Facebook
Twitterhttps://www.licenses.ai/ai-licenseshttps://www.licenses.ai/ai-licenses
Tabular dataset for data analysis and machine learning practice. The dataset is about the market and is usable for Power BI practice and data science.
Facebook
Twitterhttps://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Power BI Sample Data is a financial sample dataset provided for Power BI practice and data visualization exercises that includes a variety of financial metrics and transaction information, including sales, profits, and expenses.
2) Data Utilization (1) Power BI Sample Data has characteristics that: • This dataset consists of numerical and categorical variables such as transaction date, region, product category, sales, profit, and cost, optimized for aggregation, analysis, and visualization. (2) Power BI Sample Data can be used to: • Revenue and Revenue Analysis: Analyze sales and profit data by region, product, and period to understand business performance and trends. • Power BI Dashboard Practice: Utilize a variety of financial metrics and transaction data to design and practice dashboards, reports, visualization charts, and more directly at Power BI.
Facebook
TwitterExplore the world of data visualization with this Power BI dataset containing HR Analytics and Sales Analytics datasets. Gain insights, create impactful reports, and craft engaging dashboards using real-world data from HR and sales domains. Sharpen your Power BI skills and uncover valuable data-driven insights with this powerful dataset. Happy analyzing!
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This data set is perfect for practicing your analytical skills for Power BI, Tableau, Excel, or transform it into a CSV to practice SQL.
This use case mimics transactions for a fictional eCommerce website named EverMart Online. The 3 tables in this data set are all logically connected together with IDs.
My Power BI Use Case Explanation - Using Microsoft Power BI, I made dynamic data visualizations for revenue reporting and customer behavior reporting.
Revenue Reporting Visuals - Data Card Visual that dynamically shows Total Products Listed, Total Unique Customers, Total Transactions, and Total Revenue by Total Sales, Product Sales, or Categorical Sales. - Line Graph Visual that shows Total Revenue by Month of the entire year. This graph also changes to calculate Total Revenue by Month for the Total Sales by Product and Total Sales by Category if selected. - Bar Graph Visual showcasing Total Sales by Product. - Donut Chart Visual showcasing Total Sales by Category of Product.
Customer Behavior Reporting Visuals - Data Card Visual that dynamically shows Total Products Listed, Total Unique Customers, Total Transactions, and Total Revenue by Total or by continent selected on the map. - Interactive Map Visual showing key statistics for the continent selected. - The key statistics are presented on the tool tip when you select a continent, and the following statistics show for that continent: - Continent Name - Customer Total - Percentage of Products Sold - Percentage of Total Customers - Percentage of Total Transactions - Percentage of Total Revenue
Facebook
TwitterThis dataset was created by AmitRaghav007
E commerce website data to make reports.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is based on the Superstore Sales data from Kaggle, containing global order records from 2015 to 2018. It includes detailed information such as order dates, sales revenue, profit, shipping modes, product categories, customer segments, and regional distribution.
The data serves as the foundation for a Power BI dashboard designed to extract actionable business insights. It is ideal for exploring trends in sales performance, market opportunities, and operational efficiency.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Training Survey_ Power BI Hands-On Dataset (1-112)
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset was created by Sanjana Murthy
Released under CC BY-NC-SA 4.0
This data contains Table, Relationships.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book subjects. It has 3 rows and is filtered where the books is Beginning big data with Power BI and Excel 2013 : big data processing and analysis using Power BI in Excel 2013. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project focuses on data mapping, integration, and analysis to support the development and enhancement of six UNCDF operational applications: OrgTraveler, Comms Central, Internal Support Hub, Partnership 360, SmartHR, and TimeTrack. These apps streamline workflows for travel claims, internal support, partnership management, and time tracking within UNCDF.Key Features and Tools:Data Mapping for Salesforce CRM Migration: Structured and mapped data flows to ensure compatibility and seamless migration to Salesforce CRM.Python for Data Cleaning and Transformation: Utilized pandas, numpy, and APIs to clean, preprocess, and transform raw datasets into standardized formats.Power BI Dashboards: Designed interactive dashboards to visualize workflows and monitor performance metrics for decision-making.Collaboration Across Platforms: Integrated Google Collab for code collaboration and Microsoft Excel for data validation and analysis.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This synthetic dataset is designed specifically for Power BI and DAX (Data Analysis Expressions) learners and professionals. It provides a complete star schema for practicing DAX measures, relationships, filters, and time intelligence — just like in real-world business analytics projects.
