https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
As of 2023, the global market size for data cleaning tools is estimated at $2.5 billion, with projections indicating that it will reach approximately $7.1 billion by 2032, reflecting a robust CAGR of 12.1% during the forecast period. This growth is primarily driven by the increasing importance of data quality in business intelligence and analytics workflows across various industries.
The growth of the data cleaning tools market can be attributed to several critical factors. Firstly, the exponential increase in data generation across industries necessitates efficient tools to manage data quality. Poor data quality can result in significant financial losses, inefficient business processes, and faulty decision-making. Organizations recognize the value of clean, accurate data in driving business insights and operational efficiency, thereby propelling the adoption of data cleaning tools. Additionally, regulatory requirements and compliance standards also push companies to maintain high data quality standards, further driving market growth.
Another significant growth factor is the rising adoption of AI and machine learning technologies. These advanced technologies rely heavily on high-quality data to deliver accurate results. Data cleaning tools play a crucial role in preparing datasets for AI and machine learning models, ensuring that the data is free from errors, inconsistencies, and redundancies. This surge in the use of AI and machine learning across various sectors like healthcare, finance, and retail is driving the demand for efficient data cleaning solutions.
The proliferation of big data analytics is another critical factor contributing to market growth. Big data analytics enables organizations to uncover hidden patterns, correlations, and insights from large datasets. However, the effectiveness of big data analytics is contingent upon the quality of the data being analyzed. Data cleaning tools help in sanitizing large datasets, making them suitable for analysis and thus enhancing the accuracy and reliability of analytics outcomes. This trend is expected to continue, fueling the demand for data cleaning tools.
In terms of regional growth, North America holds a dominant position in the data cleaning tools market. The region's strong technological infrastructure, coupled with the presence of major market players and a high adoption rate of advanced data management solutions, contributes to its leadership. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period. The rapid digitization of businesses, increasing investments in IT infrastructure, and a growing focus on data-driven decision-making are key factors driving the market in this region.
As organizations strive to maintain high data quality standards, the role of an Email List Cleaning Service becomes increasingly vital. These services ensure that email databases are free from invalid addresses, duplicates, and outdated information, thereby enhancing the effectiveness of marketing campaigns and communications. By leveraging sophisticated algorithms and validation techniques, email list cleaning services help businesses improve their email deliverability rates and reduce the risk of being flagged as spam. This not only optimizes marketing efforts but also protects the reputation of the sender. As a result, the demand for such services is expected to grow alongside the broader data cleaning tools market, as companies recognize the importance of maintaining clean and accurate contact lists.
The data cleaning tools market can be segmented by component into software and services. The software segment encompasses various tools and platforms designed for data cleaning, while the services segment includes consultancy, implementation, and maintenance services provided by vendors.
The software segment holds the largest market share and is expected to continue leading during the forecast period. This dominance can be attributed to the increasing adoption of automated data cleaning solutions that offer high efficiency and accuracy. These software solutions are equipped with advanced algorithms and functionalities that can handle large volumes of data, identify errors, and correct them without manual intervention. The rising adoption of cloud-based data cleaning software further bolsters this segment, as it offers scalability and ease of
Data Science Platform Market Size 2025-2029
The data science platform market size is forecast to increase by USD 763.9 million, at a CAGR of 40.2% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. This fusion enables organizations to derive deeper insights from their data, fueling business innovation and decision-making. Another trend shaping the market is the emergence of containerization and microservices in data science platforms. This approach offers enhanced flexibility, scalability, and efficiency, making it an attractive choice for businesses seeking to streamline their data science operations. However, the market also faces challenges. Data privacy and security remain critical concerns, with the increasing volume and complexity of data posing significant risks. Ensuring robust data security and privacy measures is essential for companies to maintain customer trust and comply with regulatory requirements. Additionally, managing the complexity of data science platforms and ensuring seamless integration with existing systems can be a daunting task, requiring significant investment in resources and expertise. Companies must navigate these challenges effectively to capitalize on the market's opportunities and stay competitive in the rapidly evolving data landscape.
