80 datasets found
  1. Z

    Data from: Demography, education, and research trends in the...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Becker, Daniel J (2024). Demography, education, and research trends in the interdisciplinary field of disease ecology [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5812145
    Explore at:
    Dataset updated
    Jul 17, 2024
    Dataset provided by
    Becker, Daniel J
    Forbes, Kristian M
    Sampson, Laura
    Brandell, Ellen E
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description of Supporting Files

    Demography, education, and research trends in the interdisciplinary field of disease ecology

    Ellen E. Brandell, Daniel J. Becker, Laura Sampson, Kristian M. Forbes

    TopArticles_Inclusion.xlsx

    This Excel provides a list of influential articles written in by survey participants at least two times.

    Sheet “table”: just tabular information

    Sheet “withNotes”: includes notes about data, number of citations from survey participants, and percent inclusion calculations.

    Columns are:

    ‘INCLUDED’: if the article appeared in the corpus (1) or not (0)

    ‘COUNT’: the number of times survey participants wrote in the article

    ‘ARTICLE’: article citation Percent of articles included in the corpus are calculated for 4 or more write-ins, 3-write-ins, 2 write-ins, and across all articles written in twice.

    IRB_Correspondence_STUDY00010582.pdf

    Institutional Review Board correspondence and approval from Pennsylvania State University. Survey response data may be available upon request from the corresponding author. To protect participants, any potentially identifying information will be removed prior to filling a request. See the online Supporting Information for this article for extensive reporting of survey results prior to a request.

    FullSurvey.pdf

    A PDF of the full survey form.

    CorpusFrequencyAnalysis.ipynb

    This is the Python script used for corpus organization and the topic detection analysis. It includes some plot generation.

  2. u

    WIC Participant and Program Characteristics 2016

    • agdatacommons.nal.usda.gov
    txt
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Food and Nutrition Service, Office of Policy Support (2025). WIC Participant and Program Characteristics 2016 [Dataset]. http://doi.org/10.15482/USDA.ADC/1518495
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    Ag Data Commons
    Authors
    USDA Food and Nutrition Service, Office of Policy Support
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Description of the experiment setting: location, influential climatic conditions, controlled conditions (e.g. temperature, light cycle) In 1986, the Congress enacted Public Laws 99-500 and 99-591, requiring a biennial report on the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). In response to these requirements, FNS developed a prototype system that allowed for the routine acquisition of information on WIC participants from WIC State Agencies. Since 1992, State Agencies have provided electronic copies of these data to FNS on a biennial basis. FNS and the National WIC Association (formerly National Association of WIC Directors) agreed on a set of data elements for the transfer of information. In addition, FNS established a minimum standard dataset for reporting participation data. For each biennial reporting cycle, each State Agency is required to submit a participant-level dataset containing standardized information on persons enrolled at local agencies for the reference month of April. The 2016 Participant and Program Characteristics (PC2016) is the thirteenth data submission to be completed using the WIC PC reporting system. In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Processing methods and equipment used Specifications on formats (“Guidance for States Providing Participant Data”) were provided to all State agencies in January 2016. This guide specified 20 minimum dataset (MDS) elements and 11 supplemental dataset (SDS) elements to be reported on each WIC participant. Each State Agency was required to submit all 20 MDS items and any SDS items collected by the State agency.   Study date(s) and duration The information for each participant was from the participants’ most current WIC certification as of April 2016. Due to management information constraints, Connecticut provided data for a month other than April 2016, specifically August 16 – September 15, 2016. Study spatial scale (size of replicates and spatial scale of study area) In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Level of true replication Unknown Sampling precision (within-replicate sampling or pseudoreplication) State Agency Data Submissions. PC2016 is a participant dataset consisting of 8,815,472 active records. The records, submitted to USDA by the State Agencies, comprise a census of all WIC enrollees, so there is no sampling involved in the collection of this data. PII Analytic Datasets. State agency files were combined to create a national census participant file of approximately 8.8 million records. The census dataset contains potentially personally identifiable information (PII) and is therefore not made available to the public. National Sample Dataset. The public use SAS analytic dataset made available to the public has been constructed from a nationally representative sample drawn from the census of WIC participants, selected by participant category. The nationally representative sample is composed of 60,003 records. The distribution by category is 5,449 pregnant women, 4,661 breastfeeding women, 3,904 postpartum women, 13,999 infants, and 31,990 children. Level of subsampling (number and repeat or within-replicate sampling) The proportionate (or self-weighting) sample was drawn by WIC participant category: pregnant women, breastfeeding women, postpartum women, infants, and children. In this type of sample design, each WIC participant has the same probability of selection across all strata. Sampling weights are not needed when the data are analyzed. In a proportionate stratified sample, the largest stratum accounts for the highest percentage of the analytic sample. Study design (before–after, control–impacts, time series, before–after-control–impacts) None – Non-experimental Description of any data manipulation, modeling, or statistical analysis undertaken Each entry in the dataset contains all MDS and SDS information submitted by the State agency on the sampled WIC participant. In addition, the file contains constructed variables used for analytic purposes. To protect individual privacy, the public use file does not include State agency, local agency, or case identification numbers. Description of any gaps in the data or other limiting factors Due to management information constraints, Connecticut provided data for a month other than April 2016, specifically August 16 – September 15, 2016.   Outcome measurement methods and equipment used None Resources in this dataset:Resource Title: WIC Participant and Program Characteristics 2016. File Name: wicpc_2016_public.csvResource Description: The 2016 Participant and Program Characteristics (PC2016) is the thirteenth data submission to be completed using the WIC PC reporting system. In April 2016, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations.Resource Software Recommended: SAS, version 9.4,url: https://www.sas.com/en_us/software/sas9.html Resource Title: WIC Participant and Program Characteristics 2016 Codebook. File Name: WICPC2016_PUBLIC_CODEBOOK.xlsxResource Software Recommended: SAS, version 9.4,url: https://www.sas.com/en_us/software/sas9.html Resource Title: WIC Participant and Program Characteristics 2016 - Zip File with SAS, SPSS and STATA data. File Name: WIC_PC_2016_SAS_SPSS_STATA_Files.zipResource Description: WIC Participant and Program Characteristics 2016 - Zip File with SAS, SPSS and STATA data

  3. H

    Replication data for: Calculating confidence intervals for correlations...

    • data.niaid.nih.gov
    • dataverse.harvard.edu
    bin
    Updated Jun 29, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrei Cimpian (2014). Replication data for: Calculating confidence intervals for correlations reported in "The Inherence Heuristic as a Source of Essentialist Thought" [Dataset]. http://doi.org/10.7910/DVN/IH-ESS-CORR-CI
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 29, 2014
    Dataset provided by
    University of Illinois
    Salomon, Erika
    Authors
    Andrei Cimpian
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Data file for calculating confidence intervals for correlations reported in "The Inherence Heuristic as a Source of Essentialist Thought" Potentially identifiable information (IP addresses, demographic data) has been removed. Please contact the authors if you require these data.

  4. H

    Replication data for: Construct validation study reported in Method of Study...

