100+ datasets found
  1. KPMG Customer Demography Cleaned Dataset

    • kaggle.com
    zip
    Updated Sep 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HarishEdison (2022). KPMG Customer Demography Cleaned Dataset [Dataset]. https://www.kaggle.com/datasets/harishedison/kpmg-customer-demography-cleaned-dataset
    Explore at:
    zip(140162 bytes)Available download formats
    Dataset updated
    Sep 25, 2022
    Authors
    HarishEdison
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    This dataset was sourced from KPMG AU's Data Analytics virtual internship course on Forage

    Sprocket Pvt Ltd is a client of KPMG AU. Sprocket is a bike and bike accessories retail business. They need to find the right customer segment to target for marketing to boost revenue. The following dataset is of their customer demographics for the past 3 years.

    The original dataset of 3 separate sheets of Customer demographic, Transactions, and Customer Addresses was fully cleaned and merged using a power query. Data types of columns were changed, and values of certain columns which had illegal values were corrected using a standard approach. This final master dataset can be used for customer segmentation projects using clustering methods.

  2. Camden Demographics - Population Segmentation 2015 - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Nov 24, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2015). Camden Demographics - Population Segmentation 2015 - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/camden-demographics-population-segmentation-2015
    Explore at:
    Dataset updated
    Nov 24, 2015
    Dataset provided by
    CKANhttps://ckan.org/
    Area covered
    Camden Town
    Description

    This factsheet breaks down Camden’s population by looking at health conditions, and then by their age, sex, ethnicity, and deprivation. Understanding the size and characteristics of each segment helps us plan healthcare resources and service delivery effectively for each group, as well as the population in general.

  3. Predicting Credit Card Customer Segmentation

    • kaggle.com
    zip
    Updated Mar 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2024). Predicting Credit Card Customer Segmentation [Dataset]. https://www.kaggle.com/datasets/thedevastator/predicting-credit-card-customer-attrition-with-m/code
    Explore at:
    zip(387771 bytes)Available download formats
    Dataset updated
    Mar 10, 2024
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Predicting Credit Card Customer Segmentation

    Exploring Key Customer Characteristics

    By [source]

    About this dataset

    This dataset contains a wealth of customer information collected from within a consumer credit card portfolio, with the aim of helping analysts predict customer attrition. It includes comprehensive demographic details such as age, gender, marital status and income category, as well as insight into each customer’s relationship with the credit card provider such as the card type, number of months on book and inactive periods. Additionally it holds key data about customers’ spending behavior drawing closer to their churn decision such as total revolving balance, credit limit, average open to buy rate and analyzable metrics like total amount of change from quarter 4 to quarter 1, average utilization ratio and Naive Bayes classifier attrition flag (Card category is combined with contacts count in 12months period alongside dependent count plus education level & months inactive). Faced with this set of useful predicted data points across multiple variables capture up-to-date information that can determine long term account stability or an impending departure therefore offering us an equipped understanding when seeking to manage a portfolio or serve individual customers

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset can be used to analyze the key factors that influence customer attrition. Analysts can use this dataset to understand customer demographics, spending patterns, and relationship with the credit card provider to better predict customer attrition.

    Research Ideas

    • Using the customer demographics, such as gender, marital status, education level and income category to determine which customer demographic is more likely to churn.
    • Analyzing the customer’s spending behavior leading up to churning and using this data to better predict the likelihood of a customer of churning in the future.
    • Creating a classifier that can predict potential customers who are more susceptible to attrition based on their credit score, credit limit, utilization ratio and other spending behavior metrics over time; this could be used as an early warning system for predicting potential attrition before it happens

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: BankChurners.csv | Column name | Description | |:---------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------| | CLIENTNUM | Unique identifier for each customer. (Integer) | | Attrition_Flag | Flag indicating whether or not the customer has churned out. (Boolean) | | Customer_Age | Age of customer. (Integer) | | Gender | Gender of customer. (String) | | Dependent_count | Number of dependents that customer has. (Integer) | | Education_Level ...

  4. d

    Customer Attributes Dataset - Demographics, Devices & Locations APAC Data...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AI Keyboard, Customer Attributes Dataset - Demographics, Devices & Locations APAC Data (1st Party Data w/90M+ records) [Dataset]. https://datarade.ai/data-products/bobble-ai-demographic-data-apac-age-gender-1st-party-data-w-52m-records-bobble-ai
    Explore at:
    .json, .csv, .xls, .parquetAvailable download formats
    Dataset authored and provided by
    AI Keyboard
    Area covered
    India, Philippines, United States of America, Nepal, Saudi Arabia, Netherlands, Germany, United Arab Emirates, Indonesia, Pakistan
    Description

    The User Profile Data is a structured, anonymized dataset designed to help organizations understand who their users are, what devices they use, and where they are located. Each record provides privacy-compliant linkages between user IDs, demographic profiles, device intelligence, and geolocation data, offering deep context for analytics, segmentation, and personalization.

    Built for privacy-safe analytics, the dataset uses hashed identifiers like phone number and email and standardized formats, making it easy to integrate into big-data platforms, AI pipelines, and machine learning models for advanced analytics.