What will be the Size of the Data Science Platform Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the increasing demand for advanced analytics and artificial intelligence solutions across various sectors. Real-time analytics and classification models are at the forefront of this evolution, with APIs integrations enabling seamless implementation. Deep learning and model deployment are crucial components, powering applications such as fraud detection and customer segmentation. Data science platforms provide essential tools for data cleaning and data transformation, ensuring data integrity for big data analytics. Feature engineering and data visualization facilitate model training and evaluation, while data security and data governance ensure data privacy and compliance. Machine learning algorithms, including regression models and clustering models, are integral to predictive modeling and anomaly detection.
Statistical analysis and time series analysis provide valuable insights, while ETL processes streamline data integration. Cloud computing enables scalability and cost savings, while risk management and algorithm selection optimize model performance. Natural language processing and sentiment analysis offer new opportunities for data storytelling and computer vision. Supply chain optimization and recommendation engines are among the latest applications of data science platforms, demonstrating their versatility and continuous value proposition. Data mining and data warehousing provide the foundation for these advanced analytics capabilities.
How is this Data Science Platform Industry segmented?
The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudComponentPlatformServicesEnd-userBFSIRetail and e-commerceManufacturingMedia and entertainmentOthersSectorLarge enterprisesSMEsApplicationData PreparationData VisualizationMachine LearningPredictive AnalyticsData GovernanceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, businesses increasingly adopt solutions to gain real-time insights from their data, enabling them to make informed decisions. Classification models and deep learning algorithms are integral parts of these platforms, providing capabilities for fraud detection, customer segmentation, and predictive modeling. API integrations facilitate seamless data exchange between systems, while data security measures ensure the protection of valuable business information. Big data analytics and feature engineering are essential for deriving meaningful insights from vast datasets. Data transformation, data mining, and statistical analysis are crucial processes in data preparation and discovery. Machine learning models, including regression and clustering, are employed for model training and evaluation. Time series analysis and natural language processing are valuable tools for understanding trends and customer sen
Sample data for exercises in Further Adventures in Data Cleaning.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global data cleansing software market size was valued at approximately USD 1.5 billion in 2023 and is projected to reach around USD 4.2 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 12.5% during the forecast period. This substantial growth can be attributed to the increasing importance of maintaining clean and reliable data for business intelligence and analytics, which are driving the adoption of data cleansing solutions across various industries.
The proliferation of big data and the growing emphasis on data-driven decision-making are significant growth factors for the data cleansing software market. As organizations collect vast amounts of data from multiple sources, ensuring that this data is accurate, consistent, and complete becomes critical for deriving actionable insights. Data cleansing software helps organizations eliminate inaccuracies, inconsistencies, and redundancies, thereby enhancing the quality of their data and improving overall operational efficiency. Additionally, the rising adoption of advanced analytics and artificial intelligence (AI) technologies further fuels the demand for data cleansing software, as clean data is essential for the accuracy and reliability of these technologies.
Another key driver of market growth is the increasing regulatory pressure for data compliance and governance. Governments and regulatory bodies across the globe are implementing stringent data protection regulations, such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States. These regulations mandate organizations to ensure the accuracy and security of the personal data they handle. Data cleansing software assists organizations in complying with these regulations by identifying and rectifying inaccuracies in their data repositories, thus minimizing the risk of non-compliance and hefty penalties.
The growing trend of digital transformation across various industries also contributes to the expanding data cleansing software market. As businesses transition to digital platforms, they generate and accumulate enormous volumes of data. To derive meaningful insights and maintain a competitive edge, it is imperative for organizations to maintain high-quality data. Data cleansing software plays a pivotal role in this process by enabling organizations to streamline their data management practices and ensure the integrity of their data. Furthermore, the increasing adoption of cloud-based solutions provides additional impetus to the market, as cloud platforms facilitate seamless integration and scalability of data cleansing tools.
