Envestnet®| Yodlee®'s Consumer Purchase Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.
Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.
We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.
Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?
Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.
Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking
Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)
Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence
Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis
https://www.caida.org/about/legal/aua/https://www.caida.org/about/legal/aua/
Consists of daily files of unsolicited traffic captured by the UCSD Network Telescope traces and aggregated into the csv (Corsaro 2) format.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. This catalogue entry provides post-processed ERA5 hourly single-level data aggregated to daily time steps. In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:
The daily aggregation statistic (daily mean, daily max, daily min, daily sum*) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)
*The daily sum is only available for the accumulated variables (see ERA5 documentation for more details). Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5 hourly single-level data catalogue entry and the documentation found therein.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses ERA5 atmospheric variables, such as air temperature and air humidity, as input to control the simulated land fields. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'. This catalogue entry provides post-processed ERA5-land hourly data aggregated to daily time steps. Note that the accumulated variables are omitted (e.g. total precipitation, runoff, etc - please refer to table 3 in the ERA5-Land online documentation for a full list of accumulated variables). In addition to the data selection options found on the hourly page, the following options can be selected for the daily statistic calculation:
The daily aggregation statistic (daily mean, daily max, daily min) The sub-daily frequency sampling of the original data (1 hour, 3 hours, 6 hours) The option to shift to any local time zone in UTC (no shift means the statistic is computed from UTC+00:00)
Users should be aware that the daily aggregation is calculated during the retrieval process and is not part of a permanently archived dataset. For more details on how the daily statistics are calculated, including demonstrative code and advice on how to return daily statistics for the accumulated variables, please see the documentation. For more details on the hourly data used to calculate the daily statistics, please refer to the ERA5-land hourly data catalogue entry and the documentation found therein.
ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 replaces its predecessor, the ERA-Interim reanalysis. ERA5 DAILY provides aggregated values for each day for seven ERA5 climate reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind. Additionally, daily minimum and maximum air temperature at 2m has been calculated based on the hourly 2m air temperature data. Daily total precipitation values are given as daily sums. All other parameters are provided as daily averages. ERA5 data is available from 1979 to three months from real-time. More information and more ERA5 atmospheric parameters can be found at the Copernicus Climate Data Store. Provider's Note: Daily aggregates have been calculated based on the ERA5 hourly values of each parameter.
Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Air temperature (2 m): Temperature of air at 2m above the surface of land, sea or in-land waters. 2m temperature is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions. The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the spatial resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc seconds (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA Data available is the daily average, minimum and maximum of air temperature (2 m). Spatial resolution: 30 arc seconds (approx. 1000 m) Temporal resolution: Daily Pixel values: °C * 10 (scaled to Integer; example: value 238 = 23.8 %) Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Daily climate data for Vietnam at commune level. Maximum and minimum temperatures and precipitation data.
This Brazil mobility dataset, provided by Intuizi, is essential for understanding mobility patterns across specific areas in Brazil. Customers use this comprehensive mobile location data to build sophisticated mobility data models, analyze visitation to their own or competitors' premises, and investigate changes in visitation patterns over time. The Intuizi Visitation Dataset includes fully-consented mobile device data, de-identified at the source by entities legally authorized to process such data. We ensure the creation of a de-identified dataset of encrypted ID visitation and mobility data, making it a reliable source for detailed location data insights. Whether you need visit data or aggregated foot traffic data, Intuizi provides the precise solution you require.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a data schema created using Agri-food Data Canada's Semantic Engine . Data schemas describe data that are collected on an ongoing basis from research centres, and provide add-on documentation that enhances the value of raw data. This schema is applicable to all datasets collecting aggregated daily feed intakes data for animals fed at the maternity & tie stalls and from Insentec bins. Daily intakes for Insentec data is the sum of all positive intakes per animal per day using data from the Insentec (FR) table (Insentec data from VR files with end weight and intake fixed). Fixing strategy: If start weight of the following visit is equal (cow didn't eat) or smaller than the current visit's start weight (cow ate) and the following visit's start weight is different than the current visit's end weight, then the current visit's end weight is replaced with the start weight of the following visit. These conditions are applied with data grouped by date and bin and sorted ascending by start time. Limitation: Because data is grouped by date, if the last visit of a day registered an incorrect weight to a bin, it will not be corrected with the first visit of the following day of such bin. Additionally, if the start weight of the following visit is greater than the start weight of the current visit, then nothing is done since supplement/more feed could have been added to the bin between visits or the scale was really broken. Further inspection to the data is recommended. Data described in this schema is sample data, to request access to the related data, please visit the Ontario Dairy Research Centre Data Portal.
