Facebook
TwitterThe Best Management Practices Statistical Estimator (BMPSE) version 1.2.0 was developed by the U.S. Geological Survey (USGS), in cooperation with the Federal Highway Administration (FHWA) Office of Project Delivery and Environmental Review to provide planning-level information about the performance of structural best management practices for decision makers, planners, and highway engineers to assess and mitigate possible adverse effects of highway and urban runoff on the Nation's receiving waters (Granato 2013, 2014; Granato and others, 2021). The BMPSE was assembled by using a Microsoft Access® database application to facilitate calculation of BMP performance statistics. Granato (2014) developed quantitative methods to estimate values of the trapezoidal-distribution statistics, correlation coefficients, and the minimum irreducible concentration (MIC) from available data. Granato (2014) developed the BMPSE to hold and process data from the International Stormwater Best Management Practices Database (BMPDB, www.bmpdatabase.org). Version 1.0 of the BMPSE contained a subset of the data from the 2012 version of the BMPDB; the current version of the BMPSE (1.2.0) contains a subset of the data from the December 2019 version of the BMPDB. Selected data from the BMPDB were screened for import into the BMPSE in consultation with Jane Clary, the data manager for the BMPDB. Modifications included identifying water quality constituents, making measurement units consistent, identifying paired inflow and outflow values, and converting BMPDB water quality values set as half the detection limit back to the detection limit. Total polycyclic aromatic hydrocarbons (PAH) values were added to the BMPSE from BMPDB data; they were calculated from individual PAH measurements at sites with enough data to calculate totals. The BMPSE tool can sort and rank the data, calculate plotting positions, calculate initial estimates, and calculate potential correlations to facilitate the distribution-fitting process (Granato, 2014). For water-quality ratio analysis the BMPSE generates the input files and the list of filenames for each constituent within the Graphical User Interface (GUI). The BMPSE calculates the Spearman’s rho (ρ) and Kendall’s tau (τ) correlation coefficients with their respective 95-percent confidence limits and the probability that each correlation coefficient value is not significantly different from zero by using standard methods (Granato, 2014). If the 95-percent confidence limit values are of the same sign, then the correlation coefficient is statistically different from zero. For hydrograph extension, the BMPSE calculates ρ and τ between the inflow volume and the hydrograph-extension values (Granato, 2014). For volume reduction, the BMPSE calculates ρ and τ between the inflow volume and the ratio of outflow to inflow volumes (Granato, 2014). For water-quality treatment, the BMPSE calculates ρ and τ between the inflow concentrations and the ratio of outflow to inflow concentrations (Granato, 2014; 2020). The BMPSE also calculates ρ between the inflow and the outflow concentrations when a water-quality treatment analysis is done. The current version (1.2.0) of the BMPSE also has the option to calculate urban-runoff quality statistics from inflows to BMPs by using computer code developed for the Highway Runoff Database (Granato and Cazenas, 2009;Granato, 2019). Granato, G.E., 2013, Stochastic empirical loading and dilution model (SELDM) version 1.0.0: U.S. Geological Survey Techniques and Methods, book 4, chap. C3, 112 p., CD-ROM https://pubs.usgs.gov/tm/04/c03 Granato, G.E., 2014, Statistics for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater runoff best management practices (BMPs): U.S. Geological Survey Scientific Investigations Report 2014–5037, 37 p., http://dx.doi.org/10.3133/sir20145037. Granato, G.E., 2019, Highway-Runoff Database (HRDB) Version 1.1.0: U.S. Geological Survey data release, https://doi.org/10.5066/P94VL32J. Granato, G.E., and Cazenas, P.A., 2009, Highway-Runoff Database (HRDB Version 1.0)--A data warehouse and preprocessor for the stochastic empirical loading and dilution model: Washington, D.C., U.S. Department of Transportation, Federal Highway Administration, FHWA-HEP-09-004, 57 p. https://pubs.usgs.gov/sir/2009/5269/disc_content_100a_web/FHWA-HEP-09-004.pdf Granato, G.E., Spaetzel, A.B., and Medalie, L., 2021, Statistical methods for simulating structural stormwater runoff best management practices (BMPs) with the stochastic empirical loading and dilution model (SELDM): U.S. Geological Survey Scientific Investigations Report 2020–5136, 41 p., https://doi.org/10.3133/sir20205136
Facebook
TwitterThe latest estimates from the 2010/11 Taking Part adult survey produced by DCMS were released on 30 June 2011 according to the arrangements approved by the UK Statistics Authority.
30 June 2011
**
April 2010 to April 2011
**
National and Regional level data for England.
**
Further analysis of the 2010/11 adult dataset and data for child participation will be published on 18 August 2011.
The latest data from the 2010/11 Taking Part survey provides reliable national estimates of adult engagement with sport, libraries, the arts, heritage and museums & galleries. This release also presents analysis on volunteering and digital participation in our sectors and a look at cycling and swimming proficiency in England. The Taking Part survey is a continuous annual survey of adults and children living in private households in England, and carries the National Statistics badge, meaning that it meets the highest standards of statistical quality.