    • dataverse.harvard.edu
    Updated Jun 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2014). Replication data for: Construct validation study reported in Method of Study 1 in "The Inherence Heuristic as a Source of Essentialist Thought" [Dataset]. http://doi.org/10.7910/DVN/IH-ESS-CONSTRUCT
    Explore at:
    text/x-spss-syntax; charset=utf-8(684), text/plain; charset=us-ascii(2203), text/plain; charset=us-ascii(1156), tsv(52921)Available download formats
    Dataset updated
    Jun 25, 2014
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Data file associated with the construct validation study reported in the Method of Study 1 in "The Inherence Heuristic as a Source of Essentialist Thought" Potentially identifiable information (IP addresses, demographic data) has been removed. Please contact the authors if you require these data.

  5. WIC Participant and Program Characteristics 2018

    • agdatacommons.nal.usda.gov
    application/csv
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Food and Nutrition Service, Office of Policy Support (2025). WIC Participant and Program Characteristics 2018 [Dataset]. http://doi.org/10.15482/USDA.ADC/1522608
    Explore at:
    application/csvAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    United States Department of Agriculturehttp://usda.gov/
    Food and Nutrition Servicehttps://www.fns.usda.gov/
    Authors
    USDA Food and Nutrition Service, Office of Policy Support
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    In 1986, the Congress enacted Public Laws 99-500 and 99-591, requiring a biennial report on the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). In response to these requirements, FNS developed a prototype system that allowed for the routine acquisition of information on WIC participants from WIC State Agencies. Since 1992, State Agencies have provided electronic copies of these data to FNS on a biennial basis. FNS and the National WIC Association (formerly National Association of WIC Directors) agreed on a set of data elements for the transfer of information. In addition, FNS established a minimum standard dataset for reporting participation data. For each biennial reporting cycle, each State Agency is required to submit a participant-level dataset containing standardized information on persons enrolled at local agencies for the reference month of April. The 2018 Participant and Program Characteristics (PC2018) is the fourteenth data submission to be completed using the WIC PC reporting system. In April 2018, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Processing methods and equipment used Specifications on formats (“Guidance for States Providing Participant Data”) were provided to all State agencies in January 2018. This guide specified 20 minimum dataset (MDS) elements and 11 supplemental dataset (SDS) elements to be reported on each WIC participant. Each State Agency was required to submit all 20 MDS items and any SDS items collected by the State agency.   Study date(s) and duration The information for each participant was from the participants’ most current WIC certification as of April 2018. Study spatial scale (size of replicates and spatial scale of study area) In April 2018, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations. Level of true replication Unknown Sampling precision (within-replicate sampling or pseudoreplication) State Agency Data Submissions. PC2018 is a participant dataset consisting of 7,837,672 active records. The records, submitted to USDA by the State Agencies, comprise a census of all WIC enrollees, so there is no sampling involved in the collection of this data. PII Analytic Datasets. State agency files were combined to create a national census participant file of approximately 7.8 million records. The census dataset contains potentially personally identifiable information (PII) and is therefore not made available to the public. National Sample Dataset. The public use SAS analytic dataset made available to the public has been constructed from a nationally representative sample drawn from the census of WIC participants, selected by participant category. The national sample consists of 1 percent of the total number of participants, or 78,365 records. The distribution by category is 6,825 pregnant women, 6,189 breastfeeding women, 5,134 postpartum women, 18,552 infants, and 41,665 children. Level of subsampling (number and repeat or within-replicate sampling) The proportionate (or self-weighting) sample was drawn by WIC participant category: pregnant women, breastfeeding women, postpartum women, infants, and children. In this type of sample design, each WIC participant has the same probability of selection across all strata. Sampling weights are not needed when the data are analyzed. In a proportionate stratified sample, the largest stratum accounts for the highest percentage of the analytic sample. Study design (before–after, control–impacts, time series, before–after-control–impacts) None – Non-experimental Description of any data manipulation, modeling, or statistical analysis undertaken Each entry in the dataset contains all MDS and SDS information submitted by the State agency on the sampled WIC participant. In addition, the file contains constructed variables used for analytic purposes. To protect individual privacy, the public use file does not include State agency, local agency, or case identification numbers. Description of any gaps in the data or other limiting factors All State agencies except New Mexico provided data on a census of their WIC participants. Resources in this dataset:Resource Title: WIC Participant and Program Characteristics 2018 Data. File Name: wicpc.wicpc2018_public_use.csvResource Title: WIC Participant and Program Characteristics 2018 Dataset Codebook. File Name: PC2018 National Sample File Public Use Codebook updated.docxResource Description: The 2018 Participant and Program Characteristics (PC2018) is the fourteenth data submission to be completed using the WIC PC reporting system. In April 2018, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations.Resource Title: WIC Participant and Program Characteristics 2018 Datasets SAS STATA SPSS. File Name: wicpc2018_agdatacoomonsupload.zipResource Description: The 2018 Participant and Program Characteristics (PC2018) is the fourteenth data submission to be completed using the WIC PC reporting system. In April 2018, there were 90 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the American Virgin Islands, and 34 Indian tribal organizations.

  6. Childhood Allergies: Prevalence, Demographics

    • kaggle.com
    Updated Jan 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Childhood Allergies: Prevalence, Demographics [Dataset]. https://www.kaggle.com/datasets/thedevastator/childhood-allergies-prevalence-diagnosis-and-tre/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 1, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Childhood Allergies: Prevalence, Diagnosis, and Treatment Outcomes

    Investigating Allergy Prevalence, Treatment Outcomes, and Patient Demographics

    By [source]

    About this dataset

    This dataset contains the power to help us better understand the prevalence and treatment outcomes of childhood allergies over an extended period of time. Not only does it publicize the number of individuals currently suffering from asthma, atopic dermatitis, allergic rhinitis and food allergies through retrospective data as reported by healthcare providers - but it also features a set of columns which allow us to gain valuable insights into how these outcomes differ across different demographics such as gender, race and ethnicity. By further examining this data, we can start to recognize patterns in trends among the diagnosed cases - paving way for new treatments and prevention strategies that could prevent severe allergic reactions for many children all around the world

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    • Assess what kind of questions you want to answer using this data - do you want to focus on one particular type of allergy or analyze them together? Do you want a descriptive analysis or would an analysis that looks for correlations between conditions be more appropriate?

    • Once you have determined your research question(s), identify what variables from the dataset are pertinent to your inquiry and assess any outliers that might need further investigation or filtering out during your analysis. Also consider any independent variables or confounding factors which might affect your results as well as any existing hypotheses related to the topic that might help guide your research project expectations

    • Be aware of potential sources of bias when using self-reported healthcare provider information such as difficulties in disease identification (i.e allergies may be misdiagnosed). Additionally note that many allergy cases may go unreported/unrecorded due issues such as lack access/awareness about healthcare etc). A good way combat bias is by sample size - use largest possible datasets whenever available!