Regionally, North America holds a dominant position in the data cleansing software market, driven by the presence of numerous technology giants and the rapid adoption of advanced data management solutions. The region is expected to continue its dominance during the forecast period, supported by the strong emphasis on data quality and compliance. Europe is also a significant market, with countries like Germany, the UK, and France showing substantial demand for data cleansing solutions. The Asia Pacific region is poised for significant growth, fueled by the increasing digitalization of businesses and the rising awareness of data quality's importance. Emerging economies in Latin America and the Middle East & Africa are also expected to witness steady growth, driven by the growing adoption of data-driven technologies.
The role of Data Quality Tools cannot be overstated in the context of data cleansing software. These tools are integral in ensuring that the data being processed is not only clean but also of high quality, which is crucial for accurate analytics and decision-making. Data Quality Tools help in profiling, monitoring, and cleansing data, thereby ensuring that organizations can trust their data for strategic decisions. As organizations increasingly rely on data-driven insights, the demand for robust Data Quality Tools is expected to rise. These tools offer functionalities such as data validation, standardization, and enrichment, which are essential for maintaining the integrity of data across various platforms and applications. The integration of these tools with data cleansing software enhances the overall data management capabilities of organizations, enabling them to achieve greater operational efficiency and compliance with data regulations.
The data cle
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The Restaurant Sales Dataset with Dirt contains data for 17,534 transactions. The data introduces realistic inconsistencies ("dirt") to simulate real-world scenarios where data may have missing or incomplete information. The dataset includes sales details across multiple categories, such as starters, main dishes, desserts, drinks, and side dishes.
This dataset is suitable for: - Practicing data cleaning tasks, such as handling missing values and deducing missing information. - Conducting exploratory data analysis (EDA) to study restaurant sales patterns. - Feature engineering to create new variables for machine learning tasks.
Column Name | Description | Example Values |
---|---|---|
Order ID | A unique identifier for each order. | ORD_123456 |
Customer ID | A unique identifier for each customer. | CUST_001 |
Category | The category of the purchased item. | Main Dishes , Drinks |
Item | The name of the purchased item. May contain missing values due to data dirt. | Grilled Chicken , None |
Price | The static price of the item. May contain missing values. | 15.0 , None |
Quantity | The quantity of the purchased item. May contain missing values. | 1 , None |
Order Total | The total price for the order (Price * Quantity ). May contain missing values. | 45.0 , None |
Order Date | The date when the order was placed. Always present. | 2022-01-15 |
Payment Method | The payment method used for the transaction. May contain missing values due to data dirt. | Cash , None |
Data Dirtiness:
Item
, Price
, Quantity
, Order Total
, Payment Method
) simulate real-world challenges.Item
is present.Price
is present.Quantity
and Order Total
are present.Price
or Quantity
is missing, the other is used to deduce the missing value (e.g., Order Total / Quantity
).Menu Categories and Items:
Chicken Melt
, French Fries
.Grilled Chicken
, Steak
.Chocolate Cake
, Ice Cream
.Coca Cola
, Water
.Mashed Potatoes
, Garlic Bread
.3 Time Range: - Orders span from January 1, 2022, to December 31, 2023.
Handle Missing Values:
Order Total
or Quantity
using the formula: Order Total = Price * Quantity
.Price
from Order Total / Quantity
if both are available.Validate Data Consistency:
Order Total = Price * Quantity
) match.Analyze Missing Patterns:
Category | Item | Price |
---|---|---|
Starters | Chicken Melt | 8.0 |
Starters | French Fries | 4.0 |
Starters | Cheese Fries | 5.0 |
Starters | Sweet Potato Fries | 5.0 |
Starters | Beef Chili | 7.0 |
Starters | Nachos Grande | 10.0 |
Main Dishes | Grilled Chicken | 15.0 |
Main Dishes | Steak | 20.0 |
Main Dishes | Pasta Alfredo | 12.0 |
Main Dishes | Salmon | 18.0 |
Main Dishes | Vegetarian Platter | 14.0 |
Desserts | Chocolate Cake | 6.0 |
Desserts | Ice Cream | 5.0 |
Desserts | Fruit Salad | 4.0 |
Desserts | Cheesecake | 7.0 |
Desserts | Brownie | 6.0 |
Drinks | Coca Cola | 2.5 |
Drinks | Orange Juice | 3.0 |
Drinks ... |
Ahoy, data enthusiasts! Join us for a hands-on workshop where you will hoist your sails and navigate through the Statistics Canada website, uncovering hidden treasures in the form of data tables. With the wind at your back, you’ll master the art of downloading these invaluable Stats Can datasets while braving the occasional squall of data cleaning challenges using Excel with your trusty captains Vivek and Lucia at the helm.