    Demographic insights include gender, age, and age group, essential for audience profiling, marketing optimization, and consumer intelligence. All gender data is user-declared and AI-verified through image-based avatar validation, ensuring data accuracy and authenticity.

    The dataset’s Device Intelligence Layer includes rich technical attributes such as device brand, model, OS version, user agent, RAM, language, and timezone, enabling technical segmentation, performance analytics, and targeted ad delivery across diverse device ecosystems.

    On the location and POI front, the dataset combines GPS-based and IP-based coordinates—including country, region, city, latitude, longitude —to provide high-precision geospatial insights. This enables mobility pattern analysis, market expansion planning, and POI clustering for advanced location intelligence.

    Each user record contains onboarding and lifecycle fields like unique IDs, and profile update timestamps, allowing accurate tracking of user acquisition trends, data freshness, and activity duration.

    🔍 Key Features • 1st-party, consent-based demographic & device data • AI-verified gender insights via avatar recognition • OS-level app data with 120+ daily sessions per user • Global coverage across APAC and emerging markets • GPS + IP-based geolocation & POI intelligence • Privacy-compliant, hashed identifiers for safe integration

    🚀 Use Cases • Audience segmentation & lookalike modeling • Ad-tech and mar-tech optimization • Geospatial & POI analytics • Fraud detection & risk scoring • Personalization & recommendation engines • App performance & device compatibility insights

    🏢 Industries Served Ad-Tech • Mar-Tech • FinTech • Telecom • Retail Analytics • Consumer Intelligence • AI & ML Platforms

  5. Camden Demographics - Population Segmentation Supplementary Analysis 2015 -...

    • ckan.publishing.service.gov.uk
    Updated Nov 24, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2015). Camden Demographics - Population Segmentation Supplementary Analysis 2015 - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/camden-demographics-population-segmentation-supplementary-analysis-2015
    Explore at:
    Dataset updated
    Nov 24, 2015
    Dataset provided by
    CKANhttps://ckan.org/
    Area covered
    Camden Town
    Description

    This profile is designed to accompany the Joint Strategic Needs Assessment (JSNA) chapter on Demographics, which looks at segmenting the borough’s population by their most significant health and social care need. This supplement looks at adults (aged 18 and over) instead of the overall population, because the health and social care need segments covered in this section are more common in adults.

  6. G

    Bank Customer Segmentation Dataset

    • gomask.ai
    csv, json
    Updated Nov 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GoMask.ai (2025). Bank Customer Segmentation Dataset [Dataset]. https://gomask.ai/marketplace/datasets/bank-customer-segmentation-dataset
    Explore at:
    json, csv(10 MB)Available download formats
    Dataset updated
    Nov 22, 2025
    Dataset provided by
    GoMask.ai
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024 - 2025
    Area covered
    Global
    Variables measured
    email, gender, segment, last_name, first_name, customer_id, account_type, address_city, credit_score, num_accounts, and 18 more
    Description

    This dataset contains rich, structured information about bank customers, including demographics, account details, product holdings, financial metrics, and segmentation labels. It is ideal for financial institutions seeking to personalize marketing, manage risk, and identify cross-selling opportunities through data-driven customer segmentation and profiling.

  7. Mobile Customer Churn Dataset

    • kaggle.com
    zip
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dyuti Dasmahaptra (2025). Mobile Customer Churn Dataset [Dataset]. https://www.kaggle.com/datasets/dyutidasmahaptra/mobile-customer-churn-dataset
    Explore at:
    zip(476914 bytes)Available download formats
    Dataset updated
    May 22, 2025
    Authors
    Dyuti Dasmahaptra
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Dataset Description This dataset contains information about 8,500+ mobile service customers, including demographic details, device usage, billing patterns, and call behavior. The primary goal of this dataset is to enable analysis and modeling to predict customer churn — i.e., customers who decide to drop their mobile service provider.

    The data includes 33 features and one binary target column (customer_dropped). This dataset is ideal for exploring churn prediction models, customer segmentation, lifetime value analysis, and marketing strategy development.

    Features - customer_id: Unique identifier for each customer - age: Age of the customer - job: Occupation or profession of the customer - urban_rural: Indicates whether the customer resides in an urban or rural area - marital_status: Marital status of the customer - kids: Number of children the customer has - disposable_income: Disposable income of the customer - mobiles_changed: Number of times the customer has changed their mobile device - mobile_age: Age of the current mobile device - own_smartphone: Indicates whether the customer owns a smartphone - current_mobile_price: Price of the customer's current mobile device - credit_card_type: Type of credit card held - own_house: Indicates whether the customer owns a house - own_cr_card: Indicates whether the customer owns a credit card - monthly_bill: Monthly bill for mobile service - call_mins: Total call minutes used - basic_plan_amount: Basic mobile plan amount - extra_mins: Extra minutes used beyond the plan - roam_call_mins: Roaming call minutes - call_mins_delta: Change in call minutes compared to the previous billing period - bill_amount_delta: Change in bill amount compared to the previous billing period - incoming_call_mins: Total incoming call minutes - outgoing_calls: Number of outgoing calls - incoming_calls: Number of incoming calls - day_night_call_ratio: Ratio of call minutes during the day versus night - day_night_call_delta: Change in day vs night call minutes compared to the previous period - calls_dropped: Number of calls dropped - loyalty_months: Customer tenure in months - complaint_calls: Number of complaint calls made - promo_calls_made: Number of promotional calls made - promo_offers_accepted: Number of promotional offers accepted - new_numbers_called: Number of new contacts called - customer_dropped: Target column indicating churn (1 = churned, 0 = retained)