    • Begin collecting relevant data from columns pertaining medical history (allergy diagnosis start & end date etc.), patient demographic information (gender factor ,ethnicity factor etc.), treatment trends & outcomes( first Asthma RX date , last asthma RX date , NUM asthma rx etc ). To get the most insights outta thisdata all these factors must be taken into account – if there isn’t enough evidence then explore other reliable sources too

    • Structure & organize collected data so they can me easily accessed later – maybe create separate sheets/tabs with different categories i.e patient/treatment information OR create individual sheets for each subject depending upon how much info needs collecting .Designing formulaic functions will not only make life easier but critically save time & energy when it comes analyzing vast amounts data stored within workbook ! Remember larger sample sizes provide more

    Research Ideas

    • Use the dataset to identify risk factors or patterns in childhood allergies that can inform preventative and treatment measures.
    • Investigate the correlation between demographic characteristics (e.g., age, gender) and diagnosis or severity of childhood allergies by using cross-tabs or other statistical techniques on the data provided in this dataset.
    • Analyze longitudinal trends in treatment outcomes for various types of childhood allergy, such as asthma, atopic dermatitis and food allergy by comparing patient results over time (i.e., looking at pre-treatment diagnosis and post-treatment diagnoses)

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: food-allergy-analysis-Zenodo.csv | Column name | Description | |:----------------------------|:--------------------------------------------------------------| | BIRTH_YEAR | Year of birth of the patient. (Integer) | | GENDER_FACTOR ...

  7. H

    Healthcare Data Industry Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Healthcare Data Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/healthcare-data-industry-8463
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the Healthcare Data Industry market was valued at USD XX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 16.20% during the forecast period. Data in healthcare signifies all the information that is created or gathered in the healthcare industry. These include patient records, electronic health records, genomic data, health insurance claims, medical images, and all other clinical trial data. All this stands at the back of modern healthcare and could support many critical applications. First and foremost, health data improves patient care. Pattern analysis for patient records is simplified by health care providers in ensuring accurate disease diagnosis and application of personalized treatment plans. Medical field images, such as X-rays and MRIs, are helpful in finding abnormalities and useful in surgical methods. Genomic data insights comprise susceptibility from a genetic view point, which therefore enables coming up with a customised treatment plan for diseases such as cancer. Then, the health information data is very crucial in conducting research and developing new medical knowledge. Researchers analyze epidemiology of diseases by adopting massive datasets, manufacture new drugs and treatments, and analyze effectiveness of health care programs by such datasets. For instance, the medical trials dataset helps in the development of evidence about the safety and efficiency of new treatment options. The health insurance claims dataset can help assess healthcare utilization patterns so as to identify areas in need of improvement. Therefore, health care data also enables administrative and operational functions of health care organizations. EHRs allow easy maintenance of the patient data, enable sound communications among healthcare providers, and minimize errors. Apart from this, analytics on health insurance claims are performed to make possible billing and reimbursement services to ensure the payment of the healthcare provider in the right amount of their rendered service. Further, analytics data could be used for optimization of resource utilization, in identifying potential cost savings, and making health care organizations efficient as a whole. Healthcare information is one of those precious assets that propel innovation, promote better patient outcomes, and support the coherent functioning of the healthcare system. Therefore, improving the quality and efficiency in which care delivery is offered can be achieved through the effective use of healthcare information by healthcare providers, researchers, and administrators for a better state of health among individuals and communities. Recent developments include: March 2022: Microsoft launched Azure Health Data Services in the United States. It is a platform as a service (PAAS) offering designed exclusively to support protected health information (PHI) in the cloud., March 2022: The government of Thailand launched a big data portal for healthcare facilities. The National Reforms Committee on Public Health recently joined hands with 12 government agencies to improve the quality of healthcare services by implementing digital technologies.. Key drivers for this market are: Increase in Demand for Analytics Solutions for Population Health Management, Rise in Need for Business Intelligence to Optimize Health Administration and Strategy; Surge in Adoption of Big Data in the Healthcare Industry. Potential restraints include: Security Concerns Related to Sensitive Patients Medical Data, High Cost of Implementation and Deployment. Notable trends are: Cloud Segment is Expected to Register a High Growth Rate Over the Forecast Period.

  8. N

    Median Household Income by Racial Categories in Rose City, TX (, in 2023...

    • neilsberg.com
    csv, json
    Updated Mar 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Median Household Income by Racial Categories in Rose City, TX (, in 2023 inflation-adjusted dollars) [Dataset]. https://www.neilsberg.com/insights/rose-city-tx-median-household-income-by-race/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 1, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas, Rose City
    Variables measured
    Median Household Income for Asian Population, Median Household Income for Black Population, Median Household Income for White Population, Median Household Income for Some other race Population, Median Household Income for Two or more races Population, Median Household Income for American Indian and Alaska Native Population, Median Household Income for Native Hawaiian and Other Pacific Islander Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the median household income within each racial category idetified by the US Census Bureau, we conducted an initial analysis and categorization of the data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). It is important to note that the median household income estimates exclusively represent the identified racial categories and do not incorporate any ethnicity classifications. Households are categorized, and median incomes are reported based on the self-identified race of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the median household income across different racial categories in Rose City. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.

    Key observations

    Based on our analysis of the distribution of Rose City population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 79.18% of the total residents in Rose City. Notably, the median household income for White households is not available from the U.S. Census Bureau, possibly due to insufficient sample size, confidentiality or privacy constraints.. Interestingly, despite the White population being the most populous, there is no income data available in the latest American Community Survey for it. Based on analysis from all of the data that is available, it is worth noting that Two or More Races households actually reports the highest median household income, with a median income of $33,906. This reveals that, while Whites may be the most numerous in Rose City, Two or More Races households experience greater economic prosperity in terms of median household income.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race of the head of household: This column presents the self-identified race of the household head, encompassing all relevant racial categories (excluding ethnicity) applicable in Rose City.
    • Median household income: Median household income, adjusting for inflation, presented in 2023-inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rose City median household income by race. You can refer the same here

  9. H

    Replication data for: Confirmatory factor analysis and discriminant validity...

    • dataverse.harvard.edu
    Updated Jun 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrei Cimpian (2014). Replication data for: Confirmatory factor analysis and discriminant validity model comparison reported in Method of Study 1 in "The Inherence Heuristic as a Source of Essentialist Thought" [Dataset]. http://doi.org/10.7910/DVN/IH-ESS-SEM
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 25, 2014
    Dataset provided by
    Harvard Dataverse
    Authors
    Andrei Cimpian
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Data and analysis files associated with the confirmatory factor analysis and model comparison demonstrating discriminant validity between the inherence heuristic and essentialism reported in the Method of Study 1 of "The Inherence Heuristic as a Source of Essentialist Thought" Potentially identifiable information (IP addresses, demographic data) has been removed. Please contact the authors if you require these data.

  10. A

    ‘Missing Migrants Dataset’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Apr 23, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2019). ‘Missing Migrants Dataset’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-missing-migrants-dataset-c736/2e62d69f/?v=grid
    Explore at:
    Dataset updated
    Apr 23, 2019
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Missing Migrants Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jmataya/missingmigrants on 14 February 2022.