A data cleaning tool customised for cleaning and sorting the data generated during the Enviro-Champs pilot study as they are downloaded from Formshare, the platform capturing data sent from a customised ODK Collect form collection app. The dataset inclues the latest data from the pilot study as at 14 May 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599
Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599
The folder named “submission” contains the following:
ijgis.yml
: This file lists all the Python libraries and dependencies required to run the code.ijgis.yml
file to create a Python project and environment. Ensure you activate the environment before running the code.pythonProject
folder contains several .py
files and subfolders, each with specific functionality as described below..png
file for each column of the raw gaze and IMU recordings, color-coded with logged events..csv
files.overlapping_sliding_window_loop.py
.plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5))
in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line..csv
files in the results folder.This part contains three main code blocks:
iii. One for the XGboost code with correct hyperparameter tuning:
Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of
Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.
.csv
file containing inferred labels.The data is licensed under CC-BY, the code is licensed under MIT.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The data cleansing software market is expanding rapidly, with a market size of XXX million in 2023 and a projected CAGR of XX% from 2023 to 2033. This growth is driven by the increasing need for accurate and reliable data in various industries, including healthcare, finance, and retail. Key market trends include the growing adoption of cloud-based solutions, the increasing use of artificial intelligence (AI) and machine learning (ML) to automate the data cleansing process, and the increasing demand for data governance and compliance. The market is segmented by deployment type (cloud-based vs. on-premise) and application (large enterprises vs. SMEs vs. government agencies). Major players in the market include IBM, SAS Institute Inc, SAP SE, Trifacta, OpenRefine, Data Ladder, Analytics Canvas (nModal Solutions Inc.), Mo-Data, Prospecta, WinPure Ltd, Symphonic Source Inc, MuleSoft, MapR Technologies, V12 Data, and Informatica. This report provides a comprehensive overview of the global data cleansing software market, with a focus on market concentration, product insights, regional insights, trends, driving forces, challenges and restraints, growth catalysts, leading players, and significant developments.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The data set is web scraped from the Coursera website. The data is static. It consists of 7 columns with various unstructured data, which might help you on your learning curve of Data Science and Data Analytics . Feel free to play around . Happy Digging :)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The files in here contain training and testing data for the AP-SVM data cleaning model, including datasets curated for leakage and sacrifice studies. Raw and digital signal processed files are included
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ce tutoriel est conçu pour optimiser la préparation des données pour l'apprentissage automatique, avec un focus spécifique sur la prédiction des schémas de circulation des vélos en fonction des conditions météorologiques. Il comprend un résumé des objectifs d'apprentissage, une section spécifique qui décrit les exigences nécessaires pour compléter le tutoriel, et une section sur les pratiques recommandées pour la gestion des données de recherche (GDR). Le tutoriel utilise la régression linéaire, un modèle d'apprentissage automatique simple, pour faire des prédictions basées sur les données d'entrée. Les données proviennent des données de comptage des vélos d'Ottawa et des données météorologiques historiques. This tutorial is designed to optimize data preparation for machine learning, with a specific focus on predicting bike traffic patterns based on weather conditions. It includes a summary of the learning goals, a specific section that outlines the necessary requirements for completing the tutorial, and a section on the recommended practices for Research Data Management (RDM). The tutorial employs Linear Regression, a straightforward machine learning model, to make predictions based on the input data. The data is sourced from Ottawa’s bike count data and historical weather data.
Quadrant provides Insightful, accurate, and reliable mobile location data.
Our privacy-first mobile location data unveils hidden patterns and opportunities, provides actionable insights, and fuels data-driven decision-making at the world's biggest companies.