These spreadsheets contain the data and sample sizes for each sector included in the survey:
The previous Taking Part release was published on 31 March 2011 and can be found online.
This release is published in accordance with the Code of Practice for Official Statistics (2009), as produced by the http://www.statisticsauthority.gov.uk/">UK Statistics Authority (UKSA). The UKSA has the overall objective of promoting and safeguarding the production and publication of official statistics that serve the public good. It monitors and reports on all official statistics, and promotes good practice in this area.
The document below contains a list of Ministers and Officials who have received privileged early access to this release of Taking Part data. In line with best practice, the list has been kept to a minimum and those given access for briefing purposes had a maximum of 24 hours.
The responsible statistician for this release is Neil Wilson. For any queries please contact the Taking Part team on 020 7211 6968 or takingpart@culture.gsi.gov.uk.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Visual analytics: Exposing the past, understanding the present, and looking to the future Dan Ariely, founder of The Center for Advanced Hindsight once posted on Facebook, “Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it...” This is especially true in Higher Education as much of the work being done to organize, connect, and analyze big data is happening in the for profit sector. This multimedia presentation (video, photos, and text) has three goals. (1) Discuss how the field visual analytics is tackling the problem of analyzing big data. (2) Explore when visual analytics is superior and inferior to typical statistics. (3) Tactics and tools for Institutional Researchers to use in their everyday work to change data into actionable intelligence.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Public health-related decision-making on policies aimed at controlling the COVID-19 pandemic outbreak depends on complex epidemiological models that are compelled to be robust and use all relevant available data. This data article provides a new combined worldwide COVID-19 dataset obtained from official data sources with improved systematic measurement errors and a dedicated dashboard for online data visualization and summary. The dataset adds new measures and attributes to the normal attributes of official data sources, such as daily mortality, and fatality rates. We used comparative statistical analysis to evaluate the measurement errors of COVID-19 official data collections from the Chinese Center for Disease Control and Prevention (Chinese CDC), World Health Organization (WHO) and European Centre for Disease Prevention and Control (ECDC). The data is collected by using text mining techniques and reviewing pdf reports, metadata, and reference data. The combined dataset includes complete spatial data such as countries area, international number of countries, Alpha-2 code, Alpha-3 code, latitude, longitude, and some additional attributes such as population. The improved dataset benefits from major corrections on the referenced data sets and official reports such as adjustments in the reporting dates, which suffered from a one to two days lag, removing negative values, detecting unreasonable changes in historical data in new reports and corrections on systematic measurement errors, which have been increasing as the pandemic outbreak spreads and more countries contribute data for the official repositories. Additionally, the root mean square error of attributes in the paired comparison of datasets was used to identify the main data problems. The data for China is presented separately and in more detail, and it has been extracted from the attached reports available on the main page of the CCDC website. This dataset is a comprehensive and reliable source of worldwide COVID-19 data that can be used in epidemiological models assessing the magnitude and timeline for confirmed cases, long-term predictions of deaths or hospital utilization, the effects of quarantine, stay-at-home orders and other social distancing measures, the pandemic’s turning point or in economic and social impact analysis, helping to inform national and local authorities on how to implement an adaptive response approach to re-opening the economy, re-open schools, alleviate business and social distancing restrictions, design economic programs or allow sports events to resume.
Facebook
Twitterhttps://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/CD-10849https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/CD-10849
"The Statistical Abstract of the United States, published since 1878, is the standard summary of statistics on the social, political, and economic organization of the United States. It is designed to serve as a convenient volume for statistical reference and as a guide to other statistical publications and sources. The latter function is served by the introductory text to each section, the source note appearing below each table, and Appendix I, which comprises the Guide to Sources of Statisti cs, the Guide to State Statistical Abstracts, and the Guide to Foreign Statistical Abstracts. The Statistical Abstract sections and tables are compiled into one Adobe PDF named StatAbstract2009.pdf. This PDF is bookmarked by section and by table and can be searched using the Acrobat Search feature. The Statistical Abstract on CD-ROM is best viewed using Adobe Acrobat 5, or any subsequent version of Acrobat or Acrobat Reader. The Statistical Abstract tables and the metropolitan areas tables from Appendix II are available as Excel(.xls or .xlw) spreadsheets. In most cases, these spreadsheet files offer the user direct access to more data than are shown either in the publication or Adobe Acrobat. These files usually contain more years of data, more geographic areas, and/or more categories of subjects than those shown in the Acrobat version. The extensive selection of statistics is provided for the United States, with selected data for regions, divisions, states, metropolitan areas, cities, and foreign countries from reports and records of government and private agencies. Software on the disc can be used to perform full-text searches, view official statistics, open tables as Lotus worksheets or Excel workbooks, and link directly to source agencies and organizations for supporting information. Except as indicated, figures are for the United States as presently constituted. Although emphasis in the Statistical Abstract is primarily given to national data, many tables present data for regions and individual states and a smaller number for metropolitan areas and cities.Statistics for the Commonwealth of Puerto Rico and for island areas of the United States are included in many state tables and are supplemented by information in Section 29. Additional information