    Use Cases - Develop machine learning models for churn prediction - Perform customer segmentation and behavioral profiling - Analyze call usage trends and billing sensitivity - Identify key drivers of customer loyalty or attrition - Design data-driven retention strategies

  8. Customer Segmentation Data

    • kaggle.com
    zip
    Updated Nov 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eman Zahid (2024). Customer Segmentation Data [Dataset]. https://www.kaggle.com/datasets/emanzahid135/customer-segmentation-data
    Explore at:
    zip(1842344 bytes)Available download formats
    Dataset updated
    Nov 30, 2024
    Authors
    Eman Zahid
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    General Information:

    Total Rows: 53,503 Total Columns: 20 File Size: ~8.2 MB

    Data Types:

    Integer: 5 columns Object (String): 15 columns

    Column Details:

    Customer ID: Unique identifier for each customer (Integer). Age: Age of the customer (Integer). Gender: Gender of the customer (Male/Female) (String). Marital Status: Marital status of the customer (e.g., Single, Married) (String). Education Level: Highest education level attained (e.g., Bachelor's Degree) (String). Geographic Information: Location information (State/Region) (String). Occupation: Customer's profession (e.g., Manager, Entrepreneur) (String). Income Level: Annual income of the customer in local currency (Integer). Behavioral Data: Categorical data on behavior patterns (String). Purchase History: Date of the last purchase (Date format). Interactions with Customer Service: Preferred method of communication with customer service (e.g., Phone, Chat) (String). Insurance Products Owned: Insurance policies owned by the customer (String). Coverage Amount: Total insurance coverage amount (Integer). Premium Amount: Monthly premium payment (Integer). Policy Type: Type of insurance policy (e.g., Family, Group) (String). Customer Preferences: General preferences (e.g., Email, Text) (String). Preferred Communication Channel: Method of communication preferred (e.g., In-Person Meeting, Mail) (String). Preferred Contact Time: Most suitable time for contact (e.g., Morning, Afternoon) (String). Preferred Language: Language preference for communication (e.g., English, French) (String). Segmentation Group: Customer segmentation group assigned (e.g., Segment2, Segment3) (String).

    Key Observations: Comprehensive customer segmentation data, ideal for demographic, behavioral, and financial analysis. Mixture of categorical, numerical, and date-related attributes. Useful for marketing analysis, predictive modeling, and customer insights.

    Objective: To perform Exploratory Data Analysis (EDA) on the customer segmentation dataset to uncover insights into customer demographics, purchasing behaviors, and transaction patterns. These insights will guide the company in identifying potential segments for targeted marketing.

  9. d

    US Consumer Demographics | Homeowners & Renters | Email & Mobile Phone |...

    • datarade.ai
    .json, .csv, .xls
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CompCurve (2024). US Consumer Demographics | Homeowners & Renters | Email & Mobile Phone | Bulk & Custom | 255M People [Dataset]. https://datarade.ai/data-products/compcurve-us-consumer-demographics-homeowners-renters-compcurve
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset authored and provided by
    CompCurve
    Area covered
    United States
    Description

    Knowing who your consumers are is essential for businesses, marketers, and researchers. This detailed demographic file offers an in-depth look at American consumers, packed with insights about personal details, household information, financial status, and lifestyle choices. Let's take a closer look at the data:

    Personal Identifiers and Basic Demographics At the heart of this dataset are the key details that make up a consumer profile:

    Unique IDs (PID, HHID) for individuals and households Full names (First, Middle, Last) and suffixes Gender and age Date of birth Complete location details (address, city, state, ZIP) These identifiers are critical for accurate marketing and form the base for deeper analysis.

    Geospatial Intelligence This file goes beyond just listing addresses by including rich geospatial data like:

    Latitude and longitude Census tract and block details Codes for Metropolitan Statistical Areas (MSA) and Core-Based Statistical Areas (CBSA) County size codes Geocoding accuracy This allows for precise geographic segmentation and localized marketing.

    Housing and Property Data The dataset covers a lot of ground when it comes to housing, providing valuable insights for real estate professionals, lenders, and home service providers:

    Homeownership status Dwelling type (single-family, multi-family, etc.) Property values (market, assessed, and appraised) Year built and square footage Room count, amenities like fireplaces or pools, and building quality This data is crucial for targeting homeowners with products and services like refinancing or home improvement offers.

    Wealth and Financial Data For a deeper dive into consumer wealth, the file includes:

    Estimated household income Wealth scores Credit card usage Mortgage info (loan amounts, rates, terms) Home equity estimates and investment property ownership These indicators are invaluable for financial services, luxury brands, and fundraising organizations looking to reach affluent individuals.