    --- Dataset description provided by original source is as follows ---

    About the Missing Migrants Data

    This data is sourced from the International Organization for Migration. The data is part of a specific project called the Missing Migrants Project which tracks deaths of migrants, including refugees , who have gone missing along mixed migration routes worldwide. The research behind this project began with the October 2013 tragedies, when at least 368 individuals died in two shipwrecks near the Italian island of Lampedusa. Since then, Missing Migrants Project has developed into an important hub and advocacy source of information that media, researchers, and the general public access for the latest information.

    Where is the data from?

    Missing Migrants Project data are compiled from a variety of sources. Sources vary depending on the region and broadly include data from national authorities, such as Coast Guards and Medical Examiners; media reports; NGOs; and interviews with survivors of shipwrecks. In the Mediterranean region, data are relayed from relevant national authorities to IOM field missions, who then share it with the Missing Migrants Project team. Data are also obtained by IOM and other organizations that receive survivors at landing points in Italy and Greece. In other cases, media reports are used. IOM and UNHCR also regularly coordinate on such data to ensure consistency. Data on the U.S./Mexico border are compiled based on data from U.S. county medical examiners and sheriff’s offices, as well as media reports for deaths occurring on the Mexico side of the border. Estimates within Mexico and Central America are based primarily on media and year-end government reports. Data on the Bay of Bengal are drawn from reports by UNHCR and NGOs. In the Horn of Africa, data are obtained from media and NGOs. Data for other regions is drawn from a combination of sources, including media and grassroots organizations. In all regions, Missing Migrants Projectdata represents minimum estimates and are potentially lower than in actuality.

    Updated data and visuals can be found here: https://missingmigrants.iom.int/

    Who is included in Missing Migrants Project data?

    IOM defines a migrant as any person who is moving or has moved across an international border or within a State away from his/her habitual place of residence, regardless of

      (1) the person’s legal status; 
      (2) whether the movement is voluntary or involuntary; 
      (3) what the causes for the movement are; or 
      (4) what the length of the stay is.[1]
    

    Missing Migrants Project counts migrants who have died or gone missing at the external borders of states, or in the process of migration towards an international destination. The count excludes deaths that occur in immigration detention facilities, during deportation, or after forced return to a migrant’s homeland, as well as deaths more loosely connected with migrants’ irregular status, such as those resulting from labour exploitation. Migrants who die or go missing after they are established in a new home are also not included in the data, so deaths in refugee camps or housing are excluded. This approach is chosen because deaths that occur at physical borders and while en route represent a more clearly definable category, and inform what migration routes are most dangerous. Data and knowledge of the risks and vulnerabilities faced by migrants in destination countries, including death, should not be neglected, rather tracked as a distinct category.

    How complete is the data on dead and missing migrants?

    Data on fatalities during the migration process are challenging to collect for a number of reasons, most stemming from the irregular nature of migratory journeys on which deaths tend to occur. For one, deaths often occur in remote areas on routes chosen with the explicit aim of evading detection. Countless bodies are never found, and rarely do these deaths come to the attention of authorities or the media. Furthermore, when deaths occur at sea, frequently not all bodies are recovered - sometimes with hundreds missing from one shipwreck - and the precise number of missing is often unknown. In 2015, over 50 per cent of deaths recorded by the Missing Migrants Project refer to migrants who are presumed dead and whose bodies have not been found, mainly at sea.

    Data are also challenging to collect as reporting on deaths is poor, and the data that does exist are highly scattered. Few official sources are collecting data systematically. Many counts of death rely on media as a source. Coverage can be spotty and incomplete. In addition, the involvement of criminal actors in incidents means there may be fear among survivors to report deaths and some deaths may be actively covered-up. The irregular immigration status of many migrants, and at times their families as well, also impedes reporting of missing persons or deaths.

    The varying quality and comprehensiveness of data by region in attempting to estimate deaths globally may exaggerate the share of deaths that occur in some regions, while under-representing the share occurring in others.

    What can be understood through this data?

    The available data can give an indication of changing conditions and trends related to migration routes and the people travelling on them, which can be relevant for policy making and protection plans. Data can be useful to determine the relative risks of irregular migration routes. For example, Missing Migrants Project data show that despite the increase in migrant flows through the eastern Mediterranean in 2015, the central Mediterranean remained the more deadly route. In 2015, nearly two people died out of every 100 travellers (1.85%) crossing the Central route, as opposed to one out of every 1,000 that crossed from Turkey to Greece (0.095%). From the data, we can also get a sense of whether groups like women and children face additional vulnerabilities on migration routes.

    However, it is important to note that because of the challenges in data collection for the missing and dead, basic demographic information on the deceased is rarely known. Often migrants in mixed migration flows do not carry appropriate identification. When bodies are found it may not be possible to identify them or to determine basic demographic information. In the data compiled by Missing Migrants Project, sex of the deceased is unknown in over 80% of cases. Region of origin has been determined for the majority of the deceased. Even this information is at times extrapolated based on available information – for instance if all survivors of a shipwreck are of one origin it was assumed those missing also came from the same region.

    The Missing Migrants Project dataset includes coordinates for where incidents of death took place, which indicates where the risks to migrants may be highest. However, it should be noted that all coordinates are estimates.

    Why collect data on missing and dead migrants?

    By counting lives lost during migration, even if the result is only an informed estimate, we at least acknowledge the fact of these deaths. What before was vague and ill-defined is now a quantified tragedy that must be addressed. Politically, the availability of official data is important. The lack of political commitment at national and international levels to record and account for migrant deaths reflects and contributes to a lack of concern more broadly for the safety and well-being of migrants, including asylum-seekers. Further, it drives public apathy, ignorance, and the dehumanization of these groups.

    Data are crucial to better understand the profiles of those who are most at risk and to tailor policies to better assist migrants and prevent loss of life. Ultimately, improved data should contribute to efforts to better understand the causes, both direct and indirect, of fatalities and their potential links to broader migration control policies and practices.

    Counting and recording the dead can also be an initial step to encourage improved systems of identification of those who die. Identifying the dead is a moral imperative that respects and acknowledges those who have died. This process can also provide a some sense of closure for families who may otherwise be left without ever knowing the fate of missing loved ones.

    Identification and tracing of the dead and missing

    As mentioned above, the challenge remains to count the numbers of dead and also identify those counted. Globally, the majority of those who die during migration remain unidentified. Even in cases in which a body is found identification rates are low. Families may search for years or a lifetime to find conclusive news of their loved one. In the meantime, they may face psychological, practical, financial, and legal problems.

    Ultimately Missing Migrants Project would like to see that every unidentified body, for which it is possible to recover, is adequately “managed”, analysed and tracked to ensure proper documentation, traceability and dignity. Common forensic protocols and standards should be agreed upon, and used within and between States. Furthermore, data relating to the dead and missing should be held in searchable and open databases at local, national and international levels to facilitate identification.