The dataset simulates a multi-year sales environment with customers, employees, products, geographies, and dates — allowing you to perform calculations across multiple business dimensions.
This dataset contains 6 CSV files, forming a clean star schema:
| Table Name | Type | Description |
|---|---|---|
| FactSales | Fact | Contains transactional sales data with quantities, amounts, profits, discounts, and references to all dimension keys. |
| DimDate | Dimension | A complete date table (2018–2024) including Year, Quarter, Month, DayOfWeek, Weekend/Holiday flags, etc. |
| DimProduct | Dimension | Product catalog with Category, SubCategory, Color, Size, StandardCost, and ListPrice. |
| DimCustomer | Dimension | Customer information including name, gender, signup date, loyalty tier, and geographic key. |
| DimEmployee | Dimension | Sales employee data including name, role, hire date, and region. |
| DimGeography | Dimension | Geographic data covering countries, regions, and cities. |
| Column | Description |
|---|---|
SalesKey | Unique identifier for each transaction |
OrderDateKey, ShipDateKey | Foreign keys to DimDate |
ProductKey, CustomerKey, EmployeeKey, GeographyKey | Foreign keys to respective dimensions |
Quantity | Number of units sold |
UnitPrice | Price per unit |
Discount | Discount applied to the sale |
SalesAmount | Total sales value after discount |
TotalCost | Total cost of goods sold |
Profit | SalesAmount – TotalCost |
Channel | Online, Retail, or Distributor |
PaymentMethod | Credit, Cash, or Transfer |
OrderPriority | Low, Medium, or High priority |
Includes:
Perfect for DAX time intelligence functions like:
TOTALYTD, SAMEPERIODLASTYEAR, DATESINPERIOD, and PARALLELPERIOD.
Imagine a mid-sized electronics retailer operating across multiple regions and sales channels. The dataset captures 7 years of simulated performance — including seasonal patterns, regional sales variations, and customer loyalty effects.
This dataset is designed for:
You can use this dataset to practice almost every DAX concept:
Total Sales = SUM(FactSales[SalesAmount])
Total Profit = SUM(FactSales[Profit])
Online Sales = CALCULATE([Total Sales], FactSales[Channel] = "Online")
YTD Sales = TOTALYTD([Total Sales], DimDate[Date])
Sales YoY % = DIVIDE([Total Sales] - [Previous Year Sales], [Previous Year Sales])
Shipped Sales = CALCULATE([Total Sales], USERELATIONSHIP(FactSales[ShipDateKey], DimDate[DateKey]))
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by GhulamMustafa
Released under CC0: Public Domain
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Ankur
Released under CC0: Public Domain
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
From 2016 to 2018, we surveyed the world’s largest natural history museum collections to begin mapping this globally distributed scientific infrastructure. The resulting dataset includes 73 institutions across the globe. It has:
Basic institution data for the 73 contributing institutions, including estimated total collection sizes, geographic locations (to the city) and latitude/longitude, and Research Organization Registry (ROR) identifiers where available.
Resourcing information, covering the numbers of research, collections and volunteer staff in each institution.
Indicators of the presence and size of collections within each institution broken down into a grid of 19 collection disciplines and 16 geographic regions.
Measures of the depth and breadth of individual researcher experience across the same disciplines and geographic regions.
This dataset contains the data (raw and processed) collected for the survey, and specifications for the schema used to store the data. It includes:
A diagram of the MySQL database schema.
A SQL dump of the MySQL database schema, excluding the data.
A SQL dump of the MySQL database schema with all data. This may be imported into an instance of MySQL Server to create a complete reconstruction of the database.
Raw data from each database table in CSV format.
A set of more human-readable views of the data in CSV format. These correspond to the database tables, but foreign keys are substituted for values from the linked tables to make the data easier to read and analyse.
A text file containing the definitions of the size categories used in the collection_unit table.
The global collections data may also be accessed at https://rebrand.ly/global-collections. This is a preliminary dashboard, constructed and published using Microsoft Power BI, that enables the exploration of the data through a set of visualisations and filters. The dashboard consists of three pages:
Institutional profile: Enables the selection of a specific institution and provides summary information on the institution and its location, staffing, total collection size, collection breakdown and researcher expertise.
