of size 224x224 pixels. We also provide partitioning of the data into Train (567 images), Test (162 images), and Validation (81 images) subsets. Their annotations are provided in three different .json files following the COCO annotation format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The IMPTOX project has received funding from the EU's H2020 framework programme for research and innovation under grant agreement n. 965173. Imptox is part of the European MNP cluster on human health.
More information about the project here.
Description: This repository includes the trained weights and a custom COCO-formatted dataset used for developing and testing a Faster R-CNN R_50_FPN_3x object detector, specifically designed to identify particles in micro-FTIR filter images.
Contents:
Weights File (neuralNetWeights_V3.pth):
Format: .pth
Description: This file contains the trained weights for a Faster R-CNN model with a ResNet-50 backbone and a Feature Pyramid Network (FPN), trained for 3x schedule. These weights are specifically tuned for detecting particles in micro-FTIR filter images.
Custom COCO Dataset (uFTIR_curated_square.v5-uftir_curated_square_2024-03-14.coco-segmentation.zip):
Format: .zip
Description: This zip archive contains a custom COCO-formatted dataset, including JPEG images and their corresponding annotation file. The dataset consists of images of micro-FTIR filters with annotated particles.
Contents:
Images: JPEG format images of micro-FTIR filters.
Annotations: A JSON file in COCO format providing detailed annotations of the particles in the images.
Management: The dataset can be managed and manipulated using the Pycocotools library, facilitating easy integration with existing COCO tools and workflows.
Applications: The provided weights and dataset are intended for researchers and practitioners in the field of microscopy and particle detection. The dataset and model can be used for further training, validation, and fine-tuning of object detection models in similar domains.
Usage Notes:
The neuralNetWeights_V3.pth file should be loaded into a PyTorch model compatible with the Faster R-CNN architecture, such as Detectron2.
The contents of uFTIR_curated_square.v5-uftir_curated_square_2024-03-14.coco-segmentation.zip should be extracted and can be used with any COCO-compatible object detection framework for training and evaluation purposes.
Code can be found on the related Github repository.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Vehicles Coco is a dataset for object detection tasks - it contains Vehicles annotations for 18,998 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Format Converter 2K Person From COCO is a dataset for object detection tasks - it contains Person annotations for 2,159 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Conversion Of Format And Classes To Coco is a dataset for object detection tasks - it contains Objects annotations for 7,460 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).