These companies rely on our privacy-first Mobile Location and Points-of-Interest Data to unveil hidden patterns and opportunities, provide actionable insights, and fuel data-driven decision-making. They build better AI models, uncover business insights, and enable location-based services using our robust and reliable real-world data.
We conduct stringent evaluations on data providers to ensure authenticity and quality. Our proprietary algorithms detect, and cleanse corrupted and duplicated data points – allowing you to leverage our datasets rapidly with minimal processing or cleaning. During the ingestion process, our proprietary Data Filtering Algorithms remove events based on a number of both qualitative factors, as well as latency and other integrity variables to provide more efficient data delivery. The deduplicating algorithm focuses on a combination of four important attributes: Device ID, Latitude, Longitude, and Timestamp. This algorithm scours our data and identifies rows that contain the same combination of these four attributes. Post-identification, it retains a single copy and eliminates duplicate values to ensure our customers only receive complete and unique datasets.
We actively identify overlapping values at the provider level to determine the value each offers. Our data science team has developed a sophisticated overlap analysis model that helps us maintain a high-quality data feed by qualifying providers based on unique data values rather than volumes alone – measures that provide significant benefit to our end-use partners.
Quadrant mobility data contains all standard attributes such as Device ID, Latitude, Longitude, Timestamp, Horizontal Accuracy, and IP Address, and non-standard attributes such as Geohash and H3. In addition, we have historical data available back through 2022.
Through our in-house data science team, we offer sophisticated technical documentation, location data algorithms, and queries that help data buyers get a head start on their analyses. Our goal is to provide you with data that is “fit for purpose”.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global data cleansing tools market size was valued at approximately USD 1.5 billion in 2023 and is projected to reach USD 4.2 billion by 2032, growing at a CAGR of 12.1% from 2024 to 2032. One of the primary growth factors driving the market is the increasing need for high-quality data in various business operations and decision-making processes.
The surge in big data and the subsequent increased reliance on data analytics are significant factors propelling the growth of the data cleansing tools market. Organizations increasingly recognize the value of high-quality data in driving strategic initiatives, customer relationship management, and operational efficiency. The proliferation of data generated across different sectors such as healthcare, finance, retail, and telecommunications necessitates the adoption of tools that can clean, standardize, and enrich data to ensure its reliability and accuracy.
Furthermore, the rising adoption of Machine Learning (ML) and Artificial Intelligence (AI) technologies has underscored the importance of clean data. These technologies rely heavily on large datasets to provide accurate and reliable insights. Any errors or inconsistencies in data can lead to erroneous outcomes, making data cleansing tools indispensable. Additionally, regulatory and compliance requirements across various industries necessitate the maintenance of clean and accurate data, further driving the market for data cleansing tools.
The growing trend of digital transformation across industries is another critical growth factor. As businesses increasingly transition from traditional methods to digital platforms, the volume of data generated has skyrocketed. However, this data often comes from disparate sources and in various formats, leading to inconsistencies and errors. Data cleansing tools are essential in such scenarios to integrate data from multiple sources and ensure its quality, thus enabling organizations to derive actionable insights and maintain a competitive edge.
In the context of ensuring data reliability and accuracy, Data Quality Software and Solutions play a pivotal role. These solutions are designed to address the challenges associated with managing large volumes of data from diverse sources. By implementing robust data quality frameworks, organizations can enhance their data governance strategies, ensuring that data is not only clean but also consistent and compliant with industry standards. This is particularly crucial in sectors where data-driven decision-making is integral to business success, such as finance and healthcare. The integration of advanced data quality solutions helps businesses mitigate risks associated with poor data quality, thereby enhancing operational efficiency and strategic planning.
Regionally, North America is expected to hold the largest market share due to the early adoption of advanced technologies, robust IT infrastructure, and the presence of key market players. Europe is also anticipated to witness substantial growth due to stringent data protection regulations and the increasing adoption of data-driven decision-making processes. Meanwhile, the Asia Pacific region is projected to experience the highest growth rate, driven by the rapid digitalization of emerging economies, the expansion of the IT and telecommunications sector, and increasing investments in data management solutions.