for states, cities, counties, metropolitan areas, and other small units, as well as more historical data are available in various supplements to the Abstract. Statistics in this edition are generally for the most recent year or period available by summer 2006. Each year over 1,400 tables and charts are reviewed and evaluated; new tables and charts of current interest are added, continuing series are updated, and less timely data are condensed or eliminated. Text notes and appendices are revised as appropriate. This year we have introduced 72 new tables covering a wide range of subject areas. These cover a variety of topics including: learning disability for children, people impacted by the hurricanes in the Gulf Coast area, employees with alternative work arrangements, adult computer and Internet users by selected characteristics, North America cruise industry, women- and minority-owned businesses, and the percentage of the adult population considered to be obese. Some of the annually surveyed topics are population; vital statistics; health and nutrition; education; law enforcement, courts and prison; geography and environment; elections; state and local government; federal government finances and employment; national defense and veterans affairs; social insurance and human services; labor force, employment, and earnings; income, expenditures, and wealth; prices; business enterprise; science and technology; agriculture; natural resources; energy; construction and housing; manufactures; domestic trade and services; transportation; information and communication; banking, finance, and insurance; arts, entertainment, and recreation; accommodation, food services, and other services; foreign commerce and aid; outlying areas; and comparative international statistics." Note to Users: This CD is part of a collection located in the Data Archive of the Odum Institute for Research in Social Science, at the University of North Carolina at Chapel Hill. The collection is located in Room 10, Manning Hall. Users may check the CDs out subscribing to the honor system. Items can be checked out for a period of two weeks. Loan forms are located adjacent to the collection.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data set contains the replication data and supplements for the article "Knowing, Doing, and Feeling: A three-year, mixed-methods study of undergraduates’ information literacy development." The survey data is from two samples: - cross-sectional sample (different students at the same point in time) - longitudinal sample (the same students and different points in time)Surveys were distributed via Qualtrics during the students' first and sixth semesters. Quantitative and qualitative data were collected and used to describe students' IL development over 3 years. Statistics from the quantitative data were analyzed in SPSS. The qualitative data was coded and analyzed thematically in NVivo. The qualitative, textual data is from semi-structured interviews with sixth-semester students in psychology at UiT, both focus groups and individual interviews. All data were collected as part of the contact author's PhD research on information literacy (IL) at UiT. The following files are included in this data set: 1. A README file which explains the quantitative data files. (2 file formats: .txt, .pdf)2. The consent form for participants (in Norwegian). (2 file formats: .txt, .pdf)3. Six data files with survey results from UiT psychology undergraduate students for the cross-sectional (n=209) and longitudinal (n=56) samples, in 3 formats (.dat, .csv, .sav). The data was collected in Qualtrics from fall 2019 to fall 2022. 4. Interview guide for 3 focus group interviews. File format: .txt5. Interview guides for 7 individual interviews - first round (n=4) and second round (n=3). File format: .txt 6. The 21-item IL test (Tromsø Information Literacy Test = TILT), in English and Norwegian. TILT is used for assessing students' knowledge of three aspects of IL: evaluating sources, using sources, and seeking information. The test is multiple choice, with four alternative answers for each item. This test is a "KNOW-measure," intended to measure what students know about information literacy. (2 file formats: .txt, .pdf)7. Survey questions related to interest - specifically students' interest in being or becoming information literate - in 3 parts (all in English and Norwegian): a) information and questions about the 4 phases of interest; b) interest questionnaire with 26 items in 7 subscales (Tromsø Interest Questionnaire - TRIQ); c) Survey questions about IL and interest, need, and intent. (2 file formats: .txt, .pdf)8. Information about the assignment-based measures used to measure what students do in practice when evaluating and using sources. Students were evaluated with these measures in their first and sixth semesters. (2 file formats: .txt, .pdf)9. The Norwegain Centre for Research Data's (NSD) 2019 assessment of the notification form for personal data for the PhD research project. In Norwegian. (Format: .pdf)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ecological theories often encompass multiple levels of biological organization, such as genes, individuals, populations, and communities. Despite substantial progress toward ecological theory spanning multiple levels, ecological data rarely are connected in this way. This is unfortunate because different types of ecological data often emerge from the same underlying processes and, therefore, are naturally connected among levels. Here, we describe an approach to integrate data collected at multiple levels (e.g., individuals, populations) in a single statistical analysis. The resulting integrated models make full use of existing data and might strengthen links between statistical ecology and ecological models and theories that span multiple levels of organization. Integrated models are increasingly feasible due to recent advances in computational statistics, which allow fast calculations of multiple likelihoods that depend on complex mechanistic models. We discuss recently developed integrated models and outline a simple application using data on freshwater fishes in south-eastern Australia. Available data on freshwater fishes include population survey data, mark-recapture data, and individual growth trajectories. We use these data to estimate age-specific survival and reproduction from size-structured data, accounting for imperfect detection of individuals. Given that such parameter estimates would be infeasible without an integrated model, we argue that integrated models will strengthen ecological theory by connecting theoretical and mathematical models directly to empirical data. Although integrated models remain conceptually and computationally challenging, integrating ecological data among levels is likely to be an important step toward unifying ecology among levels.