    Lifestyle and Interests One of the most useful features of the dataset is its extensive lifestyle segmentation:

    Hobbies and interests (e.g., gardening, travel, sports) Book preferences, magazine subscriptions Outdoor activities (camping, fishing, hunting) Pet ownership, tech usage, political views, and religious affiliations This data is perfect for crafting personalized marketing campaigns and developing products that align with specific consumer preferences.

    Consumer Behavior and Purchase Habits The file also sheds light on how consumers behave and shop:

    Online and catalog shopping preferences Gift-giving tendencies, presence of children, vehicle ownership Media consumption (TV, radio, internet) Retailers and e-commerce businesses will find this behavioral data especially useful for tailoring their outreach.

    Demographic Clusters and Segmentation Pre-built segments like:

    Household, neighborhood, family, and digital clusters Generational and lifestage groups make it easier to quickly target specific demographics, streamlining the process for market analysis and campaign planning.

    Ethnicity and Language Preferences In today's multicultural market, knowing your audience's cultural background is key. The file includes:

    Ethnicity codes and language preferences Flags for Hispanic/Spanish-speaking households This helps ensure culturally relevant and sensitive communication.

    Education and Occupation Data The dataset also tracks education and career info:

    Education level and occupation codes Home-based business indicators This data is essential for B2B marketers, recruitment agencies, and education-focused campaigns.

    Digital and Social Media Habits With everyone online, digital behavior insights are a must:

    Internet, TV, radio, and magazine usage Social media platform engagement (Facebook, Instagram, LinkedIn) Streaming subscriptions (Netflix, Hulu) This data helps marketers, app developers, and social media managers connect with their audience in the digital space.

    Political and Charitable Tendencies For political campaigns or non-profits, this dataset offers:

    Political affiliations and outlook Charitable donation history Volunteer activities These insights are perfect for cause-related marketing and targeted political outreach.

    Neighborhood Characteristics By incorporating census data, the file provides a bigger picture of the consumer's environment:

    Population density, racial composition, and age distribution Housing occupancy and ownership rates This offers important context for understanding the demographic landscape.

    Predictive Consumer Indexes The dataset includes forward-looking indicators in categories like:

    Fashion, automotive, and beauty products Health, home decor, pet products, sports, and travel These predictive insights help businesses anticipate consumer trends and needs.

    Contact Information Finally, the file includes key communication details:

    Multiple phone numbers (landline, mobile) and email addresses Do Not Call (DNC) flags...

  10. G

    Data from: Survey Respondents

    • gomask.ai
    csv, json
    Updated Nov 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GoMask.ai (2025). Survey Respondents [Dataset]. https://gomask.ai/marketplace/datasets/survey-respondents
    Explore at:
    json, csv(10 MB)Available download formats
    Dataset updated
    Nov 13, 2025
    Dataset provided by
    GoMask.ai
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024 - 2025
    Area covered
    Global
    Variables measured
    age, city, gender, region, country, ethnicity, survey_id, respondent_id, response_date, segment_label, and 7 more
    Description

    This dataset provides detailed records of survey respondents, including demographic information, completion rates, segmentation labels, and response quality metrics. It enables in-depth analysis of participant behavior, demographic trends, and survey effectiveness, making it ideal for market research, academic studies, and customer insights.

  11. H

    PLOS ONE Population Segmentation Paper Dataset

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Nov 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lian Leng Low (2018). PLOS ONE Population Segmentation Paper Dataset [Dataset]. http://doi.org/10.7910/DVN/XTXCYD
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 5, 2018
    Dataset provided by
    Harvard Dataverse
    Authors
    Lian Leng Low
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Data-driven segmentation methods for population segmentation based on healthcare utilization

  12. C3RO demographics analysis

    • figshare.com
    txt
    Updated Jan 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    C3RO; Kareem Wahid; Clifton D. Fuller (2024). C3RO demographics analysis [Dataset]. http://doi.org/10.6084/m9.figshare.24021591.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    C3RO; Kareem Wahid; Clifton D. Fuller
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For secondary analysis of C3RO data. These CSV files were generated for each disease site separately which can then be used to regression modeling. More information on this data can be found in the accompanying preprint: https://www.medrxiv.org/content/10.1101/2023.08.30.23294786v2.Original C3RO data can be found here: https://figshare.com/articles/dataset/Large-scale_crowdsourced_radiotherapy_segmentations_across_a_variety_of_cancer_sites/21074182.Version history:v2: Jan 7, 2023. Included additional column for HD95 binary data.