The data cleansing tools market is segmented into software and services based on components. The software segment is anticipated to dominate the market due to its extensive use in automating the data cleansing process. The software solutions are designed to identify, rectify, and remove errors in data sets, ensuring data accuracy and consistency. They offer various functionalities such as data profiling, validation, enrichment, and standardization, which are critical in maintaining high data quality. The high demand for these functionalities across various industries is driving the growth of the software segment.
On the other hand, the services segment, which includes professional services and managed services, is also expected to witness significant growth. Professional services such as consulting, implementation, and training are crucial for organizations to effectively deploy and utilize data cleansing tools. As businesses increasingly realize the importance of clean data, the demand for expert
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Data Wrangling Market size was valued at USD 1.99 Billion in 2024 and is projected to reach USD 4.07 Billion by 2032, growing at a CAGR of 9.4% during the forecast period 2026-2032.• Big Data Analytics Growth: Organizations are generating massive volumes of unstructured and semi-structured data from diverse sources including social media, IoT devices, and digital transactions. Data wrangling tools become essential for cleaning, transforming, and preparing this complex data for meaningful analytics and business intelligence applications.• Machine Learning and AI Adoption: The rapid expansion of artificial intelligence and machine learning initiatives requires high-quality, properly formatted training datasets. Data wrangling solutions enable data scientists to efficiently prepare, clean, and structure raw data for model training, driving sustained market demand across AI-focused organizations.
This is the classic Titanic Dataset provided in the Kaggle Competition K Kernel and then cleaned in one of the most popular Kernels there. Please see the Kernel titled, "A Data Science Framework: To Achieve 99% Accuracy" for a great lesson in data science. This Kernel gives a great explanaton of the thinking behind the of this data cleaning as well as a very professional demonstration of the technologies and skills to do so. It then continues to provide an overview of many ML techniques and it is copiously and meticulously documented with many useful citations.
Of course, data cleaning is an essential skill in data science but I wanted to use this data for a study of other machine learning techniques. So, I found and used this set of data that is well known and cleaned to a benchmark accepted by many.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset presents a dual-version representation of employment-related data from India, crafted to highlight the importance of data cleaning and transformation in any real-world data science or analytics project.
It includes two parallel datasets: 1. Messy Dataset (Raw) – Represents a typical unprocessed dataset often encountered in data collection from surveys, databases, or manual entries. 2. Cleaned Dataset – This version demonstrates how proper data preprocessing can significantly enhance the quality and usability of data for analytical and visualization purposes.
Each record captures multiple attributes related to individuals in the Indian job market, including:
- Age Group
- Employment Status (Employed/Unemployed)
- Monthly Salary (INR)
- Education Level
- Industry Sector
- Years of Experience
- Location
- Perceived AI Risk
- Date of Data Recording
The raw dataset underwent comprehensive transformations to convert it into its clean, analysis-ready form: - Missing Values: Identified and handled using either row elimination (where critical data was missing) or imputation techniques. - Duplicate Records: Identified using row comparison and removed to prevent analytical skew. - Inconsistent Formatting: Unified inconsistent naming in columns (like 'monthly_salary_(inr)' → 'Monthly Salary (INR)'), capitalization, and string spacing. - Incorrect Data Types: Converted columns like salary from string/object to float for numerical analysis. - Outliers: Detected and handled based on domain logic and distribution analysis. - Categorization: Converted numeric ages into grouped age categories for comparative analysis. - Standardization: Uniform labels for employment status, industry names, education, and AI risk levels were applied for visualization clarity.