Script and accompanying ipython notebook written in Python 2.7 for aggregating sub-daily environmental data (rainfall, tide, wind, groundwater) to a daily timescale. The input data are from Norfolk, Virginia. Several different methods of aggregation are used including averages and maximums. The processed/aggregated data are combined with street flood report data to be used in data-driven, predictive modeling. The script in this resource was used in the analysis described in this Journal of Hydrology paper: https://doi.org/10.1016/j.jhydrol.2018.01.044.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
ERA5-Land daily: Total precipitation, daily time series for Europe at 30 arc seconds (ca. 1000 meter) resolution (2000 - 2020)
Source data:
ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
Total precipitation:
Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step.
Processing steps:
The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to:
- aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum)
- while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/).
For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land.
The steps included aggregation and enhancement, specifically:
1. spatially aggregate CHELSA to the resolution of ERA5-Land
2. calculate proportion of ERA5-Land / aggregated CHELSA
3. interpolate proportion with a Gaussian filter to 30 arc seconds
4. multiply the interpolated proportions with CHELSA
Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA.
Data available is the daily sum of precipitation.
File naming:era5_land_daily_prectot_YYYYMMDD_sum_30sec.tif
e.g.:era5_land_daily_prectot_20200418_sum_30sec.tif
The date within the filename is Year, Month and Day of timestamp.
Pixel values:
mm * 10
Scaled to Integer, example: value 218 = 21.8 mm
Projection + EPSG code:
Latitude-Longitude/WGS84 (EPSG: 4326)
Spatial extent:
north: 82:00:30N
south: 18:00:00N
west: 32:00:30W
east: 70:00:00E
Temporal extent:
01.01.2000 - 31.12.2020
NOTE: Due to file size, only 2020 data are available here. Data for other years are available on request.
Spatial resolution:
30 arc seconds (approx. 1000 m)
Temporal resolution:
daily
Lineage:
Dataset has been processed from Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used.
Software used:
GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)
Format: GeoTIFF
Original ERA5-Land dataset license:
https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4
Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
Representation type: Grid
Processed by:
mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Contact:
mundialis GmbH & Co. KG, info@mundialis.de
ExactOne delivers unparalleled consumer transaction insights to help investors and corporate clients uncover market opportunities, analyze trends, and drive better decisions.
Dataset Highlights - Source: Debit and credit card transactions from 600K+ active users and 2M accounts connected via Open Banking. Scale: Covers 250M+ annual transactions, mapped to 1,800+ merchants and 330+ tickers. Historical Depth: Over 6 years of transaction data. Flexibility: Analyse transactions by merchant/ticker, category/industry, or timeframe (daily, weekly, monthly, or quarterly).