    For more in-depth analysis and discussion of the numbers of missing and dead migrants around the world, and the challenges involved in identification and tracing, read our two reports on the issue, Fatal Journeys: Tracking Lives Lost during Migration (2014) and Fatal Journeys Volume 2, Identification and Tracing of Dead and Missing Migrants

    Content

    The data set records

  11. O

    COVID-19 Death Counts by Demographic 5/11/2023

    • data.cambridgema.gov
    application/rdfxml +5
    Updated May 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cambridge Department of Public Health (2023). COVID-19 Death Counts by Demographic 5/11/2023 [Dataset]. https://data.cambridgema.gov/Public-Health/COVID-19-Death-Counts-by-Demographic-5-11-2023/5rax-scyt
    Explore at:
    csv, application/rssxml, tsv, xml, json, application/rdfxmlAvailable download formats
    Dataset updated
    May 11, 2023
    Dataset authored and provided by
    Cambridge Department of Public Health
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This dataset is no longer being updated as of 5/11/2023. It is being retained on the Open Data Portal for its potential historical interest.

    This table displays the number of COVID-19 deaths among Cambridge residents by race and ethnicity. The count reflects total deaths among Cambridge COVID-19 cases.

    The rate column shows the rate of COVID-19 deaths among Cambridge residents by race and ethnicity. The rates in this chart were calculated by dividing the total number of deaths among Cambridge COVID-19 cases for each racial or ethnic category by the total number of Cambridge residents in that racial or ethnic category, and multiplying by 10,000. The rates are considered “crude rates” because they are not age-adjusted. Population data are from the U.S. Census Bureau’s 2014–2018 American Community Survey estimates and may differ from actual population counts.

    Of note:

    This chart reflects the time period of March 25 (first known Cambridge death) through present.

    It is important to note that race and ethnicity data are collected and reported by multiple entities and may or may not reflect self-reporting by the individual case. The Cambridge Public Health Department (CPHD) is actively reaching out to cases to collect this information. Due to these efforts, race and ethnicity information have been confirmed for over 80% of Cambridge cases, as of June 2020.

    Race/Ethnicity Category Definitions: “White” indicates “White, not of Hispanic origin.” “Black” indicates “Black, not of Hispanic origin.” “Hispanic” refers to a person having Hispanic origin. A person having Hispanic origin may be of any race. “Asian” indicates “Asian, not of Hispanic origin.” To protect individual privacy, a category is suppressed when it has one to four people. Categories with zero cases are reported as zero. "Other" indicates multiple races, another race that is not listed above, and cases who have reported nationality in lieu of a race category recognized by the US Census. Population data are from the U.S. Census Bureau’s 2014–2018 American Community Survey estimates and may differ from actual population counts. "Other" also includes a small number of people who identify as Native American or Native Hawaiian/Pacific islander. Because the count for Native Americans or Native Hawaiian/Pacific Islanders is currently < 5 people, these categories have been combined with “Other” to protect individual privacy.

  12. w

    Racial Profiling Dataset 2015- Citations

    • data.wu.ac.at
    • data.amerigeoss.org
    application/excel +5
    Updated Sep 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ron MacKay (2017). Racial Profiling Dataset 2015- Citations [Dataset]. https://data.wu.ac.at/schema/data_austintexas_gov/c2M2aC1xcjlm
    Explore at:
    csv, application/excel, application/xml+rdf, xlsx, xml, jsonAvailable download formats
    Dataset updated
    Sep 21, 2017
    Dataset provided by
    Ron MacKay
    Description

    In order to protect the privacy of crime victims, addresses are generalized to the block level only and specific locations are not identified.

    Due to several factors (offense reclassification, reported versus occurred dates, etc.) comparisons should not be made between numbers generated with this database to any other official police reports. Data provided represents only calls for police service where a report was written.

    Totals in the database may vary considerably from official totals following investigation and final categorization. Therefore, the data should not be used for comparisons with Uniform Crime Report statistics.

    The Austin Police Department does not assume any liability for any decision made or action taken or not taken by the recipient in reliance upon any information or data provided.

    This Racial Profiling dataset (citations) provides the raw data needed to identify trends in traffic stops. It is used to help identify potential improvements in department policy, tactics, and training.

    Corresponding report:
    This data is used to produce the annual Racial Profiling report, posted on APD's website here:
    http://www.austintexas.gov/page/racial-profiling-reports

  13. c

    Asthma (in persons of all ages): England

    • data.catchmentbasedapproach.org
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Asthma (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/1c87a458b35d4df38e0744ae039b8e0e
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of asthma (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to asthma (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with asthma was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with asthma was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with asthma, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have asthmaB) the NUMBER of people within that MSOA who are estimated to have asthmaAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have asthma, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from asthma, and where those people make up a large percentage of the population, indicating there is a real issue with asthma within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of asthma, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of asthma.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  14. c

    ckanext-statistics

    • catalog.civicdataecosystem.org
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ckanext-statistics [Dataset]. https://catalog.civicdataecosystem.org/dataset/ckanext-statistics
    Explore at:
    Dataset updated
    Jun 4, 2025
    Description

    The ckanext-statistics extension for CKAN aims to provide statistical insights and usage metrics related to datasets and the CKAN instance itself. Although the provided documentation is limited, the extension is intended to enhance CKAN's monitoring capabilities, potentially offering valuable data on dataset popularity, user activity, and overall system performance. This information could be used to inform data management decisions and improve the user experience. Key Features (Inferred): Data Usage Tracking: Potentially tracks the number of times datasets are accessed, downloaded, or viewed, providing insights into dataset popularity. User Activity Monitoring: Could monitor user interactions with CKAN, such as searches, logins, and API calls, to identify usage patterns. System Performance Metrics: Might collect data on CKAN's performance, such as response times and error rates, to identify areas for optimization. Configurable Reporting: A likely feature would be the ability to generate reports based on the collected statistical data, allowing administrators to visualize trends and patterns. Extensible Architecture: As a CKAN extension, it likely supports customization and extension to meet specific statistical reporting needs. Technical Integration: The extension integrates with CKAN through the plugin system, and presumably utilizes CKAN's core APIs to track events and gather data. The installation instructions detail how to activate the extension by adding statistics to the ckan.plugins setting in the CKAN configuration file. No specific configuration settings are mentioned, suggesting a reliance on default behaviors or potentially requiring further configuration through CKAN's API. Benefits & Impact (Inferred): By providing statistical data, the ckanext-statistics extension could assist CKAN administrators and data managers in making informed decisions about data curation, resource allocation, and system optimization. Understanding dataset usage patterns can help prioritize data maintenance efforts and identify popular datasets for promotion. Furthermore, monitoring system performance can help ensure a smooth and responsive user experience.

  15. f

    Table8_Analysis of eplerenone in the FDA adverse event reporting system...