Facebook
TwitterThis dataset includes percent distribution of births for females by age group in the United States since 1933. The number of states in the reporting area differ historically. In 1915 (when the birth registration area was established), 10 states and the District of Columbia reported births; by 1933, 48 states and the District of Columbia were reporting births, with the last two states, Alaska and Hawaii, added to the registration area in 1959 and 1960, when these regions gained statehood. Reporting area information is detailed in references 1 and 2 below. Trend lines for 1909–1958 are based on live births adjusted for under-registration; beginning with 1959, trend lines are based on registered live births. SOURCES NCHS, National Vital Statistics System, birth data (see https://www.cdc.gov/nchs/births.htm); public-use data files (see https://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm); and CDC WONDER (see http://wonder.cdc.gov/). REFERENCES National Office of Vital Statistics. Vital Statistics of the United States, 1950, Volume I. 1954. Available from: https://www.cdc.gov/nchs/data/vsus/vsus_1950_1.pdf. Hetzel AM. U.S. vital statistics system: major activities and developments, 1950-95. National Center for Health Statistics. 1997. Available from: https://www.cdc.gov/nchs/data/misc/usvss.pdf. National Center for Health Statistics. Vital Statistics of the United States, 1967, Volume I–Natality. 1969. Available from: https://www.cdc.gov/nchs/data/vsus/nat67_1.pdf. Martin JA, Hamilton BE, Osterman MJK, et al. Births: Final data for 2015. National vital statistics reports; vol 66 no 1. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: Final data for 2016. National Vital Statistics Reports; vol 67 no 1. Hyattsville, MD: National Center for Health Statistics. 2018. Available from: https://www.cdc.gov/nvsr/nvsr67/nvsr67_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Births: Final data for 2018. National vital statistics reports; vol 68 no 13. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_13.pdf.
Facebook
TwitterThe harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.
----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:
Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
The survey has six main objectives. These objectives are:
The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.
National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.
1- Household/family. 2- Individual/person.
The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
Sample survey data [ssd]
----> Design:
Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.
----> Sample frame:
Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.
----> Sampling Stages:
In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.
Face-to-face [f2f]
----> Preparation:
The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.
----> Questionnaire Parts:
The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job
Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.
Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days
Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.
----> Raw Data:
Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.
----> Harmonized Data:
Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).
Facebook
TwitterThis dataset includes live births, birth rates, and fertility rates by Hispanic origin of mother in the United States since 1989. National data on births by Hispanic origin exclude data for Louisiana, New Hampshire, and Oklahoma in 1989; New Hampshire and Oklahoma in 1990; and New Hampshire in 1991 and 1992. Birth and fertility rates for the Central and South American population includes other and unknown Hispanic. Information on reporting Hispanic origin is detailed in the Technical Appendix for the 1999 public-use natality data file (see ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/DVS/natality/Nat1999doc.pdf). SOURCES NCHS, National Vital Statistics System, birth data (see https://www.cdc.gov/nchs/births.htm); public-use data files (see https://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm); and CDC WONDER (see http://wonder.cdc.gov/). REFERENCES National Office of Vital Statistics. Vital Statistics of the United States, 1950, Volume I. 1954. Available from: https://www.cdc.gov/nchs/data/vsus/vsus_1950_1.pdf. Hetzel AM. U.S. vital statistics system: major activities and developments, 1950-95. National Center for Health Statistics. 1997. Available from: https://www.cdc.gov/nchs/data/misc/usvss.pdf. National Center for Health Statistics. Vital Statistics of the United States, 1967, Volume I–Natality. 1969. Available from: https://www.cdc.gov/nchs/data/vsus/nat67_1.pdf. Martin JA, Hamilton BE, Osterman MJK, et al. Births: Final data for 2015. National vital statistics reports; vol 66 no 1. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: Final data for 2016. National Vital Statistics Reports; vol 67 no 1. Hyattsville, MD: National Center for Health Statistics. 2018. Available from: https://www.cdc.gov/nvsr/nvsr67/nvsr67_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Births: Final data for 2018. National vital statistics reports; vol 68 no 13. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_13.pdf.
Facebook
TwitterData licence Germany – Attribution – Version 2.0https://www.govdata.de/dl-de/by-2-0
License information was derived automatically
Data from various sources are updated in the Statistical Information System of the City of Cologne. The annual statistical yearbook publishes these in tabular, graphic and cartographic form at the level of the city districts and districts. Furthermore, definitions and calculation bases are explained. Small-scale statistics at the level of the 86 districts can be obtained from the Cologne district information become. All levels of the local area structure are presented in this publication explained.