ExactOne data offers visibility into key consumer industries, including: Airlines - Regional / Budget Airlines - Cargo Airlines - Full Service Autos - OEMs Communication Services - Cable & Satellite Communication Services - Integrated Telecommunications Communication Services - Wireless Telecom Consumer - Services Consumer - Health & Fitness Consumer Staples - Household Supplies Energy - Utilities Energy - Integrated Oil & Gas Financial Services - Insurance Grocers - Traditional Hotels - C-corp Industrial - Misc Industrial - Tools And Hardware Internet - E-commerce Internet - B2B Services Internet - Ride Hailing & Delivery Leisure - Online Gambling Media - Digital Subscription Real Estate - Brokerage Restaurants - Quick Service Restaurants - Fast Casual Restaurants - Pubs Restaurants - Specialty Retail - Softlines Retail - Mass Merchants Retail - European Luxury Retail - Specialty Retail - Sports & Athletics Retail - Footwear Retail - Dept Stores Retail - Luxury Retail - Convenience Stores Retail - Hardlines Technology - Enterprise Software Technology - Electronics & Appliances Technology - Computer Hardware Utilities - Water Utilities
Use Cases
For Private Equity & Venture Capital Firms: - Deal Sourcing: Identify high-growth opportunities. - Due Diligence: Leverage transaction data to evaluate investment potential. - Portfolio Monitoring: Track performance post-investment with real-time data.
For Consumer Insights & Strategy Teams: - Market Dynamics: Compare sales trends, average transaction size, and customer loyalty. - Competitive Analysis: Benchmark market share and identify emerging competitors. - E-commerce vs. Brick & Mortar Trends: Assess channel performance and strategic opportunities. - Demographic & Geographic Insights: Uncover growth drivers by demo and geo segments.
For Investor Relations Teams: - Shareholder Insights: Monitor brand performance relative to competitors. - Real-Time Intelligence: Analyse sales and market dynamics for public and private companies. - M&A Opportunities: Evaluate market share and growth potential for strategic investments.
Key Benefits of ExactOne - Understand Market Share: Benchmark against competitors and uncover emerging players. - Analyse Customer Loyalty: Evaluate repeat purchase behavior and retention rates. - Track Growth Trends: Identify key drivers of sales by geography, demographic, and channel. - Granular Insights: Drill into transaction-level data or aggregated summaries for in-depth analysis.
With ExactOne, investors and corporate leaders gain actionable, real-time insights into consumer behaviour and market dynamics, enabling smarter decisions and sustained growth.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The data.zip dataset contains metadata and total suspended solids, total phosphorus, nitrate plus nitrite, and total Kjeldahl nitrogen concentration data and associated daily mean streamflow data for the White River at Muncie, near Nora, and near Centerton, Indiana, 1991-2017
This dataset contains daily data trackers for the COVID-19 pandemic, aggregated by month and starting 18.3.20. The first release of COVID-19 data on this platform was on 1.6.20. Updates have been provided on a quarterly basis throughout 2023/24. No updates are currently scheduled for 2024/25 as case rates remain low. The data is accurate as at 8.00 a.m. on 8.4.24. Some narrative for the data covering the latest period is provided here below: Diagnosed cases / episodes • As at 3.4.24 CYC residents have had a total 75,556 covid episodes since the start of the pandemic, a rate of 37,465 per 100,000 of population (using 2021 Mid-Year Population estimates). The cumulative rate in York is similar to the national (37,305) and regional (37,059) averages. • The latest rate of new Covid cases per 100,000 of population for the period 28.3.24 to 3.4.24 in York was 1.49 (3 cases). The national and regional averages at this date were 1.67 and 2.19 respectively (using data published on Gov.uk on 5.4.24).
Count of views and downloads overall for the internal chattadata site.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This deposit contains NetCDF files with daily aggregates from Copernicus Era5-Land eight selected indicators, covering the Latin America region, for 2018. Each file represents one indicator aggregation for one month of the year. Inside each NetCDF file, the layers contain the daily aggregates. For 2m dewpoint pressure, 10m u component of wind, 10m v component of wind, surface pressure, the mean function was used for aggregation. For total precipitation, the sum function was used for aggregation. For 2m temperature, the functions maximum, mean and minimum were used for aggregation. Those files were created using the KrigR package.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Daily data averaged across Germany for the period of 2016-01-01 till 2021-06-27:
temperature_mean: mean daily temperature in degree Celsius averaged across all weather stations in Germany.
temperature_max: maximum daily temperature in degree Celsius averaged across all weather stations in Germany.
precipitation: daily precipitation sum in millimeter (equals liter per square meter) averaged across all weather stations in Germany.