    • frontiersin.figshare.com
    xlsx
    Updated Jul 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xin Guan; Yusi Yang; Xinru Li; Yue Feng; Jizhen Li; Xuewen Li (2024). Table8_Analysis of eplerenone in the FDA adverse event reporting system (FAERS) database: a focus on overall patient population and gender-specific subgroups.xlsx [Dataset]. http://doi.org/10.3389/fphar.2024.1417951.s008
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 17, 2024
    Dataset provided by
    Frontiers
    Authors
    Xin Guan; Yusi Yang; Xinru Li; Yue Feng; Jizhen Li; Xuewen Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction: Eplerenone is approved for the treatment of hypertension as well as symptomatic heart failure with reduced ejection fraction (HFrEF) following an acute myocardial infarction. However, the adverse events (AEs) have not been systematically analyzed. The aim of this study was to identify adverse drug reactions (ADRs) related to eplerenone using the FDA Adverse Event Reporting System (FAERS) database. By identifying previously unreported AEs, the study could potentially contribute to updating the drug’s label.Methods: In order to find significant AEs, four algorithms, including Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN) and Empirical Bayesian Geometric Mean (EBGM), were used to analyze the signal strength of the ADRs connected to eplerenone that were gathered from the FAERS database over the previous 20 years.Results: From 2004Q1 to 2023Q4, a total of 20, 629, 811 reported cases were gathered from the FAERS database for this study. After processing the data and filtering, 1,874 case reports were analyzed. Of these cases, 1,070 AEs were identified, 128 of which were eplerenone-related ADRs. We investigated the occurrence of ADRs induced by eplerenone in 27 organ systems. Our study showed that the AEs listed in the medication’s package insert correspond with those listed in the literature, including hyperkalemia and increased creatinine. Additionally, the prescription label for eplerenone does not include all system organ class (SOC) terms, like Vascular disorders, hepatobiliary Disorders, etc.Discussion: The study used multiple algorithms to quantify the signal strength and then identified any previously unrecognized ADRs, further studies are needed to confirm the association of ADRs with eplerenone. The findings of this study may provide important insights into the safety profile of eplerenone, ensure that healthcare providers have up-to-date information about their potential risks and help guide them in the correct use of the drug.

  16. a

    SES Water Domestic Consumption

    • hub.arcgis.com
    Updated Apr 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    dpararajasingam_ses (2024). SES Water Domestic Consumption [Dataset]. https://hub.arcgis.com/maps/f2cdc1248fcf4fd289ac1d3f25e75b3b_0/about
    Explore at:
    Dataset updated
    Apr 26, 2024
    Dataset authored and provided by
    dpararajasingam_ses
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview    This dataset offers valuable insights into yearly domestic water consumption across various Lower Super Output Areas (LSOAs) or Data Zones, accompanied by the count of water meters within each area. It is instrumental for analysing residential water use patterns, facilitating water conservation efforts, and guiding infrastructure development and policy making at a localised level. Key Definitions    Aggregation   The process of summarising or grouping data to obtain a single or reduced set of information, often for analysis or reporting purposes.     AMR Meter Automatic meter reading (AMR) is the technology of automatically collecting consumption, diagnostic, and status data from a water meter remotely and periodically. Dataset   Structured and organised collection of related elements, often stored digitally, used for analysis and interpretation in various fields.  Data Zone Data zones are the key geography for the dissemination of small area statistics in Scotland Dumb Meter A dumb meter or analogue meter is read manually. It does not have any external connectivity. Granularity   Data granularity is a measure of the level of detail in a data structure. In time-series data, for example, the granularity of measurement might be based on intervals of years, months, weeks, days, or hours   ID   Abbreviation for Identification that refers to any means of verifying the unique identifier assigned to each asset for the purposes of tracking, management, and maintenance.    LSOA Lower Layer Super Output Areas (LSOA) are a geographic hierarchy designed to improve the reporting of small area statistics in England and Wales. Open Data Triage   The process carried out by a Data Custodian to determine if there is any evidence of sensitivities associated with Data Assets, their associated Metadata and Software Scripts used to process Data Assets if they are used as Open Data.    Schema   Structure for organising and handling data within a dataset, defining the attributes, their data types, and the relationships between different entities. It acts as a framework that ensures data integrity and consistency by specifying permissible data types and constraints for each attribute.    Smart Meter A smart meter is an electronic device that records information and communicates it to the consumer and the supplier. It differs from automatic meter reading (AMR) in that it enables two-way communication between the meter and the supplier. Units   Standard measurements used to quantify and compare different physical quantities.  Water Meter Water metering is the practice of measuring water use. Water meters measure the volume of water used by residential and commercial building units that are supplied with water by a public water supply system. Data History    Data Origin    Domestic consumption data is recorded using water meters. The consumption recorded is then sent back to water companies. This dataset is extracted from the water companies. Data Triage Considerations    This section discusses the careful handling of data to maintain anonymity and addresses the challenges associated with data updates, such as identifying household changes or meter replacements. Identification of Critical Infrastructure  This aspect is not applicable for the dataset, as the focus is on domestic water consumption and does not contain any information that reveals critical infrastructure details. Commercial Risks and Anonymisation Individual Identification Risks There is a potential risk of identifying individuals or households if the consumption data is updated irregularly (e.g., every 6 months) and an out-of-cycle update occurs (e.g., after 2 months), which could signal a change in occupancy or ownership. Such patterns need careful handling to avoid accidental exposure of sensitive information. Meter and Property Association Challenges arise in maintaining historical data integrity when meters are replaced but the property remains the same. Ensuring continuity in the data without revealing personal information is crucial. Interpretation of Null Consumption Instances of null consumption could be misunderstood as a lack of water use, whereas they might simply indicate missing data. Distinguishing between these scenarios is vital to prevent misleading conclusions. Meter Re-reads The dataset must account for instances where meters are read multiple times for accuracy. Joint Supplies & Multiple Meters per Household Special consideration is required for households with multiple meters as well as multiple households that share a meter as this could complicate data aggregation. Schema Consistency with the Energy Industry: In formulating the schema for the domestic water consumption dataset, careful consideration was given to the potential risks to individual privacy. This evaluation included examining the frequency of data updates, the handling of property and meter associations, interpretations of null consumption, meter re-reads, joint suppliers, and the presence of multiple meters within a single household as described above. After a thorough assessment of these factors and their implications for individual privacy, it was decided to align the dataset's schema with the standards established within the energy industry. This decision was influenced by the energy sector's experience and established practices in managing similar risks associated with smart meters. This ensures a high level of data integrity and privacy protection. Schema The dataset schema is aligned with those used in the energy industry, which has encountered similar challenges with smart meters. However, it is important to note that the energy industry has a much higher density of meter distribution, especially smart meters. Aggregation to Mitigate Risks The dataset employs an elevated level of data aggregation to minimise the risk of individual identification. This approach is crucial in maintaining the utility of the dataset while ensuring individual privacy. The aggregation level is carefully chosen to remove identifiable risks without excluding valuable data, thus balancing data utility with privacy concerns. Data Freshness  Users should be aware that this dataset reflects historical consumption patterns and does not represent real-time data. Publish Frequency  Annually Data Triage Review Frequency    An annual review is conducted to ensure the dataset's relevance and accuracy, with adjustments made based on specific requests or evolving data trends. Data Specifications   For the domestic water consumption dataset, the data specifications are designed to ensure comprehensiveness and relevance, while maintaining clarity and focus. The specifications for this dataset include: Each dataset encompasses recordings of domestic water consumption as measured and reported by the data publisher. It excludes commercial consumption. Where it is necessary to estimate consumption, this is calculated based on actual meter readings. Meters of all types (smart, dumb, AMR) are included in this dataset. The dataset is updated and published annually. Historical data may be made available to facilitate trend analysis and comparative studies, although it is not mandatory for each dataset release. Context   Users are cautioned against using the dataset for immediate operational decisions regarding water supply management. The data should be interpreted considering potential seasonal and weather-related influences on water consumption patterns. The geographical data provided does not pinpoint locations of water meters within an LSOA. The dataset aims to cover a broad spectrum of households, from single-meter homes to those with multiple meters, to accurately reflect the diversity of water use within an LSOA.