This dataset is ideal for learners and professionals who want to understand: - The impact of messy data on visualization and insights - How transformation steps can dramatically improve data interpretation - Practical examples of preprocessing techniques before feeding into ML models or BI tools
It's also useful for:
- Training ML models with clean inputs
- Data storytelling with visual clarity
- Demonstrating reproducibility in data cleaning pipelines
By examining both the messy and clean datasets, users gain a deeper appreciation for why “garbage in, garbage out” rings true in the world of data science.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LSC (Leicester Scientific Corpus)
April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data are extracted from the Web of Science [1]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.[Version 2] A further cleaning is applied in Data Processing for LSC Abstracts in Version 1*. Details of cleaning procedure are explained in Step 6.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v1.Getting StartedThis text provides the information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the meaning of research texts and make it available for use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. The corpus contains only documents in English. Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper 3. Abstract: The abstract of the paper 4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’. 5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’. 6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4] 7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018. We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,350.Data ProcessingStep 1: Downloading of the Data Online
The dataset is collected manually by exporting documents as Tab-delimitated files online. All documents are available online.Step 2: Importing the Dataset to R
The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryAs our research is based on the analysis of abstracts and categories, all documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsEspecially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc. Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. The detection and identification of such words is done by sampling of medicine-related publications with human intervention. Detected concatenate words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.The section headings in such abstracts are listed below:
Background Method(s) Design Theoretical Measurement(s) Location Aim(s) Methodology Process Abstract Population Approach Objective(s) Purpose(s) Subject(s) Introduction Implication(s) Patient(s) Procedure(s) Hypothesis Measure(s) Setting(s) Limitation(s) Discussion Conclusion(s) Result(s) Finding(s) Material (s) Rationale(s) Implications for health and nursing policyStep 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction, the lengths of abstracts are calculated. ‘Length’ indicates the total number of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. In LSC, we decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis.
Step 6: [Version 2] Cleaning Copyright Notices, Permission polices, Journal Names and Conference Names from LSC Abstracts in Version 1Publications can include a footer of copyright notice, permission policy, journal name, licence, author’s right or conference name below the text of abstract by conferences and journals. Used tool for extracting and processing abstracts in WoS database leads to attached such footers to the text. For example, our casual observation yields that copyright notices such as ‘Published by Elsevier ltd.’ is placed in many texts. To avoid abnormal appearances of words in further analysis of words such as bias in frequency calculation, we performed a cleaning procedure on such sentences and phrases in abstracts of LSC version 1. We removed copyright notices, names of conferences, names of journals, authors’ rights, licenses and permission policies identified by sampling of abstracts.Step 7: [Version 2] Re-extracting (Sub-setting) the Data Based on Lengths of AbstractsThe cleaning procedure described in previous step leaded to some abstracts having less than our minimum length criteria (30 words). 474 texts were removed.Step 8: Saving the Dataset into CSV FormatDocuments are saved into 34 CSV files. In CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/ [2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html [4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US [5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3 [6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reddit is a social news, content rating and discussion website. It's one of the most popular sites on the internet. Reddit has 52 million daily active users and approximately 430 million users who use it once a month. Reddit has different subreddits and here We'll use the r/AskScience Subreddit.
The dataset is extracted from the subreddit /r/AskScience from Reddit. The data was collected between 01-01-2016 and 20-05-2022. It contains 612,668 Datapoints and 25 Columns. The database contains a number of information about the questions asked on the subreddit, the description of the submission, the flair of the question, NSFW or SFW status, the year of the submission, and more. The data is extracted using python and Pushshift's API. A little bit of cleaning is done using NumPy and pandas as well. (see the descriptions of individual columns below).
The dataset contains the following columns and descriptions: author - Redditor Name author_fullname - Redditor Full name contest_mode - Contest mode [implement obscured scores and randomized sorting]. created_utc - Time the submission was created, represented in Unix Time. domain - Domain of submission. edited - If the post is edited or not. full_link - Link of the post on the subreddit. id - ID of the submission. is_self - Whether or not the submission is a self post (text-only). link_flair_css_class - CSS Class used to identify the flair. link_flair_text - Flair on the post or The link flair’s text content. locked - Whether or not the submission has been locked. num_comments - The number of comments on the submission. over_18 - Whether or not the submission has been marked as NSFW. permalink - A permalink for the submission. retrieved_on - time ingested. score - The number of upvotes for the submission. description - Description of the Submission. spoiler - Whether or not the submission has been marked as a spoiler. stickied - Whether or not the submission is stickied. thumbnail - Thumbnail of Submission. question - Question Asked in the Submission. url - The URL the submission links to, or the permalink if a self post. year - Year of the Submission. banned - Banned by the moderator or not.