This statistical data catalogue supplements the range of small-scale data. Selected structural data can be called up here in compact tabular form at the level of the 570 statistical districts or the 86 districts. The two overviews provide information about which data is available and from which source it originates. The data itself is provided annually.
Notes:
Facebook
TwitterThis survey provides information on household income and expenditure leading to measure the levels and changes of the living conditions of the people and to observe the consumption patterns .
Key objectives of the survey - To identify the income patterns in Urban, Rural and Estate Sectors & provinces. - To identify the income patterns by income levels. - Average consumption of food items and non food items - Expenditure patterns by sector and by income level.
National coverage.
Household, Individuals
For this survey a sample of buildings and the occupants therein was drawn from the whole island
Sample survey data [ssd]
A two stage stratified random sample design was used in the survey. Urban, Rural and Estate sectors of the Districts were the domains for stratification. The sample frame was the list of buildings that were prepared for the Census of Population and Housing 2001.
Selection of Primary Sampling Units (PSU's) Primary sampling units are the census blocks prepared for the Census of Population and Housing - 2001. The sample frame, which is a collection of all census blocks in the domain, was used for the selection of primary sampling units. A sample of 500 primary sampling units was selected from the sampling frame for the survey.
Selection of Secondary Sampling Units (SSU's) Secondary Sampling Units are the housing units in the selected 500 primary sampling units (census blocks). From each primary sampling unit 10 housing units (SSU) were selected for the survey. The total sample size of 5000 housing units was selected and distributed among Districts in Sri Lanka.
Face-to-face [f2f]
Questionaires
The survey schedule was designed to collect data by household and separate schedules were used for each household identified according to the definition of the household within the housing units selected for the survey. The survey schedule consists three main sections .
1. Demographic section
2. Expenditure
3. Income
The Demographic characteristics and usual activities of the inmates belonging to the household were reported in the Demographic section of the schedule (and close relatives temporarily living away are also listed in this section). Expenditure section has two sub sections to report food and non-food consumption data separately. Expenditure incurred on their own decisions by boarders and servants are recorded in the sub section under the Main expenditure section. The income has seven sub sections categorized according to the main sources of income.
The exact differences or sampling error ,varies depending on the particular sample selected and the variability is measured by the standard error of the estimate. There is about a 95% chance or level of confidence that an estimate based on a sample will differ by no more than 1.96 standard errors from the true population value because of sampling error. Analyses relating to the HIES are generally conducted at the 95% level of confidence .
confidence interval = Estimate value ± (standard error )*(1.96)
http://www.statistics.gov.lk/HIES/HIES%202007/introduction%20%20HIES.pdf
By visiting the above website a description about the adjustments for non-response could be read in section 1.2 of the Final report.
Facebook
TwitterThis dataset of U.S. mortality trends since 1900 highlights childhood mortality rates by age group for age at death.
Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).
Age groups for childhood death rates are based on age at death.
SOURCES
CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.
National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf.
Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf.
National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Facebook
Twitterhttps://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc
This dataset contains metadata (title, abstract, date of publication, field, etc) for around 1 million academic articles. Each record contains additional information on the country of study and whether the article makes use of data. Machine learning tools were used to classify the country of study and data use.
Our data source of academic articles is the Semantic Scholar Open Research Corpus (S2ORC) (Lo et al. 2020). The corpus contains more than 130 million English language academic papers across multiple disciplines. The papers included in the Semantic Scholar corpus are gathered directly from publishers, from open archives such as arXiv or PubMed, and crawled from the internet.
We placed some restrictions on the articles to make them usable and relevant for our purposes. First, only articles with an abstract and parsed PDF or latex file are included in the analysis. The full text of the abstract is necessary to classify the country of study and whether the article uses data. The parsed PDF and latex file are important for extracting important information like the date of publication and field of study. This restriction eliminated a large number of articles in the original corpus. Around 30 million articles remain after keeping only articles with a parsable (i.e., suitable for digital processing) PDF, and around 26% of those 30 million are eliminated when removing articles without an abstract. Second, only articles from the year 2000 to 2020 were considered. This restriction eliminated an additional 9% of the remaining articles. Finally, articles from the following fields of study were excluded, as we aim to focus on fields that are likely to use data produced by countries’ national statistical system: Biology, Chemistry, Engineering, Physics, Materials Science, Environmental Science, Geology, History, Philosophy, Math, Computer Science, and Art. Fields that are included are: Economics, Political Science, Business, Sociology, Medicine, and Psychology. This third restriction eliminated around 34% of the remaining articles. From an initial corpus of 136 million articles, this resulted in a final corpus of around 10 million articles.
Due to the intensive computer resources required, a set of 1,037,748 articles were randomly selected from the 10 million articles in our restricted corpus as a convenience sample.