  17. D

    Lakewood Trails Crime Statistics

    • dallasopendata.com
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dallas Police Department (2025). Lakewood Trails Crime Statistics [Dataset]. https://www.dallasopendata.com/w/fzzf-ur5f/default?cur=SDdcDyKZWWv
    Explore at:
    application/rssxml, application/geo+json, csv, kml, kmz, tsv, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Jul 3, 2025
    Authors
    Dallas Police Department
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Description

    This dataset represents the Dallas Police Public Data - RMS Incidents beginning June 1, 2014 to current-date. The Dallas Police Department strives to collect and disseminate police report information in a timely, accurate manner. This information reflects crimes as reported to the Dallas Police Department as of the current date. Crime classifications are based upon preliminary information supplied to the Dallas Police Department by the reporting parties and the preliminary classifications may be changed at a later date based upon additional investigation. Therefore, the Dallas Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information contained herein and the information should not be used for comparison purposes over time. The Dallas Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information.

    This online site is an attempt to make it easier for citizens to access offense reports. In disseminating this crime information, we must also comply with current laws that regulate the release of potentially sensitive and confidential information. To ensure that privacy concerns are protected and legal standards are met, report data is "filtered" prior to being made available to the public. Among the exclusions are:

    1.) Sexually oriented offenses 2.) Offenses where juveniles or children (individuals under 17 years of age) are the victim or suspect 3.) Listing of property items that are considered evidence 4.) Social Service Referral offenses 5.) Identifying vehicle information in certain offenses

  18. O

    COVID-19 Long Term Care Facility Cases 5/11/2023

    • data.cambridgema.gov
    application/rdfxml +5
    Updated May 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cambridge Department of Public Health (2023). COVID-19 Long Term Care Facility Cases 5/11/2023 [Dataset]. https://data.cambridgema.gov/dataset/COVID-19-Long-Term-Care-Facility-Cases-5-11-2023/ckq7-kjti
    Explore at:
    application/rssxml, xml, tsv, csv, json, application/rdfxmlAvailable download formats
    Dataset updated
    May 11, 2023
    Dataset authored and provided by
    Cambridge Department of Public Health
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This dataset is no longer being updated as of m/d/yyyy. It is being retained on the Open Data Portal for its potential historical interest.

    This table shows selected demographic information for Cambridge residents living in skilled nursing or assisted living facilities who are classified as confirmed, probable, or suspect cases (see “Case Count by Classification” section for definitions). Demographic information includes gender, age range, and race/ethnicity.

    About the COVID-19 Rapid Testing Program: On April 9, the Broad Institute, in partnership with the City of Cambridge and Pro EMS, launched a surveillance testing pilot program in Cambridge skilled nursing and assisted living facilities. The goal of the program is to gain an accurate picture of the true infection rate in these facilities by testing all residents and workers regardless of whether they have symptoms or feel ill. Positive cases among facility residents reflect three rounds of testing in April and May of all residents at the seven skilled nursing and assisted living facilities in Cambridge, as well as other testing ordered by medical providers.

    Of note:

    The case count includes those who have recovered, are currently sick with COVID-19, and who have died from complications of the disease. Any category with a case count less than five is omitted to protect individual privacy. The Cambridge case count reflects current data received from the Massachusetts Department of Public Health.

    It is important to note that race and ethnicity data are collected and reported by multiple entities and may or may not reflect self-reporting by the individual case. The Cambridge Public Health Department (CPHD) is actively reaching out to cases to collect this information. Due to these efforts, race and ethnicity information have been confirmed for over 80% of Cambridge cases, as of June 2020. Race/Ethnicity Category Definitions: “White” indicates “White, not of Hispanic origin.” “Black” indicates “Black, not of Hispanic origin.” “Hispanic” refers to a person having Hispanic origin. A person having Hispanic origin may be of any race. “Asian” indicates “Asian, not of Hispanic origin.” "Unknown" indicates that the originating reporter or reporting system did not capture race and ethnicity information or the individual refused to provide the information. "Other" indicates multiple races, another race that is not listed above, and cases who have reported nationality in lieu of a race category recognized by the US Census. Population data are from the U.S. Census Bureau’s 2014–2018 American Community Survey estimates and may differ from actual population counts. "Other" also includes a small number of people who identify as Native American or Native Hawaiian/Pacific islander. Because the count for Native Americans or Native Hawaiian/Pacific Islanders is currently < 5 people, these categories have been combined with “Other” to protect individual privacy.

    The table is updated daily at 4 p.m.

    **Living in a facility is defined as a Cambridge resident who lives in a skilled nursing or assisted living facility.

    ^Positive cases among facility residents reflect three rounds of testing in April and May of all residents at the seven skilled nursing and assisted living facilities in Cambridge, as well as other testing ordered by medical providers.

  19. s

    Portsmouth Water Domestic Consumption

    • streamwaterdata.co.uk
    • hub.arcgis.com
    Updated Apr 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AHughes_Portsmouth (2024). Portsmouth Water Domestic Consumption [Dataset]. https://www.streamwaterdata.co.uk/datasets/ae7c87ab4bdd4d2090e7f1773efc5a44
    Explore at:
    Dataset updated
    Apr 25, 2024
    Dataset authored and provided by
    AHughes_Portsmouth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview

    This dataset offers valuable insights into yearly domestic water consumption across various Lower Super Output Areas (LSOAs) or Data Zones, accompanied by the count of water meters within each area. It is instrumental for analysing residential water use patterns, facilitating water conservation efforts, and guiding infrastructure development and policy making at a localised level.

    Key Definitions

    Aggregation

    The process of summarising or grouping data to obtain a single or reduced set of information, often for analysis or reporting purposes.

    AMR Meter

    Automatic meter reading (AMR) is the technology of automatically collecting consumption, diagnostic, and status data from a water meter remotely and periodically.

    Dataset

    Structured and organised collection of related elements, often stored digitally, used for analysis and interpretation in various fields.

    Data Zone

    Data zones are the key geography for the dissemination of small area statistics in Scotland

    Dumb Meter

    A dumb meter or analogue meter is read manually. It does not have any external connectivity.

    Granularity

    Data granularity is a measure of the level of detail in a data structure. In time-series data, for example, the granularity of measurement might be based on intervals of years, months, weeks, days, or hours

    ID

    Abbreviation for Identification that refers to any means of verifying the unique identifier assigned to each asset for the purposes of tracking, management, and maintenance.