This dataset can be used for Flair Prediction, NSFW Classification, and different Text Mining/NLP tasks. Exploratory Data Analysis can also be done to get the insights and see the trend and patterns over the years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Scripts to clean EVI2 data obtained from the VIP lab (University of Arizona) website (https://vip.arizona.edu/about.php and https://vip.arizona.edu/viplab_data_explorer.php). Data obtained in 2012.- outlier detection and removal/replacement- alignment of 2 periodsThe manuscript detailing the methods and resulting data sets has been accepted for publication in Nature Scientific Data (05/11/2019).Instructions: use the R Markdown html file for instructions!Code last manipulated and tested in R 3.4.3 ("Kite-Eating Tree")
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
As of 2023, the global market size for data cleaning tools is estimated at $2.5 billion, with projections indicating that it will reach approximately $7.1 billion by 2032, reflecting a robust CAGR of 12.1% during the forecast period. This growth is primarily driven by the increasing importance of data quality in business intelligence and analytics workflows across various industries.
The growth of the data cleaning tools market can be attributed to several critical factors. Firstly, the exponential increase in data generation across industries necessitates efficient tools to manage data quality. Poor data quality can result in significant financial losses, inefficient business processes, and faulty decision-making. Organizations recognize the value of clean, accurate data in driving business insights and operational efficiency, thereby propelling the adoption of data cleaning tools. Additionally, regulatory requirements and compliance standards also push companies to maintain high data quality standards, further driving market growth.
Another significant growth factor is the rising adoption of AI and machine learning technologies. These advanced technologies rely heavily on high-quality data to deliver accurate results. Data cleaning tools play a crucial role in preparing datasets for AI and machine learning models, ensuring that the data is free from errors, inconsistencies, and redundancies. This surge in the use of AI and machine learning across various sectors like healthcare, finance, and retail is driving the demand for efficient data cleaning solutions.
The proliferation of big data analytics is another critical factor contributing to market growth. Big data analytics enables organizations to uncover hidden patterns, correlations, and insights from large datasets. However, the effectiveness of big data analytics is contingent upon the quality of the data being analyzed. Data cleaning tools help in sanitizing large datasets, making them suitable for analysis and thus enhancing the accuracy and reliability of analytics outcomes. This trend is expected to continue, fueling the demand for data cleaning tools.
In terms of regional growth, North America holds a dominant position in the data cleaning tools market. The region's strong technological infrastructure, coupled with the presence of major market players and a high adoption rate of advanced data management solutions, contributes to its leadership. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period. The rapid digitization of businesses, increasing investments in IT infrastructure, and a growing focus on data-driven decision-making are key factors driving the market in this region.
As organizations strive to maintain high data quality standards, the role of an Email List Cleaning Service becomes increasingly vital. These services ensure that email databases are free from invalid addresses, duplicates, and outdated information, thereby enhancing the effectiveness of marketing campaigns and communications. By leveraging sophisticated algorithms and validation techniques, email list cleaning services help businesses improve their email deliverability rates and reduce the risk of being flagged as spam. This not only optimizes marketing efforts but also protects the reputation of the sender. As a result, the demand for such services is expected to grow alongside the broader data cleaning tools market, as companies recognize the importance of maintaining clean and accurate contact lists.
The data cleaning tools market can be segmented by component into software and services. The software segment encompasses various tools and platforms designed for data cleaning, while the services segment includes consultancy, implementation, and maintenance services provided by vendors.
The software segment holds the largest market share and is expected to continue leading during the forecast period. This dominance can be attributed to the increasing adoption of automated data cleaning solutions that offer high efficiency and accuracy. These software solutions are equipped with advanced algorithms and functionalities that can handle large volumes of data, identify errors, and correct them without manual intervention. The rising adoption of cloud-based data cleaning software further bolsters this segment, as it offers scalability and ease of