  13. Market segmentation - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Aug 29, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2013). Market segmentation - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/market-segmentation
    Explore at:
    Dataset updated
    Aug 29, 2013
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    Segmentation of the adult England population with interactive tool and raw data to help understand where different types of people are located and how to reach them. Postcode level data with segment counts available to download. Youth segmentation is being developed and will be added to this tool in autumn 2013

  14. Consumer Marketing Data API | Tailored Consumer Insights | Target with...

    • datarade.ai
    Updated Oct 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2021). Consumer Marketing Data API | Tailored Consumer Insights | Target with Precision | Best Price Guarantee [Dataset]. https://datarade.ai/data-products/consumer-marketing-data-api-tailored-consumer-insights-ta-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Oct 27, 2021
    Dataset provided by
    Area covered
    Senegal, Hong Kong, United Arab Emirates, Vanuatu, Sweden, Madagascar, Turkey, Estonia, Burundi, Philippines
    Description

    Success.ai’s Consumer Marketing Data API empowers your marketing, analytics, and product teams with on-demand access to a vast and continuously updated dataset of consumer insights. Covering detailed demographics, behavioral patterns, and purchasing histories, this API enables you to go beyond generic outreach and craft tailored campaigns that truly resonate with your target audiences.

    With AI-validated accuracy and support for precise filtering, the Consumer Marketing Data API ensures you’re always equipped with the most relevant data. Backed by our Best Price Guarantee, this solution is essential for refining your strategies, improving conversion rates, and driving sustainable growth in today’s competitive consumer landscape.

    Why Choose Success.ai’s Consumer Marketing Data API?

    1. Tailored Consumer Insights for Precision Targeting

      • Access verified demographic, behavioral, and purchasing data to understand what consumers truly value.
      • AI-driven validation ensures 99% accuracy, minimizing wasted spend and improving engagement outcomes.
    2. Comprehensive Global Reach

      • Includes consumer profiles from diverse regions and markets, enabling you to scale campaigns and discover emerging opportunities.
      • Adapt swiftly to new markets, product launches, and shifting consumer preferences with real-time data at your fingertips.
    3. Continuously Updated and Real-Time Data

      • Receive ongoing updates that reflect evolving consumer behaviors, interests, and market trends.
      • Respond quickly to seasonal changes, competitor moves, and industry disruptions, ensuring your campaigns remain timely and relevant.
    4. Ethical and Compliant

      • Fully adheres to GDPR, CCPA, and other global data privacy regulations, guaranteeing responsible and lawful data usage.

    Data Highlights:

    • Detailed Demographics: Age, gender, location, and income levels to refine targeting and messaging.
    • Behavioral Insights: Interests, browsing patterns, and content consumption habits to anticipate consumer needs.
    • Purchasing History: Understand consumer spending, brand loyalty, and product preferences to tailor promotions effectively.
    • Real-Time Updates: Keep pace with evolving consumer tastes, ensuring your strategies remain forward-focused and competitive.

    Key Features of the Consumer Marketing Data API:

    1. Granular Targeting and Segmentation

      • Query the API to segment consumers by demographics, interests, past purchases, or engagement patterns.
      • Focus campaigns on the most receptive audiences, enhancing conversion rates and ROI.
    2. Flexible and Seamless Integration

      • Easily integrate the API into CRM systems, marketing automation tools, or analytics platforms.
      • Streamline workflows and eliminate manual data imports, freeing resources for strategic initiatives.
    3. Continuous Data Enrichment

      • Refresh consumer profiles with the latest data, ensuring every decision is backed by current insights.
      • Reduce data decay and maintain top-notch data hygiene to maximize long-term marketing effectiveness.
    4. AI-Driven Validation

      • Rely on advanced AI validation techniques to guarantee high-quality data accuracy and reliability.
      • Increase confidence in your campaigns and decrease budget wasted on irrelevant targets.

    Strategic Use Cases:

    1. Highly Personalized Marketing Campaigns

      • Deliver tailored offers, recommendations, and content that align with individual consumer preferences.
      • Boost engagement and loyalty by making every touchpoint relevant and meaningful.
    2. Market Expansion and Product Launches

      • Identify segments most receptive to new products or services, ensuring successful market entry.
      • Stay ahead of consumer demands, evolving your product line and marketing mix to meet changing preferences.
    3. Competitive Analysis and Trend Forecasting

      • Leverage consumer insights to anticipate emerging trends and outpace competitors in capturing new markets.
      • Adjust marketing strategies proactively to capitalize on seasonal, cultural, or economic shifts.
    4. Customer Retention and Loyalty Programs

      • Use historical purchase and engagement data to identify at-risk customers and implement retention strategies.
      • Cultivate brand advocates by delivering personalized offers and exclusive perks to loyal consumers.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality consumer marketing data at unmatched prices, ensuring maximum ROI for your outreach efforts.
    2. Seamless Integration

      • Easily incorporate the API into existing workflows, eliminating data silos and manual data management.
    3. Data Accuracy with AI Validation

      • Depend on 99% accuracy to guide data-driven decisions, refine targeting, and elevate your marketing initiatives.
    4. Customizable and Scalable Solutions

      • Tailor datasets to focus on specific demog...
  15. d

    GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business...

    • datarade.ai
    .json, .csv
    Updated Aug 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GIS Data | USA & Canada | Over 40k Demographics Variables To Inform Business Decisions | Consumer Spending Data| Demographic Data [Dataset]. https://datarade.ai/data-products/gapmaps-premium-demographic-data-by-ags-usa-canada-gis-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Aug 13, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Canada, United States
    Description

    GapMaps GIS data for USA and Canada sourced from Applied Geographic Solutions (AGS) includes an extensive range of the highest quality demographic and lifestyle segmentation products. All databases are derived from superior source data and the most sophisticated, refined, and proven methodologies.