    LSOA

    Lower Layer Super Output Areas (LSOA) are a geographic hierarchy designed to improve the reporting of small area statistics in England and Wales.

    Open Data Triage

    The process carried out by a Data Custodian to determine if there is any evidence of sensitivities associated with Data Assets, their associated Metadata and Software Scripts used to process Data Assets if they are used as Open Data.

    Schema

    Structure for organising and handling data within a dataset, defining the attributes, their data types, and the relationships between different entities. It acts as a framework that ensures data integrity and consistency by specifying permissible data types and constraints for each attribute.

    Smart Meter

    A smart meter is an electronic device that records information and communicates it to the consumer and the supplier. It differs from automatic meter reading (AMR) in that it enables two-way communication between the meter and the supplier.

    Units

    Standard measurements used to quantify and compare different physical quantities.

    Water Meter

    Water metering is the practice of measuring water use. Water meters measure the volume of water used by residential and commercial building units that are supplied with water by a public water supply system.

    Data History

    Data Origin

    Domestic consumption data is recorded using water meters. The consumption recorded is then sent back to water companies. This dataset is extracted from the water companies.

    Data Triage Considerations

    This section discusses the careful handling of data to maintain anonymity and addresses the challenges associated with data updates, such as identifying household changes or meter replacements.

    Identification of Critical Infrastructure

    This aspect is not applicable for the dataset, as the focus is on domestic water consumption and does not contain any information that reveals critical infrastructure details.

    Commercial Risks and Anonymisation

    Individual Identification Risks

    There is a potential risk of identifying individuals or households if the consumption data is updated irregularly (e.g., every 6 months) and an out-of-cycle update occurs (e.g., after 2 months), which could signal a change in occupancy or ownership. Such patterns need careful handling to avoid accidental exposure of sensitive information.

    Meter and Property Association

    Challenges arise in maintaining historical data integrity when meters are replaced but the property remains the same. Ensuring continuity in the data without revealing personal information is crucial.

    Interpretation of Null Consumption

    Instances of null consumption could be misunderstood as a lack of water use, whereas they might simply indicate missing data. Distinguishing between these scenarios is vital to prevent misleading conclusions.

    Meter Re-reads

    The dataset must account for instances where meters are read multiple times for accuracy.

    Joint Supplies & Multiple Meters per Household

    Special consideration is required for households with multiple meters as well as multiple households that share a meter as this could complicate data aggregation.

    Schema Consistency with the Energy Industry:

    In formulating the schema for the domestic water consumption dataset, careful consideration was given to the potential risks to individual privacy. This evaluation included examining the frequency of data updates, the handling of property and meter associations, interpretations of null consumption, meter re-reads, joint suppliers, and the presence of multiple meters within a single household as described above.

    After a thorough assessment of these factors and their implications for individual privacy, it was decided to align the dataset's schema with the standards established within the energy industry. This decision was influenced by the energy sector's experience and established practices in managing similar risks associated with smart meters. This ensures a high level of data integrity and privacy protection.

    Schema

    The dataset schema is aligned with those used in the energy industry, which has encountered similar challenges with smart meters. However, it is important to note that the energy industry has a much higher density of meter distribution, especially smart meters.

    Aggregation to Mitigate Risks

    The dataset employs an elevated level of data aggregation to minimise the risk of individual identification. This approach is crucial in maintaining the utility of the dataset while ensuring individual privacy. The aggregation level is carefully chosen to remove identifiable risks without excluding valuable data, thus balancing data utility with privacy concerns.

    Data Freshness

    Users should be aware that this dataset reflects historical consumption patterns and does not represent real-time data.

    Publish Frequency

    Annually

    Data Triage Review Frequency

    An annual review is conducted to ensure the dataset's relevance and accuracy, with adjustments made based on specific requests or evolving data trends.

    Data Specifications

    For the domestic water consumption dataset, the data specifications are designed to ensure comprehensiveness and relevance, while maintaining clarity and focus. The specifications for this dataset include:

    ·
    Each dataset encompasses recordings of domestic water consumption as measured and reported by the data publisher. It excludes commercial consumption.

    · Where it is necessary to estimate consumption, this is calculated based on actual meter readings.

    · Meters of all types (smart, dumb, AMR) are included in this dataset.

    ·
    The dataset is updated and published annually.

    ·
    Historical data may be made available to facilitate trend analysis and comparative studies, although it is not mandatory for each dataset release.

    Context

    Users are cautioned against using the dataset for immediate operational decisions regarding water supply management. The data should be interpreted considering potential seasonal and weather-related influences on water consumption patterns.

    The geographical data provided does not pinpoint locations of water meters within an LSOA.

    The dataset aims to cover a broad spectrum of households, from single-meter homes to those with multiple meters, to accurately reflect the diversity of water use within an LSOA.

    Supplementary Information

    1. Below is a curated selection of links for additional reading, which provide a deeper understanding of this dataset.

    2. Ofwat guidance on water meters

    3. https://www.ofwat.gov.uk/wp-content/uploads/2015/11/prs_lft_101117meters.pdf

  20. a

    Cancer (in persons of all ages): England

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Cancer (in persons of all ages): England [Dataset]. https://hub.arcgis.com/datasets/c5c07229db684a65822fdc9a29388b0b
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Becker, Daniel J (2024). Demography, education, and research trends in the interdisciplinary field of disease ecology [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5812145

Data from: Demography, education, and research trends in the interdisciplinary field of disease ecology

Related Article
Explore at:
Dataset updated
Jul 17, 2024
Dataset provided by
Becker, Daniel J
Forbes, Kristian M
Sampson, Laura
Brandell, Ellen E
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Description of Supporting Files

Demography, education, and research trends in the interdisciplinary field of disease ecology

Ellen E. Brandell, Daniel J. Becker, Laura Sampson, Kristian M. Forbes

TopArticles_Inclusion.xlsx

This Excel provides a list of influential articles written in by survey participants at least two times.

Sheet “table”: just tabular information

Sheet “withNotes”: includes notes about data, number of citations from survey participants, and percent inclusion calculations.

Columns are:

‘INCLUDED’: if the article appeared in the corpus (1) or not (0)

‘COUNT’: the number of times survey participants wrote in the article

‘ARTICLE’: article citation Percent of articles included in the corpus are calculated for 4 or more write-ins, 3-write-ins, 2 write-ins, and across all articles written in twice.

IRB_Correspondence_STUDY00010582.pdf

Institutional Review Board correspondence and approval from Pennsylvania State University. Survey response data may be available upon request from the corresponding author. To protect participants, any potentially identifying information will be removed prior to filling a request. See the online Supporting Information for this article for extensive reporting of survey results prior to a request.

FullSurvey.pdf

A PDF of the full survey form.

CorpusFrequencyAnalysis.ipynb

This is the Python script used for corpus organization and the topic detection analysis. It includes some plot generation.

Search
Clear search
Close search
Google apps
Main menu