Overall heatmap: Supports an interactive exploration of the global picture, including a heatmap of collection distribution across the discipline and geographic categories, and visualisations that demonstrate the relative breadth of collections across institutions and correlations between collection size and breadth. Various filters allow the focus to be refined to specific regions and collection sizes.
Browse: Provides some alternative methods of filtering and visualising the global dataset to look at patterns in the distribution and size of different types of collections across the global view.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
🔍 Total Sales: Achieved $456,000 in revenue across 1,000 transactions, with an average transaction value of $456.00.
👥 Customer Demographics:
Average Age: 41.39 years Gender Distribution: 51% male, 49% female Most active age groups: 31-40 & 41-50 years 🏷️ Product Performance:
Top Categories: Electronics and Clothing led the sales, each contributing $160,000, followed by Beauty products with $140,000. Quantity Sold: Clothing topped the charts with 894 units sold. 📈 Sales Trends: Identified key sales peaks, especially in May 2023, indicating the success of targeted promotional strategies.
Why This Matters:
Understanding these metrics allows for better-targeted marketing, efficient inventory management, and strategic planning to capitalize on peak sales periods. This project demonstrates the power of data-driven decision-making in retail!
💡 Takeaway: Power BI continues to be a game-changer in visualizing and interpreting complex data, helping businesses to not just see numbers but to translate them into actionable insights.
I’m always looking forward to new challenges and projects that push my skills further. If you're interested in diving into the details or discussing data insights, feel free to reach out!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cash-and-Equivalents Time Series for Microsoft Corporation. Microsoft Corporation develops and supports software, services, devices, and solutions worldwide. The company's Productivity and Business Processes segment offers Microsoft 365 Commercial, Enterprise Mobility + Security, Windows Commercial, Power BI, Exchange, SharePoint, Microsoft Teams, Security and Compliance, and Copilot; Microsoft 365 Commercial products, such as Windows Commercial on-premises and Office licensed services; Microsoft 365 Consumer products and cloud services, such as Microsoft 365 Consumer subscriptions, Office licensed on-premises, and other consumer services; LinkedIn; Dynamics products and cloud services, such as Dynamics 365, cloud-based applications, and on-premises ERP and CRM applications. Its Intelligent Cloud segment provides Server products and cloud services, such as Azure and other cloud services, GitHub, Nuance Healthcare, virtual desktop offerings, and other cloud services; Server products, including SQL and Windows Server, Visual Studio and System Center related Client Access Licenses, and other on-premises offerings; Enterprise and partner services, including Enterprise Support and Nuance professional Services, Industry Solutions, Microsoft Partner Network, and Learning Experience. The company's Personal Computing segment provides Windows and Devices, such as Windows OEM licensing and Devices and Surface and PC accessories; Gaming services and solutions, such as Xbox hardware, content, and services, first- and third-party content Xbox Game Pass, subscriptions, and Cloud Gaming, advertising, and other cloud services; search and news advertising services, such as Bing and Copilot, Microsoft News and Edge, and third-party affiliates. It sells its products through OEMs, distributors, and resellers; and online and retail stores. The company was founded in 1975 and is headquartered in Redmond, Washington.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cost-of-Goods-Sold-Including-Depreciation-and-Amortization Time Series for Microsoft Corporation. Microsoft Corporation develops and supports software, services, devices, and solutions worldwide. The company's Productivity and Business Processes segment offers Microsoft 365 Commercial, Enterprise Mobility + Security, Windows Commercial, Power BI, Exchange, SharePoint, Microsoft Teams, Security and Compliance, and Copilot; Microsoft 365 Commercial products, such as Windows Commercial on-premises and Office licensed services; Microsoft 365 Consumer products and cloud services, such as Microsoft 365 Consumer subscriptions, Office licensed on-premises, and other consumer services; LinkedIn; Dynamics products and cloud services, such as Dynamics 365, cloud-based applications, and on-premises ERP and CRM applications. Its Intelligent Cloud segment provides Server products and cloud services, such as Azure and other cloud services, GitHub, Nuance Healthcare, virtual desktop offerings, and other cloud services; Server products, including SQL and Windows Server, Visual Studio and System Center related Client Access Licenses, and other on-premises offerings; Enterprise and partner services, including Enterprise Support and Nuance professional Services, Industry Solutions, Microsoft Partner Network, and Learning Experience. The company's Personal Computing segment provides Windows and Devices, such as Windows OEM licensing and Devices and Surface and PC accessories; Gaming services and solutions, such as Xbox hardware, content, and services, first- and third-party content Xbox Game Pass, subscriptions, and Cloud Gaming, advertising, and other cloud services; search and news advertising services, such as Bing and Copilot, Microsoft News and Edge, and third-party affiliates. It sells its products through OEMs, distributors, and resellers; and online and retail stores. The company was founded in 1975 and is headquartered in Redmond, Washington.