The empirical approach employed in this project utilizes text mining with Natural Language Processing (NLP). The goal of NLP is to extract structured information from raw, unstructured text. In this project, NLP is used to extract the country of study and whether the paper makes use of data. We will discuss each of these in turn.
To determine the country or countries of study in each academic article, two approaches are employed based on information found in the title, abstract, or topic fields. The first approach uses regular expression searches based on the presence of ISO3166 country names. A defined set of country names is compiled, and the presence of these names is checked in the relevant fields. This approach is transparent, widely used in social science research, and easily extended to other languages. However, there is a potential for exclusion errors if a country’s name is spelled non-standardly.
The second approach is based on Named Entity Recognition (NER), which uses machine learning to identify objects from text, utilizing the spaCy Python library. The Named Entity Recognition algorithm splits text into named entities, and NER is used in this project to identify countries of study in the academic articles. SpaCy supports multiple languages and has been trained on multiple spellings of countries, overcoming some of the limitations of the regular expression approach. If a country is identified by either the regular expression search or NER, it is linked to the article. Note that one article can be linked to more than one country.
The second task is to classify whether the paper uses data. A supervised machine learning approach is employed, where 3500 publications were first randomly selected and manually labeled by human raters using the Mechanical Turk service (Paszke et al. 2019).[1] To make sure the human raters had a similar and appropriate definition of data in mind, they were given the following instructions before seeing their first paper:
Each of these documents is an academic article. The goal of this study is to measure whether a specific academic article is using data and from which country the data came.
There are two classification tasks in this exercise:
1. identifying whether an academic article is using data from any country
2. Identifying from which country that data came.
For task 1, we are looking specifically at the use of data. Data is any information that has been collected, observed, generated or created to produce research findings. As an example, a study that reports findings or analysis using a survey data, uses data. Some clues to indicate that a study does use data includes whether a survey or census is described, a statistical model estimated, or a table or means or summary statistics is reported.
After an article is classified as using data, please note the type of data used. The options are population or business census, survey data, administrative data, geospatial data, private sector data, and other data. If no data is used, then mark "Not applicable". In cases where multiple data types are used, please click multiple options.[2]
For task 2, we are looking at the country or countries that are studied in the article. In some cases, no country may be applicable. For instance, if the research is theoretical and has no specific country application. In some cases, the research article may involve multiple countries. In these cases, select all countries that are discussed in the paper.
We expect between 10 and 35 percent of all articles to use data.
The median amount of time that a worker spent on an article, measured as the time between when the article was accepted to be classified by the worker and when the classification was submitted was 25.4 minutes. If human raters were exclusively used rather than machine learning tools, then the corpus of 1,037,748 articles examined in this study would take around 50 years of human work time to review at a cost of $3,113,244, which assumes a cost of $3 per article as was paid to MTurk workers.
A model is next trained on the 3,500 labelled articles. We use a distilled version of the BERT (bidirectional Encoder Representations for transformers) model to encode raw text into a numeric format suitable for predictions (Devlin et al. (2018)). BERT is pre-trained on a large corpus comprising the Toronto Book Corpus and Wikipedia. The distilled version (DistilBERT) is a compressed model that is 60% the size of BERT and retains 97% of the language understanding capabilities and is 60% faster (Sanh, Debut, Chaumond, Wolf 2019). We use PyTorch to produce a model to classify articles based on the labeled data. Of the 3,500 articles that were hand coded by the MTurk workers, 900 are fed to the machine learning model. 900 articles were selected because of computational limitations in training the NLP model. A classification of “uses data” was assigned if the model predicted an article used data with at least 90% confidence.
The performance of the models classifying articles to countries and as using data or not can be compared to the classification by the human raters. We consider the human raters as giving us the ground truth. This may underestimate the model performance if the workers at times got the allocation wrong in a way that would not apply to the model. For instance, a human rater could mistake the Republic of Korea for the Democratic People’s Republic of Korea. If both humans and the model perform the same kind of errors, then the performance reported here will be overestimated.
The model was able to predict whether an article made use of data with 87% accuracy evaluated on the set of articles held out of the model training. The correlation between the number of articles written about each country using data estimated under the two approaches is given in the figure below. The number of articles represents an aggregate total of
Facebook
TwitterIt is a continuous face to face household survey of adults aged 16 and over in England and chidren aged 5-15 years old. This latest releases presents rolling estimates incorporating data from the second quarter of year seven of the survey.
21 December 2011
October 2010 to September 2011
National and Regional level data for England.
Rolling annual estimates for adults, including the third quarter of the 2011/12 survey year, is scheduled for the end of March 2012.
The latest data from the 2010/11 Taking Part survey provides reliable national estimates of adult and child engagement with sport, libraries, the arts, heritage and museums & galleries. This release builds on the first release of data from 2010/11 to look at a number of areas in depth and present measures that begin to consider broader definitions of participation in our sectors. The report also looks at some of the other measures in the survey that provide estimates of volunteering and charitable giving and civic engagement.