    GIS Data attributes include:

    1. Latest Estimates and Projections The estimates and projections database includes a wide range of core demographic data variables for the current year and 5- year projections, covering five broad topic areas: population, households, income, labor force, and dwellings.

    2. Crime Risk Crime Risk is the result of an extensive analysis of a rolling seven years of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, Crime Risk provides an accurate view of the relative risk of specific crime types (personal, property and total) at the block and block group level.

    3. Panorama Segmentation AGS has created a segmentation system for the United States called Panorama. Panorama has been coded with the MRI Survey data to bring you Consumer Behavior profiles associated with this segmentation system.

    4. Business Counts Business Counts is a geographic summary database of business establishments, employment, occupation and retail sales.

    5. Non-Resident Population The AGS non-resident population estimates utilize a wide range of data sources to model the factors which drive tourists to particular locations, and to match that demand with the supply of available accommodations.

    6. Consumer Expenditures AGS provides current year and 5-year projected expenditures for over 390 individual categories that collectively cover almost 95% of household spending.

    7. Retail Potential This tabulation utilizes the Census of Retail Trade tables which cross-tabulate store type by merchandise line.

    8. Environmental Risk The environmental suite of data consists of several separate database components including: -Weather Risks -Seismological Risks -Wildfire Risk -Climate -Air Quality -Elevation and terrain

    Primary Use Cases for GapMaps GIS Data:

    1. Retail (eg. Fast Food/ QSR, Cafe, Fitness, Supermarket/Grocery)
    2. Customer Profiling: get a detailed understanding of the demographic & segmentation profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular census block level using all the key metrics
    4. Site Selection: Identify optimal locations for future expansion and benchmark performance across existing locations.
    5. Target Marketing: Develop effective marketing strategies to acquire more customers.
    6. Integrate AGS demographic data with your existing GIS or BI platform to generate powerful visualizations.

    7. Finance / Insurance (eg. Hedge Funds, Investment Advisors, Investment Research, REITs, Private Equity, VC)

    8. Network Planning

    9. Customer (Risk) Profiling for insurance/loan approvals

    10. Target Marketing

    11. Competitive Analysis

    12. Market Optimization

    13. Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)

    14. Tenant Recruitment

    15. Target Marketing

    16. Market Potential / Gap Analysis

    17. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)

    18. Customer Profiling

    19. Target Marketing

    20. Market Share Analysis

  16. d

    US Consumer Demographic Data - 269M+ Consumer Records - Programmatic Ads and...

    • datarade.ai
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giant Partners (2025). US Consumer Demographic Data - 269M+ Consumer Records - Programmatic Ads and Email Marketing Automation [Dataset]. https://datarade.ai/data-products/us-consumer-demographic-data-269m-consumer-records-progr-giant-partners
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Giant Partners
    Area covered
    United States of America
    Description

    Premium B2C Consumer Database - 269+ Million US Records

    Supercharge your B2C marketing campaigns with comprehensive consumer database, featuring over 269 million verified US consumer records. Our 20+ year data expertise delivers higher quality and more extensive coverage than competitors.

    Core Database Statistics

    Consumer Records: Over 269 million

    Email Addresses: Over 160 million (verified and deliverable)

    Phone Numbers: Over 76 million (mobile and landline)

    Mailing Addresses: Over 116,000,000 (NCOA processed)

    Geographic Coverage: Complete US (all 50 states)

    Compliance Status: CCPA compliant with consent management

    Targeting Categories Available

    Demographics: Age ranges, education levels, occupation types, household composition, marital status, presence of children, income brackets, and gender (where legally permitted)

    Geographic: Nationwide, state-level, MSA (Metropolitan Service Area), zip code radius, city, county, and SCF range targeting options

    Property & Dwelling: Home ownership status, estimated home value, years in residence, property type (single-family, condo, apartment), and dwelling characteristics

    Financial Indicators: Income levels, investment activity, mortgage information, credit indicators, and wealth markers for premium audience targeting

    Lifestyle & Interests: Purchase history, donation patterns, political preferences, health interests, recreational activities, and hobby-based targeting

    Behavioral Data: Shopping preferences, brand affinities, online activity patterns, and purchase timing behaviors

    Multi-Channel Campaign Applications

    Deploy across all major marketing channels:

    Email marketing and automation

    Social media advertising

    Search and display advertising (Google, YouTube)

    Direct mail and print campaigns

    Telemarketing and SMS campaigns

    Programmatic advertising platforms

    Data Quality & Sources

    Our consumer data aggregates from multiple verified sources:

    Public records and government databases

    Opt-in subscription services and registrations

    Purchase transaction data from retail partners

    Survey participation and research studies

    Online behavioral data (privacy compliant)

    Technical Delivery Options

    File Formats: CSV, Excel, JSON, XML formats available

    Delivery Methods: Secure FTP, API integration, direct download

    Processing: Real-time NCOA, email validation, phone verification

    Custom Selections: 1,000+ selectable demographic and behavioral attributes

    Minimum Orders: Flexible based on targeting complexity

    Unique Value Propositions

    Dual Spouse Targeting: Reach both household decision-makers for maximum impact

    Cross-Platform Integration: Seamless deployment to major ad platforms

    Real-Time Updates: Monthly data refreshes ensure maximum accuracy

    Advanced Segmentation: Combine multiple targeting criteria for precision campaigns

    Compliance Management: Built-in opt-out and suppression list management

    Ideal Customer Profiles

    E-commerce retailers seeking customer acquisition

    Financial services companies targeting specific demographics

    Healthcare organizations with compliant marketing needs

    Automotive dealers and service providers

    Home improvement and real estate professionals

    Insurance companies and agents

    Subscription services and SaaS providers

    Performance Optimization Features

    Lookalike Modeling: Create audiences similar to your best customers

    Predictive Scoring: Identify high-value prospects using AI algorithms

    Campaign Attribution: Track performance across multiple touchpoints

    A/B Testing Support: Split audiences for campaign optimization

    Suppression Management: Automatic opt-out and DNC compliance

    Pricing & Volume Options

    Flexible pricing structures accommodate businesses of all sizes:

    Pay-per-record for small campaigns

    Volume discounts for large deployments

    Subscription models for ongoing campaigns

    Custom enterprise pricing for high-volume users

    Data Compliance & Privacy

    VIA.tools maintains industry-leading compliance standards:

    CCPA (California Consumer Privacy Act) compliant

    CAN-SPAM Act adherence for email marketing

    TCPA compliance for phone and SMS campaigns

    Regular privacy audits and data governance reviews

    Transparent opt-out and data deletion processes

    Getting Started

    Our data specialists work with you to:

    1. Define your target audience criteria

    2. Recommend optimal data selections

    3. Provide sample data for testing

    4. Configure delivery methods and formats

    5. Implement ongoing campaign optimization

    Why We Lead the Industry

    With over two decades of data industry experience, we combine extensive database coverage with advanced targeting capabilities. Our commitment to data quality, compliance, and customer success has made us the preferred choice for businesses seeking superior B2C marketing performance.

    Contact our team to discuss your specific ta...

  17. RGB Image Pine-seedling Dataset: Three Population with half-sib structure,...

    • figshare.com
    zip
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jiri Chuchlík; Jaroslav Čepl; Eva Neuwirthová; Jan Stejskal; Jiří Korecký (2025). RGB Image Pine-seedling Dataset: Three Population with half-sib structure, dataset for segmentation model training and data of mean seedlings' color [Dataset]. http://doi.org/10.6084/m9.figshare.28239326.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Jiri Chuchlík; Jaroslav Čepl; Eva Neuwirthová; Jan Stejskal; Jiří Korecký
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The datasets contain RGB photos of Scots pine seedlings of three populations from two different ecotypes originating in the Czech Republic:Plasy - lowland ecotype,Trebon - lowland ecotype,Decin - upland ecotype.These photos were taken in three different periods (September 10th 2021, October 23rd 2021, January 22nd 2022).File dataset_for_YOLOv7_training.zip contains image data with annotations for training YOLOv7 segmentation model (training and validation sets)The dataset also contains a table with information on individual Scots pine seedlings:affiliation to parent tree (mum)affiliation to population (site)row and column in which the seedling was grown (row, col)affiliation to the planter in which the seedling was grown (box)mean RGB values of pine seedling in three different periods (B_september, G_september, R_september B_october, G_october, R_october, B_january, G_january, R_january)mean HSV values of pine seedling in three different periods (H_september, S_september, V_september, H_october, S_october, V_october, H_january, S_january, V_january)

  18. d

    Demographic Data | USA & Canada | Latest Estimates & Projections To Inform...

    • datarade.ai
    .json, .csv
    Updated Jun 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). Demographic Data | USA & Canada | Latest Estimates & Projections To Inform Business Decisions | GIS Data | Map Data [Dataset]. https://datarade.ai/data-products/gapmaps-ags-usa-demographics-data-40k-variables-trusted-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jun 24, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Canada, United States
    Description

    GapMaps premium demographic data for USA and Canada sourced from Applied Geographic Solutions (AGS) includes an extensive range of the highest quality demographic and lifestyle segmentation products. All databases are derived from superior source data and the most sophisticated, refined, and proven methodologies.

    Demographic Data attributes include:

    Latest Estimates and Projections The estimates and projections database includes a wide range of core demographic data variables for the current year and 5- year projections, covering five broad topic areas: population, households, income, labor force, and dwellings.

    Crime Risk Crime Risk is the result of an extensive analysis of a rolling seven years of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, Crime Risk provides an accurate view of the relative risk of specific crime types (personal, property and total) at the block and block group level.

    Panorama Segmentation AGS has created a segmentation system for the United States called Panorama. Panorama has been coded with the MRI Survey data to bring you Consumer Behavior profiles associated with this segmentation system.

    Business Counts Business Counts is a geographic summary database of business establishments, employment, occupation and retail sales.

    Non-Resident Population The AGS non-resident population estimates utilize a wide range of data sources to model the factors which drive tourists to particular locations, and to match that demand with the supply of available accommodations.

    Consumer Expenditures AGS provides current year and 5-year projected expenditures for over 390 individual categories that collectively cover almost 95% of household spending.

    Retail Potential This tabulation utilizes the Census of Retail Trade tables which cross-tabulate store type by merchandise line.

    Environmental Risk The environmental suite of data consists of several separate database components including: -Weather Risks -Seismological Risks -Wildfire Risk -Climate -Air Quality -Elevation and terrain

    Primary Use Cases for AGS Demographic Data:

    1. Retail (eg. Fast Food/ QSR, Cafe, Fitness, Supermarket/Grocery)
    2. Customer Profiling: get a detailed understanding of the demographic & segmentation profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular census block level using all the key metrics
    4. Site Selection: Identify optimal locations for future expansion and benchmark performance across existing locations.
    5. Target Marketing: Develop effective marketing strategies to acquire more customers.
    6. Integrate AGS demographic data with your existing GIS or BI platform to generate powerful visualizations.

    7. Finance / Insurance (eg. Hedge Funds, Investment Advisors, Investment Research, REITs, Private Equity, VC)

    8. Network Planning

    9. Customer (Risk) Profiling for insurance/loan approvals

    10. Target Marketing

    11. Competitive Analysis

    12. Market Optimization

    13. Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)

    14. Tenant Recruitment

    15. Target Marketing

    16. Market Potential / Gap Analysis

    17. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)

    18. Customer Profiling

    19. Target Marketing

    20. Market Share Analysis

  19. w

    Camden Population Segmentation by Ward, 2012

    • data.wu.ac.at
    • ckan.publishing.service.gov.uk
    • +1more
    csv, html, json, rdf +1
    Updated Aug 24, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.camden.gov.uk (2018). Camden Population Segmentation by Ward, 2012 [Dataset]. https://data.wu.ac.at/odso/data_gov_uk/MzA4YmY2NTYtNmVmZS00NWFlLThmYjctODgwM2U0NjMzODll
    Explore at:
    csv, json, xml, html, rdfAvailable download formats
    Dataset updated
    Aug 24, 2018
    Dataset provided by
    opendata.camden.gov.uk
    Description

    This forms part of Camden’s Joint Strategic Needs Assessment, focussing on the demographics of our population. This data shows breakdowns of Camden’s population by health conditions, age and sex, and by Camden ward, as supplementary information of the 2015 Camden population segmentation profile (https://opendata.camden.gov.uk/Health/Camden-Demographics-Population-Segmentation-2015/v6fr-wght). It provides the number of people, percentage of the whole population (prevalence) and Camden average for each breakdown. It only focuses on the population aged 18 and over and doesn’t show breakdowns for those diagnosed with learning disability or those aged under 65 who are diagnosed with dementia due to small numbers.

  20. m

    Lisbon, Portugal, hotel’s customer dataset with three years of personal,...

    • data.mendeley.com
    Updated Nov 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nuno Antonio (2020). Lisbon, Portugal, hotel’s customer dataset with three years of personal, behavioral, demographic, and geographic information [Dataset]. http://doi.org/10.17632/j83f5fsh6c.1
    Explore at:
    Dataset updated
    Nov 18, 2020
    Authors
    Nuno Antonio
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Lisbon, Portugal
    Description

    Hotel customer dataset with 31 variables describing a total of 83,590 instances (customers). It comprehends three full years of customer behavioral data. In addition to personal and behavioral information, the dataset also contains demographic and geographical information. This dataset contributes to reducing the lack of real-world business data that can be used for educational and research purposes. The dataset can be used in data mining, machine learning, and other analytical field problems in the scope of data science. Due to its unit of analysis, it is a dataset especially suitable for building customer segmentation models, including clustering and RFM (Recency, Frequency, and Monetary value) models, but also be used in classification and regression problems.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
HarishEdison (2022). KPMG Customer Demography Cleaned Dataset [Dataset]. https://www.kaggle.com/datasets/harishedison/kpmg-customer-demography-cleaned-dataset
Organization logo

KPMG Customer Demography Cleaned Dataset

Customer Dempography dataset of KMPG AU's client, Sprocket Pvt Ltd.

Explore at:
zip(140162 bytes)Available download formats
Dataset updated
Sep 25, 2022
Authors
HarishEdison
License

https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

Description

This dataset was sourced from KPMG AU's Data Analytics virtual internship course on Forage

Sprocket Pvt Ltd is a client of KPMG AU. Sprocket is a bike and bike accessories retail business. They need to find the right customer segment to target for marketing to boost revenue. The following dataset is of their customer demographics for the past 3 years.

The original dataset of 3 separate sheets of Customer demographic, Transactions, and Customer Addresses was fully cleaned and merged using a power query. Data types of columns were changed, and values of certain columns which had illegal values were corrected using a standard approach. This final master dataset can be used for customer segmentation projects using clustering methods.

Search
Clear search
Close search
Google apps
Main menu