sunshine: sunshine duration per day averaged across all weather stations in Germany.
gemittelte Werte basierende auf Daten des Deutschen Wetterdiensts, Vermessungsverwaltungen der Länder und BKG (https://gdz.bkg.bund.de/)
Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Total precipitation: Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step. The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate proportion of ERA5-Land / aggregated CHELSA 3. interpolate proportion with a Gaussian filter to 30 arc seconds 4. multiply the interpolated proportions with CHELSA Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA. Data available is the daily sum of precipitation. Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
Processing steps: The original hourly ERA5-Land air temperature 2 m above ground and dewpoint temperature 2 m data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate difference of ERA5-Land - aggregated CHELSA 3. interpolate differences with a Gaussian filter to 30 arc seconds 4. add the interpolated differences to CHELSA
Subsequently, the temperature time series have been aggregated on a daily basis. From these, daily relative humidity has been calculated for the time period 01/2000 - 07/2021.
Relative humidity (rh2m) has been calculated from air temperature 2 m above ground (Ta) and dewpoint temperature 2 m above ground (Td) using the formula for saturated water pressure from Wright (1997):
maximum water pressure = 611.21 * exp(17.502 * Ta / (240.97 + Ta))
actual water pressure = 611.21 * exp(17.502 * Td / (240.97 + Td))
relative humidity = actual water pressure / maximum water pressure
Data provided is the daily averages of relative humidity. This set provides data for the years 2000 - 2004. For other time periods, please see further linked data sets.
Resultant values have been converted to represent percent * 10, thus covering a theoretical range of [0, 1000].
File naming scheme (YYYY = year; MM = month; DD = day): ERA5_land_rh2m_avg_daily_YYYYMMDD.tif
Projection + EPSG code: Latitude-Longitude/WGS84 (EPSG: 4326)
Spatial extent: north: 82:00:30N south: 18N west: 32:00:30W east: 70E
Spatial resolution: 30 arc seconds (approx. 1000 m)
Temporal resolution: Daily
Pixel values: Percent * 10 (scaled to Integer; example: value 738 = 73.8 %)
Software used: GDAL 3.2.2 and GRASS GIS 8.0.0
Original ERA5-Land dataset license: https://apps.ecmwf.int/datasets/licences/copernicus/
CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Reference: Wright, J.M. (1997): Federal meteorological handbook no. 3 (FCM-H3-1997). Office of Federal Coordinator for Meteorological Services and Supporting Research. Washington, DC
Data is also available in EU LAEA (EPSG: 3035) projection: https://zenodo.org/record/7434376
The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning the years 2003-2008. PM2.5 particles are air pollutants with an aerodynamic diameter less than 2.5 micrometers. Reported measures are the daily measure of fine particulate matter in micrograms per cubic meter (PM2.5) (''µg/m''³), the number of observations, minimum and maximum range value, and standard deviation. Data are available by place (combined 48 contiguous states plus the District of Columbia, region, division, state, county), time (year, month, day) and specified fine particulate matter (''µg/m''³)value. County-level and higher data are aggregated from 10 kilometer square spatial resolution grids. In a study funded by the NASA Applied Sciences Program / Public Health Program, scientists at NASA Marshall Space Flight Center / Universities Space Research Association modified the regional surfacing algorithm of Al-Hamdan et al. (2009) and used it to generate continuous spatial surfaces (grids) of daily PM2.5 for the whole conterminous U.S. for 2003-2008. Two sources of environmental data were used as input to the surfacing algorithm, US Environmental Protection Agency (EPA) Air Quality System (AQS) PM2.5 in-situ data and National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth remotely sensed data. They also identified in a Geographic Information System (GIS) the associated geographic locations of the centroids of the gridded PM2.5 dataset in terms of the counties and states they fall into to enable aggregation to different geographic levels in CDC WONDER.
Envestnet®| Yodlee®'s Consumer Purchase Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.
Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.
We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.
Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?
Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.
Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking
Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)
Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence
Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis