51 datasets found
  1. i

    Household Expenditure and Income Survey 2008, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    Updated Jan 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (2022). Household Expenditure and Income Survey 2008, Economic Research Forum (ERF) Harmonization Data - Jordan [Dataset]. https://catalog.ihsn.org/index.php/catalog/7661
    Explore at:
    Dataset updated
    Jan 12, 2022
    Dataset authored and provided by
    Department of Statistics
    Time period covered
    2008 - 2009
    Area covered
    Jordan
    Description

    Abstract

    The main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.

    Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demograohic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor chracteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty

    Geographic coverage

    National

    Analysis unit

    • Household/families
    • Individuals

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2008 Household Expenditure and Income Survey sample was designed using two-stage cluster stratified sampling method. In the first stage, the primary sampling units (PSUs), the blocks, were drawn using probability proportionate to the size, through considering the number of households in each block to be the block size. The second stage included drawing the household sample (8 households from each PSU) using the systematic sampling method. Fourth substitute households from each PSU were drawn, using the systematic sampling method, to be used on the first visit to the block in case that any of the main sample households was not visited for any reason.

    To estimate the sample size, the coefficient of variation and design effect in each subdistrict were calculated for the expenditure variable from data of the 2006 Household Expenditure and Income Survey. This results was used to estimate the sample size at sub-district level, provided that the coefficient of variation of the expenditure variable at the sub-district level did not exceed 10%, with a minimum number of clusters that should not be less than 6 at the district level, that is to ensure good clusters representation in the administrative areas to enable drawing poverty pockets.

    It is worth mentioning that the expected non-response in addition to areas where poor families are concentrated in the major cities were taken into consideration in designing the sample. Therefore, a larger sample size was taken from these areas compared to other ones, in order to help in reaching the poverty pockets and covering them.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    List of survey questionnaires: (1) General Form (2) Expenditure on food commodities Form (3) Expenditure on non-food commodities Form

    Cleaning operations

    Raw Data The design and implementation of this survey procedures were: 1. Sample design and selection 2. Design of forms/questionnaires, guidelines to assist in filling out the questionnaires, and preparing instruction manuals 3. Design the tables template to be used for the dissemination of the survey results 4. Preparation of the fieldwork phase including printing forms/questionnaires, instruction manuals, data collection instructions, data checking instructions and codebooks 5. Selection and training of survey staff to collect data and run required data checkings 6. Preparation and implementation of the pretest phase for the survey designed to test and develop forms/questionnaires, instructions and software programs required for data processing and production of survey results 7. Data collection 8. Data checking and coding 9. Data entry 10. Data cleaning using data validation programs 11. Data accuracy and consistency checks 12. Data tabulation and preliminary results 13. Preparation of the final report and dissemination of final results

    Harmonized Data - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets - The harmonization process started with cleaning all raw data files received from the Statistical Office - Cleaned data files were then all merged to produce one data file on the individual level containing all variables subject to harmonization - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables - A post-harmonization cleaning process was run on the data - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format

  2. Labor Force Survey, LFS 2006 - Egypt

    • erfdataportal.com
    Updated Feb 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Agency For Public Mobilization And Statistics (2023). Labor Force Survey, LFS 2006 - Egypt [Dataset]. https://www.erfdataportal.com/index.php/catalog/146
    Explore at:
    Dataset updated
    Feb 5, 2023
    Dataset provided by
    Central Agency for Public Mobilization and Statisticshttps://www.capmas.gov.eg/
    Economic Research Forum
    Time period covered
    2006
    Area covered
    Egypt
    Description

    Abstract

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)

    In any society, the human element represents the basis of the work force which exercises all the service and production activities. Therefore, it is a mandate to produce labor force statistics and studies, that is related to the growth and distribution of manpower and labor force distribution by different types and characteristics.

    In this context, the Central Agency for Public Mobilization and Statistics conducts "Quarterly Labor Force Survey" which includes data on the size of manpower and labor force (employed and unemployed) and their geographical distribution by their characteristics.

    By the end of each year, CAPMAS issues the annual aggregated labor force bulletin publication that includes the results of the quarterly survey rounds that represent the manpower and labor force characteristics during the year.

    ----> Historical Review of the Labor Force Survey:

    1- The First Labor Force survey was undertaken in 1957. The first round was conducted in November of that year, the survey continued to be conducted in successive rounds (quarterly, bi-annually, or annually) till now.

    2- Starting the October 2006 round, the fieldwork of the labor force survey was developed to focus on the following two points: a. The importance of using the panel sample that is part of the survey sample, to monitor the dynamic changes of the labor market. b. Improving the used questionnaire to include more questions, that help in better defining of relationship to labor force of each household member (employed, unemployed, out of labor force ...etc.). In addition to re-order of some of the already existing questions in much logical way.

    3- Starting the January 2008 round, the used methodology was developed to collect more representative sample during the survey year. this is done through distributing the sample of each governorate into five groups, the questionnaires are collected from each of them separately every 15 days for 3 months (in the middle and the end of the month)

    ----> The survey aims at covering the following topics:

    1- Measuring the size of the Egyptian labor force among civilians (for all governorates of the republic) by their different characteristics. 2- Measuring the employment rate at national level and different geographical areas. 3- Measuring the distribution of employed people by the following characteristics: gender, age, educational status, occupation, economic activity, and sector. 4- Measuring unemployment rate at different geographic areas. 5- Measuring the distribution of unemployed people by the following characteristics: gender, age, educational status, unemployment type "ever employed/never employed", occupation, economic activity, and sector for people who have ever worked.

    The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing labor force surveys in several Arab countries.

    Geographic coverage

    Covering a sample of urban and rural areas in all the governorates.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)

    ----> Sample Design and Selection

    The sample of the LFS 2006 survey is a simple systematic random sample.

    ----> Sample Size

    The sample size varied in each quarter (it is Q1=19429, Q2=19419, Q3=19119 and Q4=18835) households with a total number of 76802 households annually. These households are distributed on the governorate level (urban/rural).

    A more detailed description of the different sampling stages and allocation of sample across governorates is provided in the Methodology document available among external resources in Arabic.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire design follows the latest International Labor Organization (ILO) concepts and definitions of labor force, employment, and unemployment.

    The questionnaire comprises 3 tables in addition to the identification and geographic data of household on the cover page.

    ----> Table 1- Demographic and employment characteristics and basic data for all household individuals

    Including: gender, age, educational status, marital status, residence mobility and current work status

    ----> Table 2- Employment characteristics table

    This table is filled by employed individuals at the time of the survey or those who were engaged to work during the reference week, and provided information on: - Relationship to employer: employer, self-employed, waged worker, and unpaid family worker - Economic activity - Sector - Occupation - Effective working hours - Work place - Average monthly wage

    ----> Table 3- Unemployment characteristics table

    This table is filled by all unemployed individuals who satisfied the unemployment criteria, and provided information on: - Type of unemployment (unemployed, unemployed ever worked) - Economic activity and occupation in the last held job before being unemployed - Last unemployment duration in months - Main reason for unemployment

    Cleaning operations

    ----> Raw Data

    Office editing is one of the main stages of the survey. It started once the questionnaires were received from the field and accomplished by the selected work groups. It includes: a-Editing of coverage and completeness b-Editing of consistency

    ----> Harmonized Data

    • The STATA is used to clean and SPSS is used harmonize the datasets.
    • The harmonization process starts with a cleaning process for all raw data files received from the Statistical Agency.
    • All cleaned data files are then merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/ compute/ recode/ rename/ format/ label harmonized variables.
    • A post-harmonization cleaning process is then conducted on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and then converted to STATA, to be disseminated.
  3. d

    Basics of writing SPSS syntax files

    • search.dataone.org
    Updated Nov 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vince Gray (2023). Basics of writing SPSS syntax files [Dataset]. http://doi.org/10.5683/SP3/QK8OKC
    Explore at:
    Dataset updated
    Nov 6, 2023
    Dataset provided by
    Borealis
    Authors
    Vince Gray
    Description

    Vince Gray delivered an introduction to the basic parts of a SPSS syntax file to read in data, in addition to presenting tips and tricks for preparing syntax files, cleaning up blatant problems with the data, and held a short exercise in coding a SPSS syntax file.

  4. S

    Experimental Dataset on the Impact of Unfair Behavior by AI and Humans on...

    • scidb.cn
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yang Luo (2025). Experimental Dataset on the Impact of Unfair Behavior by AI and Humans on Trust: Evidence from Six Experimental Studies [Dataset]. http://doi.org/10.57760/sciencedb.psych.00565
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Science Data Bank
    Authors
    Yang Luo
    Description

    This dataset originates from a series of experimental studies titled “Tough on People, Tolerant to AI? Differential Effects of Human vs. AI Unfairness on Trust” The project investigates how individuals respond to unfair behavior (distributive, procedural, and interactional unfairness) enacted by artificial intelligence versus human agents, and how such behavior affects cognitive and affective trust.1 Experiment 1a: The Impact of AI vs. Human Distributive Unfairness on TrustOverview: This dataset comes from an experimental study aimed at examining how individuals respond in terms of cognitive and affective trust when distributive unfairness is enacted by either an artificial intelligence (AI) agent or a human decision-maker. Experiment 1a specifically focuses on the main effect of the “type of decision-maker” on trust.Data Generation and Processing: The data were collected through Credamo, an online survey platform. Initially, 98 responses were gathered from students at a university in China. Additional student participants were recruited via Credamo to supplement the sample. Attention check items were embedded in the questionnaire, and participants who failed were automatically excluded in real-time. Data collection continued until 202 valid responses were obtained. SPSS software was used for data cleaning and analysis.Data Structure and Format: The data file is named “Experiment1a.sav” and is in SPSS format. It contains 28 columns and 202 rows, where each row corresponds to one participant. Columns represent measured variables, including: grouping and randomization variables, one manipulation check item, four items measuring distributive fairness perception, six items on cognitive trust, five items on affective trust, three items for honesty checks, and four demographic variables (gender, age, education, and grade level). The final three columns contain computed means for distributive fairness, cognitive trust, and affective trust.Additional Information: No missing data are present. All variable names are labeled in English abbreviations to facilitate further analysis. The dataset can be directly opened in SPSS or exported to other formats.2 Experiment 1b: The Mediating Role of Perceived Ability and Benevolence (Distributive Unfairness)Overview: This dataset originates from an experimental study designed to replicate the findings of Experiment 1a and further examine the potential mediating role of perceived ability and perceived benevolence.Data Generation and Processing: Participants were recruited via the Credamo online platform. Attention check items were embedded in the survey to ensure data quality. Data were collected using a rolling recruitment method, with invalid responses removed in real time. A total of 228 valid responses were obtained.Data Structure and Format: The dataset is stored in a file named Experiment1b.sav in SPSS format and can be directly opened in SPSS software. It consists of 228 rows and 40 columns. Each row represents one participant’s data record, and each column corresponds to a different measured variable. Specifically, the dataset includes: random assignment and grouping variables; one manipulation check item; four items measuring perceived distributive fairness; six items on perceived ability; five items on perceived benevolence; six items on cognitive trust; five items on affective trust; three items for attention check; and three demographic variables (gender, age, and education). The last five columns contain the computed mean scores for perceived distributive fairness, ability, benevolence, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variables are labeled using standardized English abbreviations to facilitate reuse and secondary analysis. The file can be analyzed directly in SPSS or exported to other formats as needed.3 Experiment 2a: Differential Effects of AI vs. Human Procedural Unfairness on TrustOverview: This dataset originates from an experimental study aimed at examining whether individuals respond differently in terms of cognitive and affective trust when procedural unfairness is enacted by artificial intelligence versus human decision-makers. Experiment 2a focuses on the main effect of the decision agent on trust outcomes.Data Generation and Processing: Participants were recruited via the Credamo online survey platform from two universities located in different regions of China. A total of 227 responses were collected. After excluding those who failed the attention check items, 204 valid responses were retained for analysis. Data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in a file named Experiment2a.sav in SPSS format and can be directly opened in SPSS software. It contains 204 rows and 30 columns. Each row represents one participant’s response record, while each column corresponds to a specific variable. Variables include: random assignment and grouping; one manipulation check item; seven items measuring perceived procedural fairness; six items on cognitive trust; five items on affective trust; three attention check items; and three demographic variables (gender, age, and education). The final three columns contain computed average scores for procedural fairness, cognitive trust, and affective trust.Additional Notes: The dataset contains no missing values. All variables are labeled using standardized English abbreviations to facilitate reuse and secondary analysis. The file can be directly analyzed in SPSS or exported to other formats as needed.4 Experiment 2b: Mediating Role of Perceived Ability and Benevolence (Procedural Unfairness)Overview: This dataset comes from an experimental study designed to replicate the findings of Experiment 2a and to further examine the potential mediating roles of perceived ability and perceived benevolence in shaping trust responses under procedural unfairness.Data Generation and Processing: Participants were working adults recruited through the Credamo online platform. A rolling data collection strategy was used, where responses failing attention checks were excluded in real time. The final dataset includes 235 valid responses. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in a file named Experiment2b.sav, which is in SPSS format and can be directly opened using SPSS software. It contains 235 rows and 43 columns. Each row corresponds to a single participant, and each column represents a specific measured variable. These include: random assignment and group labels; one manipulation check item; seven items measuring procedural fairness; six items for perceived ability; five items for perceived benevolence; six items for cognitive trust; five items for affective trust; three attention check items; and three demographic variables (gender, age, education). The final five columns contain the computed average scores for procedural fairness, perceived ability, perceived benevolence, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variables are labeled using standardized English abbreviations to support future reuse and secondary analysis. The dataset can be directly analyzed in SPSS and easily converted into other formats if needed.5 Experiment 3a: Effects of AI vs. Human Interactional Unfairness on TrustOverview: This dataset comes from an experimental study that investigates how interactional unfairness, when enacted by either artificial intelligence or human decision-makers, influences individuals’ cognitive and affective trust. Experiment 3a focuses on the main effect of the “decision-maker type” under interactional unfairness conditions.Data Generation and Processing: Participants were college students recruited from two universities in different regions of China through the Credamo survey platform. After excluding responses that failed attention checks, a total of 203 valid cases were retained from an initial pool of 223 responses. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in the file named Experiment3a.sav, in SPSS format and compatible with SPSS software. It contains 203 rows and 27 columns. Each row represents a single participant, while each column corresponds to a specific measured variable. These include: random assignment and condition labels; one manipulation check item; four items measuring interactional fairness perception; six items for cognitive trust; five items for affective trust; three attention check items; and three demographic variables (gender, age, education). The final three columns contain computed average scores for interactional fairness, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variable names are provided using standardized English abbreviations to facilitate secondary analysis. The data can be directly analyzed using SPSS and exported to other formats as needed.6 Experiment 3b: The Mediating Role of Perceived Ability and Benevolence (Interactional Unfairness)Overview: This dataset comes from an experimental study designed to replicate the findings of Experiment 3a and further examine the potential mediating roles of perceived ability and perceived benevolence under conditions of interactional unfairness.Data Generation and Processing: Participants were working adults recruited via the Credamo platform. Attention check questions were embedded in the survey, and responses that failed these checks were excluded in real time. Data collection proceeded in a rolling manner until a total of 227 valid responses were obtained. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in the file named Experiment3b.sav, in SPSS format and compatible with SPSS software. It includes 227 rows and

  5. RAAAP SPSS Syntax file - processing

    • figshare.com
    txt
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simon Kerridge; Stephanie Scott (2023). RAAAP SPSS Syntax file - processing [Dataset]. http://doi.org/10.6084/m9.figshare.6269090.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Simon Kerridge; Stephanie Scott
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The RAAAP project surveyed Research Managers and Administrators from across the world, asking questions about why people became RMAs, why they stayed as RMAs, what skills they need for their jobs (soft and hard), what level of seniority they are, demographic information, and so on - overall up to 222 data points were collected from each respondent. This SPSS syntax file was developed to process the raw qualtrics data, including data cleansing and anonymising. The process is described in detail in the "RAAAP Data Cleansing Process" DOI:10.6084/m9.figshare.5948461

  6. Comprehensive Food Security and Vulnerability Analysis 2010 - China

    • catalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Food Programme (2019). Comprehensive Food Security and Vulnerability Analysis 2010 - China [Dataset]. https://catalog.ihsn.org/catalog/4350
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    World Food Programmehttp://da.wfp.org/
    Time period covered
    2010
    Area covered
    China
    Description

    Abstract

    According to the Food and Agricultural Organization (FAO) 123 million Chinese remained undernourished in 2003-2005. That represents 14% of the global total. UNICEF states that 7.2 million of the world's stunted children are located in China. In absolute terms, China continues to rank in the top countries carrying the global burden of under-nutrition. China must-and still can reduce under-nutrition, thus contributing even further to the global attainment of MDG1. In this context that the United Nations Joint Programme, in partnership with the Chinese government, has conducted this study. The key objective is to improve evidence of household food security through a baseline study in six pilot counties in rural China. The results will be used to guide policy and programmes aimed at reducing household food insecurity in the most vulnerable populations in China. The study is not meant to be an exhaustive analysis of the food security situation in the country, but to provide a demonstrative example of food assessment tools that may be replicated or scaled up to other places.

    Geographic coverage

    Six rural counties

    Analysis unit

    • Household
    • Village

    Universe

    The survey covered household heads and women between 15-49 years resident of that household. A household is defined as a group of people currently living and eating together "under the same roof" (or in same compound if the household has 2 structures).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The required sample size for the survey was calculated using standard sample size calculations with each county representing a stratum. After the sample size was calculated, a two-stage clustering approach was applied. The first stage is the selection of villages using the probability proportional to size (PPS) method to create a self-weighted sample in which larger population clusters (villages) have a greater chance of selection, proportional to their size. Following the selection of the villages, 12 households within the village were selected using simple random selection.

    Sampling deviation

    Floods and landslides prevented the team from visiting two of the selected villages, one in Wuding and one in Panxian, so they substituted them with replacement villages.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The household questionnaire was administered to all households in the survey and included modules on demography, education, migration and remittances, housing and facilities, household assets, agricultural, income activities, expenditure, food sources and consumption, shocks and coping strategies.

    The objective of the village questionnaire was to gather contextual information on the six counties for descriptive purposes. In each village visited, a focus group discussion took place on topics including: population of the village, migrants, access to social services such as education and health, infrastructure, access to markets, difficulties facing the village, information on local agricultural practices.

    The questionnaires were developed by WFP and Chinese Academy of Agricultural Sciences (CAAS) with inputs from partnering agencies. They were originally formulated in English and then translated into Mandarin. They were pilot tested in the field and corrected as needed. The final interviews were administered in Mandarin with translation provided in the local language when needed.

    All questionnaires and modules are provided as external resources.

    Cleaning operations

    After data collection, data entry was carried out by CAAS staff in Beijing using EpiData software. The datasets were then exported into SPSS for analysis. Data cleaning was an iterative process throughout the data entry and analysis phases.

    Descriptive analysis, correlation analysis, principle component analysis, cluster analysis and various other forms of analyses were conducted using SPSS.

  7. n

    Field Data and Map

    • narcis.nl
    • data.mendeley.com
    Updated Jul 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chisty, M (via Mendeley Data) (2020). Field Data and Map [Dataset]. http://doi.org/10.17632/g35xsvpzv2.2
    Explore at:
    Dataset updated
    Jul 28, 2020
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Chisty, M (via Mendeley Data)
    Description

    Field data is collected through a structured questionnaire. The questionniare included direct questions with options to answer and also statement based questions to be responded in Likert Scale. Mainly the statement based questions were used to assess the fire disaster coping capacity of the community of the study area. Others questions supported to understand limitations or strengths regarding the coping capacity. Data cleaning was performed before providing input in SPSS.

  8. i

    Household Health Survey 2012-2013, Economic Research Forum (ERF)...

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Jun 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kurdistan Regional Statistics Office (KRSO) (2017). Household Health Survey 2012-2013, Economic Research Forum (ERF) Harmonization Data - Iraq [Dataset]. https://datacatalog.ihsn.org/catalog/6937
    Explore at:
    Dataset updated
    Jun 26, 2017
    Dataset provided by
    Central Statistical Organization (CSO)
    Kurdistan Regional Statistics Office (KRSO)
    Economic Research Forum
    Time period covered
    2012 - 2013
    Area covered
    Iraq
    Description

    Abstract

    The harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.

    ----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:

    Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    The survey has six main objectives. These objectives are:

    1. Provide data for poverty analysis and measurement and monitor, evaluate and update the implementation Poverty Reduction National Strategy issued in 2009.
    2. Provide comprehensive data system to assess household social and economic conditions and prepare the indicators related to the human development.
    3. Provide data that meet the needs and requirements of national accounts.
    4. Provide detailed indicators on consumption expenditure that serve making decision related to production, consumption, export and import.
    5. Provide detailed indicators on the sources of households and individuals income.
    6. Provide data necessary for formulation of a new consumer price index number.

    The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.

    Geographic coverage

    National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    ----> Design:

    Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.

    ----> Sample frame:

    Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.

    ----> Sampling Stages:

    In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    ----> Preparation:

    The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.

    ----> Questionnaire Parts:

    The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job

    Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.

    Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days

    Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.

    Cleaning operations

    ----> Raw Data:

    Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.

    ----> Harmonized Data:

    • The SPSS package is used to harmonize the Iraq Household Socio Economic Survey (IHSES) 2007 with Iraq Household Socio Economic Survey (IHSES) 2012.
    • The harmonization process starts with raw data files received from the Statistical Office.
    • A program is generated for each dataset to create harmonized variables.
    • Data is saved on the household and individual level, in SPSS and then converted to STATA, to be disseminated.

    Response rate

    Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).

  9. Expenditure and Consumption Survey, 2004 - West Bank and Gaza

    • catalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2019). Expenditure and Consumption Survey, 2004 - West Bank and Gaza [Dataset]. https://catalog.ihsn.org/index.php/catalog/3085
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttps://pcbs.gov/
    Time period covered
    2004 - 2005
    Area covered
    Gaza, Gaza Strip, West Bank
    Description

    Abstract

    The basic goal of this survey is to provide the necessary database for formulating national policies at various levels. It represents the contribution of the household sector to the Gross National Product (GNP). Household Surveys help as well in determining the incidence of poverty, and providing weighted data which reflects the relative importance of the consumption items to be employed in determining the benchmark for rates and prices of items and services. Generally, the Household Expenditure and Consumption Survey is a fundamental cornerstone in the process of studying the nutritional status in the Palestinian territory.

    The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality. Data is a public good, in the interest of the region, and it is consistent with the Economic Research Forum's mandate to make micro data available, aiding regional research on this important topic.

    Geographic coverage

    The survey data covers urban, rural and camp areas in West Bank and Gaza Strip.

    Analysis unit

    1- Household/families. 2- Individuals.

    Universe

    The survey covered all the Palestinian households who are a usual residence in the Palestinian Territory.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample and Frame:

    The sampling frame consists of all enumeration areas which were enumerated in 1997; the enumeration area consists of buildings and housing units and is composed of an average of 120 households. The enumeration areas were used as Primary Sampling Units (PSUs) in the first stage of the sampling selection. The enumeration areas of the master sample were updated in 2003.

    Sample Design:

    The sample is a stratified cluster systematic random sample with two stages: First stage: selection of a systematic random sample of 299 enumeration areas. Second stage: selection of a systematic random sample of 12-18 households from each enumeration area selected in the first stage. A person (18 years and more) was selected from each household in the second stage.

    Sample strata:

    The population was divided by: 1- Governorate 2- Type of Locality (urban, rural, refugee camps)

    Sample Size:

    The calculated sample size is 3,781 households.

    Target cluster size:

    The target cluster size or "sample-take" is the average number of households to be selected per PSU. In this survey, the sample take is around 12 households.

    Detailed information/formulas on the sampling design are available in the user manual.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The PECS questionnaire consists of two main sections:

    First section: Certain articles / provisions of the form filled at the beginning of the month,and the remainder filled out at the end of the month. The questionnaire includes the following provisions:

    Cover sheet: It contains detailed and particulars of the family, date of visit, particular of the field/office work team, number/sex of the family members.

    Statement of the family members: Contains social, economic and demographic particulars of the selected family.

    Statement of the long-lasting commodities and income generation activities: Includes a number of basic and indispensable items (i.e, Livestock, or agricultural lands).

    Housing Characteristics: Includes information and data pertaining to the housing conditions, including type of shelter, number of rooms, ownership, rent, water, electricity supply, connection to the sewer system, source of cooking and heating fuel, and remoteness/proximity of the house to education and health facilities.

    Monthly and Annual Income: Data pertaining to the income of the family is collected from different sources at the end of the registration / recording period.

    Second section: The second section of the questionnaire includes a list of 54 consumption and expenditure groups itemized and serially numbered according to its importance to the family. Each of these groups contains important commodities. The number of commodities items in each for all groups stood at 667 commodities and services items. Groups 1-21 include food, drink, and cigarettes. Group 22 includes homemade commodities. Groups 23-45 include all items except for food, drink and cigarettes. Groups 50-54 include all of the long-lasting commodities. Data on each of these groups was collected over different intervals of time so as to reflect expenditure over a period of one full year.

    Cleaning operations

    Raw Data

    Both data entry and tabulation were performed using the ACCESS and SPSS software programs. The data entry process was organized in 6 files, corresponding to the main parts of the questionnaire. A data entry template was designed to reflect an exact image of the questionnaire, and included various electronic checks: logical check, range checks, consistency checks and cross-validation. Complete manual inspection was made of results after data entry was performed, and questionnaires containing field-related errors were sent back to the field for corrections.

    Harmonized Data

    • The Statistical Package for Social Science (SPSS) is used to clean and harmonize the datasets.
    • The harmonization process starts with cleaning all raw data files received from the Statistical Office.
    • Cleaned data files are then all merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/compute/recode/rename/format/label harmonized variables.
    • A post-harmonization cleaning process is run on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and converted to STATA format.

    Response rate

    The survey sample consists of about 3,781 households interviewed over a twelve-month period between January 2004 and January 2005. There were 3,098 households that completed the interview, of which 2,060 were in the West Bank and 1,038 households were in GazaStrip. The response rate was 82% in the Palestinian Territory.

    Sampling error estimates

    The calculations of standard errors for the main survey estimations enable the user to identify the accuracy of estimations and the survey reliability. Total errors of the survey can be divided into two kinds: statistical errors, and non-statistical errors. Non-statistical errors are related to the procedures of statistical work at different stages, such as the failure to explain questions in the questionnaire, unwillingness or inability to provide correct responses, bad statistical coverage, etc. These errors depend on the nature of the work, training, supervision, and conducting all various related activities. The work team spared no effort at different stages to minimize non-statistical errors; however, it is difficult to estimate numerically such errors due to absence of technical computation methods based on theoretical principles to tackle them. On the other hand, statistical errors can be measured. Frequently they are measured by the standard error, which is the positive square root of the variance. The variance of this survey has been computed by using the “programming package” CENVAR.

  10. Labor Force Survey, LFS 2017 - Palestine

    • erfdataportal.com
    Updated Mar 22, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2021). Labor Force Survey, LFS 2017 - Palestine [Dataset]. https://www.erfdataportal.com/index.php/catalog/170
    Explore at:
    Dataset updated
    Mar 22, 2021
    Dataset provided by
    Palestinian Central Bureau of Statisticshttps://pcbs.gov/
    Economic Research Forum
    Time period covered
    2017
    Area covered
    Palestine
    Description

    Abstract

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE PALESTINIAN CENTRAL BUREAU OF STATISTICS

    The Palestinian Central Bureau of Statistics (PCBS) carried out four rounds of the Labor Force Survey 2017 (LFS). The survey rounds covered a total sample of about 23,120 households (5,780 households per quarter).

    The main objective of collecting data on the labour force and its components, including employment, unemployment and underemployment, is to provide basic information on the size and structure of the Palestinian labour force. Data collected at different points in time provide a basis for monitoring current trends and changes in the labour market and in the employment situation. These data, supported with information on other aspects of the economy, provide a basis for the evaluation and analysis of macro-economic policies.

    The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing labor force surveys in several Arab countries.

    Geographic coverage

    Covering a representative sample on the region level (West Bank, Gaza Strip), the locality type (urban, rural, camp) and the governorates.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey covered all Palestinian households who are a usual residence of the Palestinian Territory.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE PALESTINIAN CENTRAL BUREAU OF STATISTICS

    The methodology was designed according to the context of the survey, international standards, data processing requirements and comparability of outputs with other related surveys.

    ---> Target Population: It consists of all individuals aged 10 years and Above and there are staying normally with their households in the state of Palestine during 2017.

    ---> Sampling Frame: The sampling frame consists of the master sample, which was updated in 2011: each enumeration area consists of buildings and housing units with an average of about 124 households. The master sample consists of 596 enumeration areas; we used 494 enumeration areas as a framework for the labor force survey sample in 2017 and these units were used as primary sampling units (PSUs).

    ---> Sampling Size: The estimated sample size is 5,780 households in each quarter of 2017.

    ---> Sample Design The sample is two stage stratified cluster sample with two stages : First stage: we select a systematic random sample of 494 enumeration areas for the whole round ,and we excluded the enumeration areas which its sizes less than 40 households. Second stage: we select a systematic random sample of 16 households from each enumeration area selected in the first stage, se we select a systematic random of 16 households of the enumeration areas which its size is 80 household and over and the enumeration areas which its size is less than 80 households we select systematic random of 8 households.

    ---> Sample strata: The population was divided by: 1- Governorate (16 governorate) 2- Type of Locality (urban, rural, refugee camps).

    ---> Sample Rotation: Each round of the Labor Force Survey covers all of the 494 master sample enumeration areas. Basically, the areas remain fixed over time, but households in 50% of the EAs were replaced in each round. The same households remain in the sample for two consecutive rounds, left for the next two rounds, then selected for the sample for another two consecutive rounds before being dropped from the sample. An overlap of 50% is then achieved between both consecutive rounds and between consecutive years (making the sample efficient for monitoring purposes).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The survey questionnaire was designed according to the International Labour Organization (ILO) recommendations. The questionnaire includes four main parts:

    ---> 1. Identification Data: The main objective for this part is to record the necessary information to identify the household, such as, cluster code, sector, type of locality, cell, housing number and the cell code.

    ---> 2. Quality Control: This part involves groups of controlling standards to monitor the field and office operation, to keep in order the sequence of questionnaire stages (data collection, field and office coding, data entry, editing after entry and store the data.

    ---> 3. Household Roster: This part involves demographic characteristics about the household, like number of persons in the household, date of birth, sex, educational level…etc.

    ---> 4. Employment Part: This part involves the major research indicators, where one questionnaire had been answered by every 15 years and over household member, to be able to explore their labour force status and recognize their major characteristics toward employment status, economic activity, occupation, place of work, and other employment indicators.

    Cleaning operations

    ---> Raw Data PCBS started collecting data since 1st quarter 2017 using the hand held devices in Palestine excluding Jerusalem in side boarders (J1) and Gaza Strip, the program used in HHD called Sql Server and Microsoft. Net which was developed by General Directorate of Information Systems. Using HHD reduced the data processing stages, the fieldworkers collect data and sending data directly to server then the project manager can withdrawal the data at any time he needs. In order to work in parallel with Gaza Strip and Jerusalem in side boarders (J1), an office program was developed using the same techniques by using the same database for the HHD.

    ---> Harmonized Data - The SPSS package is used to clean and harmonize the datasets. - The harmonization process starts with a cleaning process for all raw data files received from the Statistical Agency. - All cleaned data files are then merged to produce one data file on the individual level containing all variables subject to harmonization. - A country-specific program is generated for each dataset to generate/ compute/ recode/ rename/ format/ label harmonized variables. - A post-harmonization cleaning process is then conducted on the data. - Harmonized data is saved on the household as well as the individual level, in SPSS and then converted to STATA, to be disseminated.

    Response rate

    The survey sample consists of about 30,230 households of which 23,120 households completed the interview; whereas 14,682 households from the West Bank and 8,438 households in Gaza Strip. Weights were modified to account for non-response rate. The response rate in the West Bank reached 82.4% while in the Gaza Strip it reached 92.7%.

    Sampling error estimates

    ---> Sampling Errors Data of this survey may be affected by sampling errors due to use of a sample and not a complete enumeration. Therefore, certain differences can be expected in comparison with the real values obtained through censuses. Variances were calculated for the most important indicators: the variance table is attached with the final report. There is no problem in disseminating results at national or governorate level for the West Bank and Gaza Strip.

    ---> Non-Sampling Errors Non-statistical errors are probable in all stages of the project, during data collection or processing. This is referred to as non-response errors, response errors, interviewing errors, and data entry errors. To avoid errors and reduce their effects, great efforts were made to train the fieldworkers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, carrying out a pilot survey, as well as practical and theoretical training during the training course. Also data entry staff were trained on the data entry program that was examined before starting the data entry process. To stay in contact with progress of fieldwork activities and to limit obstacles, there was continuous contact with the fieldwork team through regular visits to the field and regular meetings with them during the different field visits. Problems faced by fieldworkers were discussed to clarify any issues. Non-sampling errors can occur at the various stages of survey implementation whether in data collection or in data processing. They are generally difficult to be evaluated statistically.

    They cover a wide range of errors, including errors resulting from non-response, sampling frame coverage, coding and classification, data processing, and survey response (both respondent and interviewer-related). The use of effective training and supervision and the careful design of questions have direct bearing on limiting the magnitude of non-sampling errors, and hence enhancing the quality of the resulting data. The implementation of the survey encountered non-response where the case ( household was not present at home ) during the fieldwork visit and the case ( housing unit is vacant) become the high percentage of the non response cases. The total non-response rate reached14.2% which is very low once compared to the household surveys conducted by PCBS , The refusal rate reached 3.0% which is very low percentage compared to the

  11. w

    Multiple Indicator Cluster Survey 2006 - Viet Nam

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social and Environmental Statistics Department (2023). Multiple Indicator Cluster Survey 2006 - Viet Nam [Dataset]. https://microdata.worldbank.org/index.php/catalog/31
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Social and Environmental Statistics Department
    Time period covered
    2006
    Area covered
    Vietnam
    Description

    Abstract

    The Multiple Indicator Cluster Survey (MICS) is a household survey programme developed by UNICEF to assist countries in filling data gaps for monitoring human development in general and the situation of children and women in particular. MICS is capable of producing statistically sound, internationally comparable estimates of social indicators. The Viet Nam Multiple Indicator Cluster Survey provides valuable information on the situation of children and women in Viet Nam, and was based, in large part, on the needs to monitor progress towards goals and targets emanating from recent international agreements: the Millennium Declaration, adopted by all 191 United Nations Member States in September 2000, and the Plan of Action of A World Fit For Children, adopted by 189 Member States at the United Nations Special Session on Children in May 2002. Both of these commitments build upon promises made by the international community at the 1990 World Summit for Children.

    Survey Objectives: The 2006 Viet Nam Multiple Indicator Cluster Survey has as its primary objectives: - To provide up-to-date information for assessing the situation of children and women in Viet Nam; - To furnish data needed for monitoring progress toward goals established by the Millennium Development Goals, the goals of A World Fit For Children (WFFC), and other internationally agreed upon goals, as a basis for future action; - To provide valuable information for the 3rd and 4th National Report of Vietnam's implementation of the Convention on the child rights in the period 2002-2007 as well as for monitoring the National Plan of Action for Children 2001-2010.
    - To contribute to the improvement of data and monitoring systems in Viet Nam and to strengthen technical expertise in the design, implementation, and analysis of such systems.

    Survey Content Following the MICS global questionnaire templates, the questionnaires were designed in a modular fashion customized to the needs of Viet Nam. The questionnaires consist of a household questionnaire, a questionnaire for women aged 15-49 and a questionnaire for children under the age of five (to be administered to the mother or caretaker).

    Survey Implementation The Viet Nam Multiple Indicator Cluster Survey (MICS) was carried by General Statistics Office of Viet Nam (GSO) in collaboration with Viet Nam Committee for Population, Family and Children (VCPFC). Financial and technical support was provided by the United Nations Children's Fund (UNICEF). Technical assistance and training for the survey was provided through a series of regional workshops organised by UNICEF covering questionnaire content, sampling and survey implementation; data processing; data quality and data analysis; report writing and dissemination.

    Geographic coverage

    The survey is nationally representative and covers the whole of Viet Nam.

    Analysis unit

    Households (defined as a group of persons who usually live and eat together)

    Household members (defined as members of the household who usually live in the household, which may include people who did not sleep in the household the previous night, but does not include visitors who slept in the household the previous night but do not usually live in the household)

    Women aged 15-49

    Children aged 0-4

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-4 years (under age 5) resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the Viet Nam Multiple Indicator Cluster Survey (MICS) was designed to provide reliable estimates on a large number of indicators on the situation of children and women at the national level, for urban and rural areas, and for 8 regions: Red River Delta, North West, North East, North Central Coast, South Central Coast, Central Highlands, South East, and Mekong River Delta. Regions were identified as the main sampling domains and the sample was selected in two stages. At the first stage 250 census enumeration areas (EA) were selected, of which all 240 EAs of MICS2 with systematic method were reselected and 10 new EAs were added. The addition of 10 more EAs (together with the increase in the sample size) was to increase the reliability level for regional estimates. Consequently, within each region, 30-33 EAs were selected for MICS3. After a household listing was carried out within the selected enumeration areas, a systematic sample of 1/3 of households in each EA was drawn. The survey managed to visit all of 250 selected EAs during the fieldwork period. The sample was stratified by region and is not self-weighting. For reporting national level results, sample weights are used. A more detailed description of the sample design can be found in the technical documents and in Appendix A of the final report.

    Sampling deviation

    No major deviations from the original sample design were made. All sample enumeration areas were accessed and successfully interviewed with good response rates.

    Mode of data collection

    Face-to-face

    Research instrument

    The questionnaires are based on the MICS3 model questionnaire. From the MICS3 model English version, the questionnaires were translated in to Vietnamese and were pretested in one province (Bac Giang) during July 2006. Based on the results of this pre-test, modifications were made to the wording and translation of the questionnaires.

    Cleaning operations

    Data editing took place at a number of stages throughout the processing (see Other processing), including: a) Office editing and coding b) During data entry c) Structure checking and completeness d) Secondary editing e) Structural checking of SPSS data files

    Detailed documentation of the editing of data can be found in the data processing guidelines in the MICS manual http://www.childinfo.org/mics/mics3/manual.php.

    Response rate

    8356 households were selected for the sample. Of these all were found to be occupied households and 8355 were successfully interviewed for a response rate of 100%. Within these households, 10063 eligible women aged 15-49 were identified for interview, of which 9473 were successfully interviewed (response rate 94.1%), and 2707 children aged 0-4 were identified for whom the mother or caretaker was successfully interviewed for 2680 children (response rate 99%).

    Sampling error estimates

    Estimates from a sample survey are affected by two types of errors: 1) non-sampling errors and 2) sampling errors. Non-sampling errors are the results of mistakes made in the implementation of data collection and data processing. Numerous efforts were made during implementation of the MICS - 3 to minimize this type of error, however, non-sampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors can be evaluated statistically. The sample of respondents to the MICS - 3 is only one of many possible samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that different somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability in the results of the survey between all possible samples, and, although, the degree of variability is not known exactly, it can be estimated from the survey results. The sampling errors are measured in terms of the standard error for a particular statistic (mean or percentage), which is the square root of the variance. Confidence intervals are calculated for each statistic within which the true value for the population can be assumed to fall. Plus or minus two standard errors of the statistic is used for key statistics presented in MICS, equivalent to a 95 percent confidence interval.

    If the sample of respondents had been a simple random sample, it would have been possible to use straightforward formulae for calculating sampling errors. However, the MICS - 3 sample is the result of a two-stage stratified design, and consequently needs to use more complex formulae. The SPSS complex samples module has been used to calculate sampling errors for the MICS - 3. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. This method is documented in the SPSS file CSDescriptives.pdf found under the Help, Algorithms options in SPSS.

    Sampling errors have been calculated for a select set of statistics (all of which are proportions due to the limitations of the Taylor linearization method) for the national sample, urban and rural areas, and for each of the five regions. For each statistic, the estimate, its standard error, the coefficient of variation (or relative error -- the ratio between the standard error and the estimate), the design effect, and the square root design effect (DEFT -- the ratio between the standard error using the given sample design and the standard error that would result if a simple random sample had been used), as well as the 95 percent confidence intervals (+/-2 standard errors).

    Data appraisal

    A series of data quality tables and graphs are available to review the quality of the data and include the following:

    Age distribution of the household population Age distribution of eligible women and interviewed women Age distribution of eligible children and children for whom the mother or caretaker was interviewed Age distribution of children under age 5 by 3 month groups Age and period ratios at

  12. e

    Employment and Unemployment Survey, EUS 2016 - Jordan

    • erfdataportal.com
    Updated Oct 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Economic Research Forum (2017). Employment and Unemployment Survey, EUS 2016 - Jordan [Dataset]. http://www.erfdataportal.com/index.php/catalog/133
    Explore at:
    Dataset updated
    Oct 22, 2017
    Dataset provided by
    Economic Research Forum
    Department of Statistics
    Time period covered
    2016
    Area covered
    Jordan
    Description

    Abstract

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE DEPARTMENT OF STATISTICS OF THE HASHEMITE KINGDOM OF JORDAN

    The Department of Statistics (DOS) carried out four rounds of the 2016 Employment and Unemployment Survey (EUS). The survey rounds covered a sample of about fourty nine thousand households Nation-wide. The sampled households were selected using a stratified multi-stage cluster sampling design.

    It is worthy to mention that the DOS employed new technology in data collection and data processing. Data was collected using electronic questionnaire instead of a hard copy, namely a hand held device (PDA).

    The survey main objectives are: - To identify the demographic, social and economic characteristics of the population and manpower. - To identify the occupational structure and economic activity of the employed persons, as well as their employment status. - To identify the reasons behind the desire of the employed persons to search for a new or additional job. - To measure the economic activity participation rates (the number of economically active population divided by the population of 15+ years old). - To identify the different characteristics of the unemployed persons. - To measure unemployment rates (the number of unemployed persons divided by the number of economically active population of 15+ years old) according to the various characteristics of the unemployed, and the changes that might take place in this regard. - To identify the most important ways and means used by the unemployed persons to get a job, in addition to measuring durations of unemployment for such persons. - To identify the changes overtime that might take place regarding the above-mentioned variables.

    The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing labor force surveys in several Arab countries.

    Geographic coverage

    Covering a sample representative on the national level (Kingdom), governorates, and the three Regions (Central, North and South).

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE DEPARTMENT OF STATISTICS OF THE HASHEMITE KINGDOM OF JORDAN

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Cleaning operations

    ----> Raw Data

    A tabulation results plan has been set based on the previous Employment and Unemployment Surveys while the required programs were prepared and tested. When all prior data processing steps were completed, the actual survey results were tabulated using an ORACLE package. The tabulations were then thoroughly checked for consistency of data. The final report was then prepared, containing detailed tabulations as well as the methodology of the survey.

    ----> Harmonized Data

    • The SPSS package is used to clean and harmonize the datasets.
    • The harmonization process starts with a cleaning process for all raw data files received from the Statistical Agency.
    • All cleaned data files are then merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/ compute/ recode/ rename/ format/ label harmonized variables.
    • A post-harmonization cleaning process is then conducted on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and then converted to STATA, to be disseminated.
  13. Household Expenditure and Consumption Survey, 2023, Main Findings of Living...

    • pcbs.gov.ps
    Updated Aug 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2025). Household Expenditure and Consumption Survey, 2023, Main Findings of Living Standards in the West Bank (Expenditure, Consumption and Poverty), 2023 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/734
    Explore at:
    Dataset updated
    Aug 11, 2025
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttps://pcbs.gov/
    Time period covered
    2023 - 2024
    Area covered
    Gaza, Gaza Strip, West Bank
    Description

    Abstract

    The main objectives of the survey are as follows: To know the consumption expenditure patterns and the impact of social variables on them. To calculate the average monthly and annual expenditure of the individual and households on items of commodities and services and to know the factors affecting expenditure, such as educational, social and other levels.
    To obtain data on household consumption and expenditure levels that can be used to determine poverty levels (monetary and multidimensional) and to analyze changes in living standards over time. It is also used by the Ministry of Social Development to calculate the aid eligibility equation. To provide data for national accounts for final consumption of the household sector. To provide weights data that reflect the relative importance of consumer spending items used in the preparation of consumer price index.
    To access data on non-cash consumption such as consumption of own produced products and in-kind payments.
    To know sources of income generation and household ownership of durable goods, tenure and agricultural property. To know characteristics of the dwelling, and the availability of services within the dwelling.

    Geographic coverage

    The Palestinian Expenditure and Consumption Survey (PECS) 2023 covers all Palestinian governorates in both the West Bank and Gaza Strip and all locality types; urban, rural and camps. The survey is designed to provide representative data at the national level and both regions; West Bank and Gaza Strip. However, due to the Israeli aggression on Gaza started in the last quarter of 2023, data collection in Gaza was forcibly stopped. While some indicators from Gaza are included in the published report, a note clarifies that the data is incomplete and does not reflect Gaza's situation.

    Analysis unit

    Palestinian Household

    Universe

    The target population of the Palestinian Expenditure and Consumption Survey (PECS) 2023 consists of all Palestinian households in the West Bank and Gaza Strip living in Palestine during 2023.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Target Population The target population consists of all Palestinian households and individuals who were living normally with their households in the State of Palestine in 2023. Sampling Frame The sampling frame is based on a comprehensive sample selected from the Population, Housing, and Establishment Census, 2017. This comprehensive sample consists of geographically proximate areas (average of 150 households per area), known as enumeration areas (EAs) used in the census. These enumeration areas are used as primary sampling units (PSUs) in the first stage of the sampling selection. Sample Size The sample size for the Palestinian Expenditure and Consumption Survey, 2023 was 7,032 households for the entire year; 4,992 for the West Bank and 2,040 for Gaza Strip. The non-response rate was assumed based on data from 2016/2017 for each governorate. Sample Design The sample is a two-stage stratified cluster random sample: First stage: Selection of a stratified random sample of 586 enumeration areas. Second stage: Selection of a systematic random sample of 12 households from each enumeration area selected in the first stage. The enumeration areas were divided into four quarters, with each quarter's sample including all design strata as much as possible (governorate and locality type). Sample Strata The population was divided into strata as follows: 1.Governorate. 2.Locality type (urban, rural, refugee camps). Sample Allocation The sample was distributed using the Neyman allocation method, where the distribution relied on specific parameters such as the mean and standard deviation.

    Mode of data collection

    Computer Assisted Personal Interviewing - CAPI

    Research instrument

    The PECS, 2017 was the basis for designing the main survey questionnaire for the 2023 round. To ensure continuity and comparability between PECS surveys. The data will be collected during the registration month during the visit of the fieldworker to the household, and include the following sections: First part (Cover page): This section records the necessary household information, including the date of visit, data on field and office staff, and the number of household members by gender. Second part: Contains demographic and social questions about household members. Third part: Includes general questions about the characteristics of the labor force. Fourth part: Covers housing characteristics, including various topics such as type of housing, number of rooms, house ownership, rental value, access to services like electricity, water, and sanitation, main source of cooking fuel and heating, and distance to transportation, education, and health centers. Fifth part: Contains data on the consumer basket, which includes around 950 goods and services, described with their measurement units (kilogram, liter, and number), quantity, and value. Sixth part: Contains questions on social assistance and adaptation strategies, including the type and value of assistance received by the household or individuals, its source and frequency, and the circumstances and shocks experienced by the household or its members. Seventh part: Contains questions about income and means of income generation, as well as data on monthly and annual income, collected from different sources at the household level at the end of the registration period. Note: Additional questions have been added to some of the parts to cover indicators of poverty and multidimensional child poverty. The used language was Arabic.

    Cleaning operations

    Electronic Auditing: Tablets were used for data collection through an application reflecting the survey questionnaire, incorporating initial automatic audit rules for real-time data transfer to the central database. During this phase, initial audit rules enhanced data reliability by addressing potential errors during data collection through: -Validating responses in real-time to ensure they fall within expected ranges or formats. -Enforcing mandatory questions, preventing progress until all required fields are completed. -Automatically flagging inconsistent or abnormal responses with a note for the fieldworker to review and verify. Office Editing: For Jerusalem J1 forms, they were submitted weekly to the central office editor for review, ensuring data accuracy and consistency between sections, and addressing any inconsistent or abnormal values with fieldworkers. The reviewed forms were then handed over to the coding Division and subsequently to the data entry Division. Data Processing Tablets Application and Data Entry Platform The survey form was developed as a tablet application linked to the sample to facilitate data collection for fieldworkers. This application provided an easy-to-use interface, allowing fieldworkers to navigate the form easily, ensuring accurate and consistent data entry. Integrated with GPS and GIS technologies, the application provided real-time location tracking and interactive maps to guide fieldworkers in identifying household units in the sample. For paper forms in Jerusalem J1, the data entry program was designed to align with the survey form application with automatic audit rules. Data entry was done promptly after office editing and coding at PCBS main premises. Data entry program with the initial audit rules enhanced data reliability by addressing potential errors during data entry through: -Real-time validation of responses to ensure they fall within expected ranges or formats. -Enforcing mandatory questions, preventing progress until all required fields are completed. -Automatically flagging inconsistent or abnormal responses with a note for the fieldworker to review and verify. Office Data Cleaning Techniques The automatic and secure transfer of survey data to the central database was done in real-time, allowing data sets to be downloaded in the agreed format and design between project management and the data processing department. Data cleaning and quality assurance were performed using various statistical software, primarily R programming language via its RStudio interface, along with SPSS and Excel. This stage included detailed data cleaning and quality assurance processes to: -Verify variable types within the databases. -Detect outlier values for both numerical and categorical variables using different statistical methods and check relationships between variables to identify unexpected correlations or their absence. -Check data consistency and logical coherence across similar questions or sections. -Verify missing data due to technical or human errors. All values that failed cleaning stages were periodically sent to the field for verification and follow-up with households if necessary.

    Response rate

    Response rate was 70.3%

    Sampling error estimates

    Sampling Errors The data in this survey are subject to sampling errors, as they are derived from a sample rather than a full census of the study population. Consequently, there may be differences between the estimated values and the true population values that would be obtained from a complete census. To assess the reliability of the estimates, sampling variances were calculated for the survey's key indicators using SPSS, particularly focusing on the coefficient of variation (CV) as a measure of relative precision. The variance analysis indicated that there were no significant issues in data dissemination at the West Bank level. More information are seen in the attached report in page 39 in the English version after the Arabic.

  14. Vocational Training Grant Fund Impact Evaluation 2011-2016, Baseline and...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Mar 27, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathematica Policy Research (2019). Vocational Training Grant Fund Impact Evaluation 2011-2016, Baseline and Follow-up Surveys - Namibia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3432
    Explore at:
    Dataset updated
    Mar 27, 2019
    Dataset provided by
    Mathematicahttp://www.mathematica.org/
    Authors
    Mathematica Policy Research
    Time period covered
    2011 - 2016
    Area covered
    Namibia
    Description

    Abstract

    The impact evaluation of the Vocational Training Grant Fund (VTGF) subactivity in Namibia used a random assignment design to determine the effects of VTGF-funded scholarships for vocational training on recipients' training and labor market outcomes, such as employment and earnings. Under this design, eligible applicants to each VTGF-funded training in which the number of applications exceeded the number of available slots were randomly assigned by the training provider either to a group that was offered a VTGF scholarship (treatment group) or one that was not (control group). The treatment and control groups for each training were expected to be equivalent, on average, except for the offer of VTGF funding. Therefore, differences in the outcomes of the treatment and control groups measured about one year after the end of training could be attributed to the impact of the VTGF funding. As described in the VTGF final evaluation report, the impact evaluation found that the scholarship offer substantially increased participation in and completion of vocational training, but that this did not translate into positive impacts on employment, earnings, or income. The impact evaluation was complemented by an implementation analysis, which drew on qualitative data collected close to the end of the compact; the implementation findings were provided in an interim evaluation report covering all three subactivities.

    Geographic coverage

    Vocational training providers throughout Namibia.

    Analysis unit

    • Individuals

    Universe

    Applicants to VTGF-funded trainings throughout Namibia who were randomly assigned to treatment and control groups.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The targeted sample for the VTGF evaluation consists of all applicants to VTGF-funded trainings who were randomly assigned to the treatment and control groups.

    For the baseline survey, there were 1,892 unique applicants to the 28 trainings included in the evaluation, including 955 assigned to the treatment group and 937 assigned to the control group. Of these applicants, 55 (3 percent) applied to multiple trainings; these applicants were linked to the first included training for purposes of the evaluation. Of the 1,892 unique applicants, 1,406 completed a baseline survey, and constitute the analytic sample used for the VTGF baseline analysis.

    For the follow-up survey, 2 of the 28 trainings initially included in the evaluation were dropped, as the scheduled follow-up fell outside the evaluation period. There were 1,801 unique applicants to the remaining 26 trainings included in the evaluation, including 889 assigned to the treatment group and 912 assigned to the control group. Of the 1,801 unique applicants, 1,250 completed a follow-up survey (642 in the treatment group and 608 in the control group), and constitute the analytic sample used for the VTGF follow-up analysis.

    Sampling deviation

    The follow-up sample used for the impact analysis covers 26 VTGF-funded trainings, which is not the full set of trainings funded by the subactivity (the baseline sample included an additional 2 trainings that were subsequently dropped). Specifically, the follow-up sample excludes 27 trainings for which there was no control group (typically because there were sufficient slots to accommodate all applicants), 22 trainings for which the follow-up survey date (one year after the end of training) would fall outside of the evaluation period, and 9 trainings for which there were severe violations of random assignment. These 58 excluded trainings comprise about half of the total number of VTGF-funded trainees.

    Research instrument

    The VTGF baseline survey was originally developed by Millennium Challenge Account-Namibia (MCA-N). It was designed as a computer-assisted survey to be conducted by telephone, in English. The survey collected data on basic demographic characteristics of the applicants, together with a range of outcome measures that focused on the applicants' vocational training history, employment status, and earnings and income. Minor changes were made to the instrument when NORC/Survey Warehouse too over the data collection from MCA-N, and again when Mathematica joined the evaluation. These involved adjusting the wording of some questions, adding or removing some questions, and making some changes in question order and skip patterns. Despite these changes, the basic survey instrument and methodology remained similar over time, enabling us to combine data from different periods for the analysis. The questionnaire, marked to show changes over time, is provided as part of the baseline data package.

    The VTGF follow-up survey was developed by Mathematica, and was also a computer-assisted survey that was conducted by telephone. The survey was developed in English and was translated into Afrikaans and Oshiwambo; the translated versions were used for respondents who were not comfortable in English. The survey included the following modules: (1) education and vocational training; (2) employment and earnings; (3) income and household demographics; and (4) health behaviors (realted to HIV/AIDS and pregnancy). The questionnaires (in all languages) are provided as part of the follow-up data package.

    Cleaning operations

    For the baseline data, MCA-N cleaned the data that they collected and provided a clean SPSS data file to NORC. NORC cleaned the data collected by SW, combined it with the MCA-N data, and provided a clean SPSS file to Mathematica. Mathematica conducted additional cleaning of this combiined file in Stata, which included checking the validity of variable values and ranges; verifying skip patterns; cleaning and back-coding common "other-specify" responses; creating binaries of categorical variables; checking and correcting for duplicate observations (applicants who applied to multiple trainings and were surveyed twice); and recoding skips, missing data, and other non-response values to standardized lettered indicators. Mathematica then merged these data with a database of eligible training applicants to identify the training to which each individual applied, as well as their assigned treatment status. Applicants who applied to multiple trainings were assigned to the first training to which they applied for analytic purposes. Only trainees who applied for the 28 trainings initially included in the evaluation were retained in the final baseline dataset.

    For the follow-up data, Mathematica conducted cleaning of the raw data file provided by Survey Warehouse in Stata, similar to the cleaning conducted on the baseline data. Mathematica then merged these data with variables from the baseline survey dataset that would be used in the follow-up analysis. These variables were those related to the training to which each individual applied, their assigned treatment status, basic demographic characteristics, and pre-VTGF training experience. The remaining variables in the baseline dataset were not used in the follow-up analysis and were therefore not included in the follow-up dataset. Only trainees who applied for the 26 trainings included in the final evaluation appear in the follow-up dataset.

    Response rate

    The response rate to the baseline survey was 74 percent (78 percent in the treatment group and 71 percent in the control group).

    The response rate to the follow-up survey was 69.4 percent (72.2 percent in the treatment group and 66.6 percent in the control group).

    Sampling error estimates

    The survey data were intended to cover the universe of applicants to the included trainings, and did not involve any sampling. The only source of error in the estimated means is survey non-response. Users can therefore rely on standard formulae to calculate the sampling error for the estimated means.

    Standard errors for differences between the treatment and control groups were estimated in a linear regression framework that accounted for training fixed effects. No other adjustments to the standard errors were necessary.

  15. f

    Analysis of aquaculture public support

    • datasetcatalog.nlm.nih.gov
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mofokeng, Masuping (2024). Analysis of aquaculture public support [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001325797
    Explore at:
    Dataset updated
    Jul 16, 2024
    Authors
    Mofokeng, Masuping
    Description

    This dataset consists of data collected from small-scale aquaculture farmers in Gauteng Province, South Africa. The data was collected through a survey and interviews. The data is collected on the demography of the farmers, their challenges, and the aquaculture public support programmes. Likert scale was used to rate the appropriateness and sufficiency of aquaculture public support programmes. The support programmes identified for the study and included in the dataset are the Aquaculture Development and Enhancement Programme (ADEP) and Aquaculture Technology Demonstration Centre (ATDC). Both Excel was used for data cleaning and developing the dataset. Datasets were transferred to SPSS for further analysis.

  16. m

    Early onset preeclampsia and eclampsia in low-resource settings

    • data.mendeley.com
    Updated Oct 19, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Solwayo Ngwenya (2019). Early onset preeclampsia and eclampsia in low-resource settings [Dataset]. http://doi.org/10.17632/wrkvzf567k.2
    Explore at:
    Dataset updated
    Oct 19, 2019
    Authors
    Solwayo Ngwenya
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This was a retrospective cross-sectional study carried out at Mpilo Central Hospital a government teaching and tertiary referral centre. It covered the period from February 1, 2016 to July 30, 2018. The aim of the study was to assess the incidence of early-onset severe preeclampsia and eclampsia in a low-resource setting and associated factors. Early-onset severe preeclampsia was diagnosed in those patients with high blood pressure(SBP ≥160, DBP ≥110mmHg) and either severe headaches, epigastric pain and deranged biochemical/haematological blood indices. Eclampsia was diagnosed in women who had a grand mal seizure with features of preeclampsia and no previous history of a seizure disorder such as epilepsy. Women with such history were excluded from the study. All women who were between 20-33+6weeks' of gestation and met the above criteria were included in the study. Early neonatal death was recorded within 7 days of birth.

    A paper data collection tool was used to collect information from the labour ward delivery registers, perinatal registers and mortality registers. Data were also collected from neonatal intensive care unit and special care baby unit. Hospital case notes were retrieved and data collected from there as well. The data tool collected maternal, fetal and neonatal demographic, clinical and out-come information.

    Data were entered into Microsoft Excel Inc., then exported to SPSS 20 for analysis. Data cleaning and coding were done in SPSS Version 20 before final analysis. Simple descriptive statistics were performed and presented as frequencies and percentages for categorical variables. Continuous variables were checked for normality using Shapiro Wilk test. Mean and standard deviation(SD) were reported for normal data. Tests of association between variables were performed using Pearson chi-square and Fisher’s exact tests. A p value of <0.05 was considered statistically significant. The incidence of early-onset severe preeclampsia and eclampsia at the unit was 1.0%. There was a statistically significant difference between place of dwelling and maternal complications, with urban dwellers suffering more complications. Tests of association were done between various variables and fetal survival to discharged home showed the following associations; gestational age, mother’s booking status, mother’s systolic blood pressure and diastolic blood pressure, receiving corticosteroid therapy and fetal birth weight.

  17. National Survey on Population and Employment, ENPE 2013 - Tunisia

    • erfdataportal.com
    • mail.erfdataportal.com
    Updated Jul 12, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Statistics - Tunisia (2016). National Survey on Population and Employment, ENPE 2013 - Tunisia [Dataset]. http://www.erfdataportal.com/index.php/catalog/100
    Explore at:
    Dataset updated
    Jul 12, 2016
    Dataset provided by
    National institute of statisticshttp://www.ins.tn/en/
    Economic Research Forum
    Time period covered
    2013
    Area covered
    Tunisia
    Description

    Abstract

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE NATIONAL INSTITUTE OF STATISTICS (INS) - TUNISIA

    The survey aims at estimating the demographic and educational characteristics of the population. It also calculates the economic indicators of the population such as the number of active individuals, the additional demand for jobs, the number of employed and their characteristics, the number of jobs created, the characteristics of the unemployed and the unemployment rate. Furthermore, this survey estimates these indicators on the household level and their living conditions.

    The results of this survey were compared with the results of the second quarter of the national survey on population and employment 2011. It should also be noted that the National Institute of Statistics -Tunisia uses the unemployment definition and concepts adopted by the International Labour Organization. This definition implies that, the individual did not work during the week preceding the day of the interview, was looking for a job in the month preceding the date of the interview, is available to work within two weeks after the day of the interview.

    In 2010, the National Institute of Statistics has adopted a strict ILO definition for unemployment, by conditioning that the person must perform effective approaches to search for a job in the month preceding the day of the interview.

    Geographic coverage

    Covering a representative sample at the national and regional level (governorates).

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE NATIONAL INSTITUTE OF STATISTICS - TUNISIA (INS)

    The sample is drawn from the frame of the 2004 General Census of Population and Housing.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Three modules were designed for data collection:

    • Household Questionnaire (Module 1): Includes questions regarding household characteristics, living conditions, individuals and their demographic, educational and economic characteristics. This module also provides information on internal and external migration.

    • Active Employed Questionnaire (Module 2): Includes questions regarding the characteristics of the employed individuals as occupation, industry and wages for employees.

    • Active Unemployed Questionnaire (Module 3): Includes questions regarding the characteristics of the unemployed as unemployment duration, the last occupation, activity, and the number of days worked during the last year...etc.

    Cleaning operations

    Harmonized Data

    • SPSS software is used to clean and harmonize the datasets.
    • The harmonization process starts with cleaning all raw data files received from the Statistical Agency.
    • Cleaned data files are then all merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/ compute/ recode/ rename/ format/ label harmonized variables.
    • A post-harmonization cleaning process is then conducted on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and converted to STATA format.
  18. Data from: S1 Dataset -

    • plos.figshare.com
    xlsx
    Updated Nov 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tiwonge Msonda; Robert Moshiro; Nahya Salim; Helga Naburi (2024). S1 Dataset - [Dataset]. http://doi.org/10.1371/journal.pone.0310256.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 8, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Tiwonge Msonda; Robert Moshiro; Nahya Salim; Helga Naburi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundTanzania is amongst the countries with high neonatal mortality in Sub-Saharan Africa (SSA), and estimates vary widely among regions. Various interventions are being implemented at Muhimbili National Hospital (MNH), a tertiary and teaching facility, to contribute towards the reduction of neonatal mortality. This study aimed to detail the magnitude, trends and factors associated with neonatal mortality at MNH.Methods and findingsA hospital-based retrospective cohort study was conducted from January 2018 to December 2020. Records of all neonates admitted during the study period were extracted from neonatal registers and the electronic medical record system and recorded in a pretested data collection form. Data cleaning and analysis were done using SPSS version 23. Poisson regression was used to determine adjusted relative risk (aRR) with a 95% confidence interval (CI) to test association. A p-value of

  19. Social Survey of Jerusalem 2013 - West Bank and Gaza

    • pcbs.gov.ps
    Updated Dec 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2019). Social Survey of Jerusalem 2013 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/433
    Explore at:
    Dataset updated
    Dec 26, 2019
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttps://pcbs.gov/
    Time period covered
    2013
    Area covered
    Gaza, Gaza Strip, West Bank
    Description

    Abstract

    The Jerusalem Household Social Survey 2013 is one of the most important statistical activities that have been conducted by PCBS. It is the most detailed and comprehensive statistical activity that PCBS has conducted in Jerusalem. The main objective of the Jerusalem household social survey, 2013 is to provide basic information about: Demographic and social characteristics for the Palestinian society in Jerusalem governorate including age-sex structure, Illiteracy rate, enrollment and drop-out rates by background characteristics, Labor force status, unemployment rate, occupation, economic activity, employment status, place of work and wage levels, Housing and housing conditions, Living levels and impact of Israeli measures on nutrition behavior during Al-Aqsa intifada, Criminal offence, its victims, and injuries caused.

    Geographic coverage

    Social survey data covering the province of Jerusalem only, the type locality (urban, rural, refugee camps) and Governorate

    Analysis unit

    households, Individual

    Universe

    The target population was all Palestinian households living in Jerusalem Governorate.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame for Jerusalem (J1 and J2) was based on the census implemented by PCBS in 2007 and consisting of enumeration areas. These enumeration areas were used as primary sampling units (PSUs) in the first stage of the sample selection.

    The estimated sample size is 1,260 households responding in Jerusalem governorate.

    Stratified cluster random sample with two-stages: First stage: Selection of a systematic random sample of 42 enumeration areas (24 EAs in J1 and 18 EAs in J2). Second stage: A sample of 30 responsive households from each enumeration area selected in the first stage.

    Sample Strata The population was divided by: 1-Region (Jerusalem J1, Jerusalem J2) 2-Locality type (Jerusalem J1: urban, camp; Jerusalem J2: urban, rural, camp).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    A survey questionnaire the main tool for gathering information, so do not need to check the technical specifications for the phase of field work, as required to achieve the requirements of data processing and analysis, has been designed form the survey after examining the experience of other countries on the subject of social surveys, covering the form as much as possible the most important social indicators as recommended by the United Nations, taking into account the specificity of the Palestinian community in this aspect.

    Cleaning operations

    Phase included a set of data processing Activities and operations that have been made to the Forms to prepare her for the analysis phase, This phase included the following operations: Before the introduction of audit data: at this stage was Check all the forms using the instructions To check to make sure the field of logical data and re- Incomplete, including a second field. Data Entry: The data entry Central to the central headquarters in Al-Bireh, was organized The data entry process using the Access Program Where the form has been programmed through this program. Was marked by the program that was developed in the Device properties and features the following: The possibility of dealing with an exact copy of the form The computer screen. The ability to conduct all tests and possibilities Possible and logical sequence of data in the form. Maintain a minimum of errors Portal Digital data or errors of field work. Ease of use and deal with the software and data (User-Friendly). The possibility of converting the data to the other formula can be Use and analysis of the statistical systems Analysis such as SPSS.

    Response rate

    during the field work we visit 1,820 family in Jerusalem Governorate, where the final results of the interviews were as follows: The number of families who were interviewed (1,188) in Jerusalem Governorate, (715) in J1, (473) in J2.

    Sampling error estimates

    Accuracy of the Data

    Statistical Errors Data of this survey can be affected by statistical errors due to use of a sample. Variance was calculated for the most important indicators and demonstrates the ability to disseminate results for Jerusalem governorate. However, dissemination of data by J1 and J2 area indicates values with a high variance

    Non-Statistical Errors It is possible for non-statistical errors to occur at all stages of project implementation or during the collection or entry of data. These errors can be summarized as non-response errors, response errors (respondent), corresponding errors (researcher) and data entry errors. To avoid errors and reduce their impact, strenuous efforts were made in the intensive training of researchers on how to conduct interviews, the procedures that must be followed during the interview and aspects that should be avoided. Practical exercises and theory were covered during the training session. Errors gradually decreased with the accumulation of experience by the field work team, which consisted of permanent and non-permanent researchers who conduct work on every PCBS survey.

    In general, non-statistical errors were related to the nature of the Social Survey of Jerusalem and can be summarized as follows: · Many households considered the specific details of the survey as interference in their private lives. · Israeli impact on Palestine (curfew and closure). · Some households thought the survey was related to social assistance or to taxes. · Hesitation by households in the Jerusalem area to supply data because they were afraid of Israeli procedures against them if they participated in a Palestinian survey or activity.

    Data Processing The data processing stage consisted of the following operations: 1. Editing and coding prior to data entry: All questionnaires were edited and coded in the office using the same instructions adopted for editing in the field.
    2. Data entry: At this stage, data were entered into the computer using a data entry template designed in Access. The data entry program was prepared to satisfy a number of requirements such as:
    · Duplication of the questionnaires on the computer screen. · Logic and consistency check of data entered. · Possibility for internal editing of question answers. · Maintaining a minimum of digital data entry and field work errors. · User-friendly handling. · Possibility of transferring data into another format to be used and analyzed using other statistical analytic systems such as SPSS.

    Data entry began on April 17, 2013 and finished on July 14, 2013. Data cleaning and checking processes were initiated simultaneously with the data entry. Thorough data quality checks and consistency checks were carried out and SPSS for Windows version 10.0 was used to perform the final tabulation of results.

    Possibility of Comparison At this stage, comparison can be made for time series periods and other sources. Where the survey results were compared with the data in 2010. The data were compared with the final results of the Population, Housing and Establishments Census of 2007 for Jerusalem and the results were very consistent.

  20. The impact of a short-term training program on workers’ sterile processing...

    • plos.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olive M. Fast; Hareya Gebremedhin Teka; Mussie Alemayehu/Gebreselassie; Christina Marie Danielle Fast; Dan Fast; Faith-Michael E. Uzoka (2023). The impact of a short-term training program on workers’ sterile processing knowledge and practices in 12 Ethiopian hospitals: A mixed methods study [Dataset]. http://doi.org/10.1371/journal.pone.0215643
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Olive M. Fast; Hareya Gebremedhin Teka; Mussie Alemayehu/Gebreselassie; Christina Marie Danielle Fast; Dan Fast; Faith-Michael E. Uzoka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ethiopia
    Description

    BackgroundThe need for increased attention to surgical safety in low- and middle-income countries invited organizations worldwide to support improvements in surgical care. However, little is written about issues in instrument sterilization in low- and middle-income countries including Ethiopia.ObjectiveThe study aims to identify the impact of a sterile processing course, with a training-of-trainers component and workplace mentoring on surgical instrument cleaning and sterilization practices at 12 hospitals in Ethiopia.MethodA mixed-methods research design that incorporates both qualitative and quantitative research approaches to address issues in sterile processing was used for this study. The quantitative data (test results) were validated by qualitative data (hospital assessments, including observations and participant feedback). Twelve hospitals were involved in the training, including two university teaching hospitals from two regions of Ethiopia. In each of the two regions 30 sterile processing staff were invited to participate in a three-day course including theory and skills training; 12–15 of these individuals were invited to remain for a two-day training of trainers course. The collected quantitative data were analysed using a paired t-test by SPSS software, whereas comparative analysis was employed for the qualitative data.ResultsProcess, structural, and knowledge changes were identified following program implementation. Knowledge test results indicated an increase of greater than 20% in participant sterile processing knowledge. Changes in process included improved flow of instruments from dirty to clean, greater attention to detail during the cleaning and decontamination steps, more focused inspection of instruments and careful packaging, as well as changes to how instruments were stored. Those trained to be trainers had taught over 250 additional staff.ConclusionsIncreased attention to and knowledge in sterile processing practices and care of instruments with a short, one-week course provides evidence that a small amount of resources applied to a largely under-resourced area of healthcare can result in decreased risks to patients and staff. Providing education in sterile processing and ensuring staff have the ability to disseminate their learnings to other health care providers results in decreasing risks of hospital associated infections in patients.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of Statistics (2022). Household Expenditure and Income Survey 2008, Economic Research Forum (ERF) Harmonization Data - Jordan [Dataset]. https://catalog.ihsn.org/index.php/catalog/7661

Household Expenditure and Income Survey 2008, Economic Research Forum (ERF) Harmonization Data - Jordan

Explore at:
Dataset updated
Jan 12, 2022
Dataset authored and provided by
Department of Statistics
Time period covered
2008 - 2009
Area covered
Jordan
Description

Abstract

The main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.

Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demograohic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor chracteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty

Geographic coverage

National

Analysis unit

  • Household/families
  • Individuals

Universe

The survey covered a national sample of households and all individuals permanently residing in surveyed households.

Kind of data

Sample survey data [ssd]

Sampling procedure

The 2008 Household Expenditure and Income Survey sample was designed using two-stage cluster stratified sampling method. In the first stage, the primary sampling units (PSUs), the blocks, were drawn using probability proportionate to the size, through considering the number of households in each block to be the block size. The second stage included drawing the household sample (8 households from each PSU) using the systematic sampling method. Fourth substitute households from each PSU were drawn, using the systematic sampling method, to be used on the first visit to the block in case that any of the main sample households was not visited for any reason.

To estimate the sample size, the coefficient of variation and design effect in each subdistrict were calculated for the expenditure variable from data of the 2006 Household Expenditure and Income Survey. This results was used to estimate the sample size at sub-district level, provided that the coefficient of variation of the expenditure variable at the sub-district level did not exceed 10%, with a minimum number of clusters that should not be less than 6 at the district level, that is to ensure good clusters representation in the administrative areas to enable drawing poverty pockets.

It is worth mentioning that the expected non-response in addition to areas where poor families are concentrated in the major cities were taken into consideration in designing the sample. Therefore, a larger sample size was taken from these areas compared to other ones, in order to help in reaching the poverty pockets and covering them.

Mode of data collection

Face-to-face [f2f]

Research instrument

List of survey questionnaires: (1) General Form (2) Expenditure on food commodities Form (3) Expenditure on non-food commodities Form

Cleaning operations

Raw Data The design and implementation of this survey procedures were: 1. Sample design and selection 2. Design of forms/questionnaires, guidelines to assist in filling out the questionnaires, and preparing instruction manuals 3. Design the tables template to be used for the dissemination of the survey results 4. Preparation of the fieldwork phase including printing forms/questionnaires, instruction manuals, data collection instructions, data checking instructions and codebooks 5. Selection and training of survey staff to collect data and run required data checkings 6. Preparation and implementation of the pretest phase for the survey designed to test and develop forms/questionnaires, instructions and software programs required for data processing and production of survey results 7. Data collection 8. Data checking and coding 9. Data entry 10. Data cleaning using data validation programs 11. Data accuracy and consistency checks 12. Data tabulation and preliminary results 13. Preparation of the final report and dissemination of final results

Harmonized Data - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets - The harmonization process started with cleaning all raw data files received from the Statistical Office - Cleaned data files were then all merged to produce one data file on the individual level containing all variables subject to harmonization - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables - A post-harmonization cleaning process was run on the data - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format

Search
Clear search
Close search
Google apps
Main menu