Facebook
Twitter🌍 Europe B2B Company Dataset | 30M+ Verified Records | Firmographics & API Access Power your sales, marketing, and investment strategies with the most comprehensive global B2B company data—verified, AI-driven, and updated bi-weekly.
The Forager.ai Global Company Dataset delivers 30M+ high-quality firmographic records, covering public and private companies worldwide. Leveraging AI-powered validation and bi-weekly updates, our dataset ensures accuracy, freshness, and depth—making it ideal for sales intelligence, market analysis, and CRM enrichment.
📊 Key Features & Coverage ✅ 30M+ Company Records – The largest, most reliable B2B firmographic dataset available. ✅ Bi-Weekly Updates – Stay ahead with refreshed data every two weeks. ✅ AI-Driven Accuracy – Sophisticated algorithms verify and enrich every record. ✅ Global Coverage – Companies across North America, Europe, APAC, and emerging markets.
📋 Core Data Fields: ✔ Company Name, LinkedIn URL, & Domain ✔ Industries ✔ Job postings, Revenue, Employee Size, Funding Status ✔ Location (HQ + Regional Offices) ✔ Tech Stack & Firmographic Signals ✔ LinkedIn Profile details
🎯 Top Use Cases 🔹 Sales & Lead Generation
Build targeted prospect lists using firmographics (size, industry, revenue).
Enhance lead scoring with technographic insights.
🔹 Market & Competitive Intelligence
Track company growth, expansions, and trends.
Benchmark competitors using real-time private company data.
🔹 Venture Capital & Private Equity
Discover investment opportunities with granular sector-level insights.
Monitor portfolio companies and industry shifts.
🔹 ABM & Marketing Automation
Enrich CRM data for hyper-targeted campaigns.
Power intent data and predictive analytics.
⚡ Delivery & Integration Choose the best method for your workflow:
REST API – Real-time access for developers.
Flat Files (CSV, JSON) – Delivered via S3, Wasabi, Snowflake.
Custom Solutions – Scalable enterprise integrations.
🔒 Data Quality & Compliance 95%+ Field Completeness – Minimize gaps in your analysis.
Ethically Sourced – Compliant with GDPR, CCPA, and global privacy laws.
Transparent Licensing – Clear usage terms for peace of mind.
🚀 Why Forager.ai? ✔ AI-Powered Accuracy – Better data, fewer false leads. ✔ Enterprise-Grade Freshness – Bi-weekly updates keep insights relevant. ✔ Flexible Access – API, bulk files, or custom database solutions. ✔ Dedicated Support – Onboarding and SLA-backed assistance.
Tags: B2B Company Data |LinkedIn Job Postings | Firmographics | Global Business Intelligence | Sales Leads | VC & PE Data | Technographics | CRM Enrichment | API Access | AI-Validated Data
Facebook
TwitterThis dataset was created by Bharat Kumar
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These datasets contain summary data about the Annual California Children’s Services (CCS) Whole Child Model (WCM) program. These summary files are intended to accompany the CCS Power BI Dashboard which is posted on the DHCS internet. The CCS and WCM Programs provide diagnostic and treatment services, case management, and physical and occupational therapy services to children under age 21 with CCS-eligible medical conditions. Examples of CCS-eligible conditions include, but are not limited to, chronic medical conditions such as cystic fibrosis, hemophilia, cerebral palsy, heart disease, cancer, traumatic injuries, and infectious diseases producing major sequelae.
Facebook
Twitterhttps://www.licenses.ai/ai-licenseshttps://www.licenses.ai/ai-licenses
Tabular dataset for data analysis and machine learning practice. The dataset is about the market and is usable for Power BI practice and data science.