The Taking Part survey is a continuous annual survey of adults and children living in private households in England, and carries the National Statistics badge, meaning that it meets the highest standards of statistical quality.
These spreadsheets contain the data and sample sizes to support the material in this release:
The previous Taking Part release was published on 29 September 2011 and can be found online. It also provides spreadsheets containing the data and sample sizes for each sector included in the survey.
The document below contains a list of Ministers and Officials who have received privileged early access to this release of Taking Part data. In line with best practice, the list has been kept to a minimum and those given access for briefing purposes had a maximum of 24 hours.
This release is published in accordance with the Code of Practice for Official Statistics (2009), as produced by the UK Statistics Authority (UKSA). The UKSA has the overall objective of promoting and s
Facebook
TwitterThis dataset provides a sectoral breakdown of all securities issuances of equity or debt by Irish resident entities. Data is published on a monthly basis and shows the trends in total issuance (stock) and transactions (flow). From December 2020, the Securities Issues data is published using data obtained via the ECBs Centralised Securities Database (CSDB). The CSDB Securities Issues Statistics (CSEC) is a harmonised approach that covers all 27 EU Member States and follows international standards for aggregated statistics found here. This is an advancement from the previous SIS process where aggregates were compiled nationally and submitted to the ECB through each National Central Bank. The compilation of each series in the CSEC uses a bottom-up approach and is aggregated from the most granular ISIN level data. A factsheet on the CSEC data can be accessed via this link: https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/securities/shared/pdf/CSEC_Factsheet.sv.pdf
Facebook
TwitterThe Taking Part survey has run since 2005 and is the key evidence source for DCMS. It is a continuous face to face household survey of adults aged 16 and over in England and children aged 5-15 years old. This latest releases presents rolling estimates incorporating data from the third quarter of year seven of the survey.
29 March 2012
January 2011 - December 2011
National and Regional level data for England.
A release of rolling annual estimates for adults, including the fourth quarter of the 2011/12 survey year, is scheduled for the end of June 2012.
The latest data from the 2011/12 Taking Part survey provides reliable national estimates of adult and child engagement with sport, libraries, the arts, heritage and museums and galleries. This release builds on the data from 2010/2011 and data from quarter 1 and quarter 2 releases of data from earlier in 2011/12 to look at a number of areas in depth and present measures that begin to consider broader definitions of participation in our sectors. The report also looks at some of the other measures in the survey that provide estimates of volunteering and charitable giving and civic engagement.
The Taking Part survey is a continuous annual survey of adults and children living in private households in England, and carries the National Statistics badge, meaning that it meets the highest standards of statistical quality.
These spreadsheets contain the data and sample sizes to support the material in this release:
The previous Taking Part release was published on 21 December 2011 and can be found online. It also provides spreadsheets containing the data and sample sizes for each sector included in the survey.
The document below contains a list of Ministers and Officials who have received privileged early access to this release of Taking Part data. In line with best practice, the list has been kept to a minimum and those given access for briefing purposes had a maximum of 24 hours.
This release is published in accordance with the Code of Practice for Off
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Structural business statistics (SBS) describes the structure, conduct and performance of economic activities, down to the most detailed activity level (several hundred economic sectors).
SBS are transmitted annually by the EU Member States on the basis of a legal obligation from 1995 onwards.
SBS covers all activities of the business economy with the exception of agricultural activities and personal services and the data are provided by all EU Member States, Iceland, Norway and Switzerland, some candidate and potential candidate countries. The data are collected by domain of activity (annex) :
The majority of the data is collected by National Statistical Institutes (NSIs) by means of statistical surveys, business registers or from various administrative sources. Regulatory or controlling national offices for financial institutions or central banks often provide the information required for the financial sector (NACE Rev 2 Section K / NACE Rev 1.1 Section J).
Member States apply various statistical methods, according to the data source, such as grossing up, model based estimation or different forms of imputation, to ensure the quality of SBSs produced.
Main characteristics (variables) of the SBS data category:
All SBS characteristics are published on Eurostat’s website by tables and an example of the existent tables is presented below:
More information on the contents of different tables: the detail level and breakdowns required starting with the reference year 2008 is defined in Commission Regulation N° 251/2009. For previous reference years it is included in Commission Regulations (EC) N° 2701/98 and amended by Commission Regulation N°1614/2002 and Commission Regulation N°1669/2003.
Several important derived indicators are generated in the form of ratios of certain monetary characteristics or per head values. A list with the available derived indicators is available below in the Annex.
Facebook
TwitterThis dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death.
Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).
Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends.
SOURCES
CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.
National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf.
Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf.
National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Facebook
TwitterThe National Energy Efficiency Data-Framework (NEED) was set up to provide a better understanding of energy use and energy efficiency in domestic and non-domestic buildings in Great Britain. The data framework matches data about a property together - including energy consumption and energy efficiency measures installed - at household level.
We identified 2 processing errors in this edition of the Domestic NEED Annual report and corrected them. The changes are small and do not affect the overall findings of the report, only the domestic energy consumption estimates. The impact of energy efficiency measures analysis remains unchanged. The revisions are summarised here:
This survey (published June 2021) sought user feedback to inform BEIS’ development of Domestic NEED to better meet user requirements. It is now closed: thank you to those who responded.
We are reviewing responses and will provide an update in due course. The responses will also inform BEIS’ decision on whether or not to pause the 2022 NEED publication to enable development work to take place.
Facebook
TwitterThe Best Management Practices Statistical Estimator (BMPSE) version 1.2.0 was developed by the U.S. Geological Survey (USGS), in cooperation with the Federal Highway Administration (FHWA) Office of Project Delivery and Environmental Review to provide planning-level information about the performance of structural best management practices for decision makers, planners, and highway engineers to assess and mitigate possible adverse effects of highway and urban runoff on the Nation's receiving waters (Granato 2013, 2014; Granato and others, 2021). The BMPSE was assembled by using a Microsoft Access® database application to facilitate calculation of BMP performance statistics. Granato (2014) developed quantitative methods to estimate values of the trapezoidal-distribution statistics, correlation coefficients, and the minimum irreducible concentration (MIC) from available data. Granato (2014) developed the BMPSE to hold and process data from the International Stormwater Best Management Practices Database (BMPDB, www.bmpdatabase.org). Version 1.0 of the BMPSE contained a subset of the data from the 2012 version of the BMPDB; the current version of the BMPSE (1.2.0) contains a subset of the data from the December 2019 version of the BMPDB. Selected data from the BMPDB were screened for import into the BMPSE in consultation with Jane Clary, the data manager for the BMPDB. Modifications included identifying water quality constituents, making measurement units consistent, identifying paired inflow and outflow values, and converting BMPDB water quality values set as half the detection limit back to the detection limit. Total polycyclic aromatic hydrocarbons (PAH) values were added to the BMPSE from BMPDB data; they were calculated from individual PAH measurements at sites with enough data to calculate totals. The BMPSE tool can sort and rank the data, calculate plotting positions, calculate initial estimates, and calculate potential correlations to facilitate the distribution-fitting process (Granato, 2014). For water-quality ratio analysis the BMPSE generates the input files and the list of filenames for each constituent within the Graphical User Interface (GUI). The BMPSE calculates the Spearman’s rho (ρ) and Kendall’s tau (τ) correlation coefficients with their respective 95-percent confidence limits and the probability that each correlation coefficient value is not significantly different from zero by using standard methods (Granato, 2014). If the 95-percent confidence limit values are of the same sign, then the correlation coefficient is statistically different from zero. For hydrograph extension, the BMPSE calculates ρ and τ between the inflow volume and the hydrograph-extension values (Granato, 2014). For volume reduction, the BMPSE calculates ρ and τ between the inflow volume and the ratio of outflow to inflow volumes (Granato, 2014). For water-quality treatment, the BMPSE calculates ρ and τ between the inflow concentrations and the ratio of outflow to inflow concentrations (Granato, 2014; 2020). The BMPSE also calculates ρ between the inflow and the outflow concentrations when a water-quality treatment analysis is done. The current version (1.2.0) of the BMPSE also has the option to calculate urban-runoff quality statistics from inflows to BMPs by using computer code developed for the Highway Runoff Database (Granato and Cazenas, 2009;Granato, 2019). Granato, G.E., 2013, Stochastic empirical loading and dilution model (SELDM) version 1.0.0: U.S. Geological Survey Techniques and Methods, book 4, chap. C3, 112 p., CD-ROM https://pubs.usgs.gov/tm/04/c03 Granato, G.E., 2014, Statistics for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater runoff best management practices (BMPs): U.S. Geological Survey Scientific Investigations Report 2014–5037, 37 p., http://dx.doi.org/10.3133/sir20145037. Granato, G.E., 2019, Highway-Runoff Database (HRDB) Version 1.1.0: U.S. Geological Survey data release, https://doi.org/10.5066/P94VL32J. Granato, G.E., and Cazenas, P.A., 2009, Highway-Runoff Database (HRDB Version 1.0)--A data warehouse and preprocessor for the stochastic empirical loading and dilution model: Washington, D.C., U.S. Department of Transportation, Federal Highway Administration, FHWA-HEP-09-004, 57 p. https://pubs.usgs.gov/sir/2009/5269/disc_content_100a_web/FHWA-HEP-09-004.pdf Granato, G.E., Spaetzel, A.B., and Medalie, L., 2021, Statistical methods for simulating structural stormwater runoff best management practices (BMPs) with the stochastic empirical loading and dilution model (SELDM): U.S. Geological Survey Scientific Investigations Report 2020–5136, 41 p., https://doi.org/10.3133/sir20205136