100+ datasets found
  1. ERA5 hourly data on single levels from 1940 to present

    • cds.climate.copernicus.eu
    grib
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 hourly data on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.adbb2d47
    Explore at:
    gribAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Jul 25, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".

  2. d

    Complete ERA5 global atmospheric reanalysis 1940 to present

    • search-dev-2.test.dataone.org
    • dataone.org
    • +2more
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hans Hersbach; Bill Bell; Paul Berrisford; Shoji Hirahara; András Horányi; Joaquín Muñoz-Sabater; Julien Nicolas; Carole Peubey; Raluca Radu; Dinand Schepers; Adrian Simmons; Cornel Soci; Saleh Abdalla; Xavier Abellan; Gianpaolo Balsamo; Peter Bechtold; Gionata Biavati; Jean Bidlot; Massimo Bonavita; Giovanna De Chiara; Per Dahlgren; Dick Dee; Michail Diamantakis; Rossana Dragani; Johannes Flemming; Richard Forbes; Manuel Fuentes; Alan Geer; Leo Haimberger; Sean Healy; Robin J. Hogan; Elías Hólm; Marta Janisková; Sarah Keeley; Patrick Laloyaux; Philippe Lopez; Cristina Lupu; Gabor Radnoti; Patricia de Rosnay; Iryna Rozum; Freja Vamborg; Sebastien Villaume; Jean-Noël Thépaut (2024). Complete ERA5 global atmospheric reanalysis 1940 to present [Dataset]. http://doi.org/10.18739/A2542J99V
    Explore at:
    Dataset updated
    Oct 1, 2024
    Dataset provided by
    Arctic Data Center
    Authors
    Hans Hersbach; Bill Bell; Paul Berrisford; Shoji Hirahara; András Horányi; Joaquín Muñoz-Sabater; Julien Nicolas; Carole Peubey; Raluca Radu; Dinand Schepers; Adrian Simmons; Cornel Soci; Saleh Abdalla; Xavier Abellan; Gianpaolo Balsamo; Peter Bechtold; Gionata Biavati; Jean Bidlot; Massimo Bonavita; Giovanna De Chiara; Per Dahlgren; Dick Dee; Michail Diamantakis; Rossana Dragani; Johannes Flemming; Richard Forbes; Manuel Fuentes; Alan Geer; Leo Haimberger; Sean Healy; Robin J. Hogan; Elías Hólm; Marta Janisková; Sarah Keeley; Patrick Laloyaux; Philippe Lopez; Cristina Lupu; Gabor Radnoti; Patricia de Rosnay; Iryna Rozum; Freja Vamborg; Sebastien Villaume; Jean-Noël Thépaut
    Time period covered
    Jan 1, 1940
    Area covered
    Earth
    Description

    ERA5 (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis) is the fifth generation ECMWF atmospheric reanalysis of the global climate covering the period from January 1940 to present. It is produced by the Copernicus Climate Change Service (C3S) at ECMWF and provides hourly estimates of a large number of atmospheric, land and oceanic climate variables. The data cover the Earth on a 31 kilometer (km) grid and resolve the atmosphere using 137 levels from the surface up to a height of 80 km. ERA5 includes an ensemble component at half the resolution to provide information on synoptic uncertainty of its products. ERA5.1 is a dedicated product with the same horizontal and vertical resolution that was produced for the years 2000 to 2006 inclusive to significantly improve a discontinuity in global-mean temperature in the stratosphere and uppermost troposphere that ERA5 suffers from during that period. Users that are interested in this part of the atmosphere in this era are advised to access ERA5.1 rather than ERA5. ERA5 and ERA5.1 use a state-of-the-art numerical weather prediction model to assimilate a variety of observations, including satellite and ground-based measurements, and produces a comprehensive and consistent view of the Earth's atmosphere. These products are widely used by researchers and practitioners in various fields, including climate science, weather forecasting, energy production and machine learning among others, to understand and analyse past and current weather and climate conditions.

  3. o

    ERA5-Land daily: Total precipitation (2000 - 2020)

    • data.opendatascience.eu
    • data.mundialis.de
    Updated Dec 21, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). ERA5-Land daily: Total precipitation (2000 - 2020) [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=precipitation
    Explore at:
    Dataset updated
    Dec 21, 2021
    Description

    Overview: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Total precipitation: Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step. The original ERA5-Land dataset (period: 2000 - 2020) has been reprocessed to: - aggregate ERA5-Land hourly data to daily data (minimum, mean, maximum) - while increasing the resolution from the native ERA5-Land resolution of 0.1 degree (~ 9 km) to 30 arc-sec (~ 1 km) by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically: 1. spatially aggregate CHELSA to the resolution of ERA5-Land 2. calculate proportion of ERA5-Land / aggregated CHELSA 3. interpolate proportion with a Gaussian filter to 30 arc seconds 4. multiply the interpolated proportions with CHELSA Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA. Data available is the daily sum of precipitation. Software used: GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief) Original ERA5-Land dataset license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf CHELSA climatologies (V1.2): Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4 Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

  4. Monthly average air temperature [K] at 2m height - ERA5 Monthly Aggregates

    • data.amerigeoss.org
    html, wmts
    Updated Apr 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Monthly average air temperature [K] at 2m height - ERA5 Monthly Aggregates [Dataset]. https://data.amerigeoss.org/dataset/monthly-average-air-temperature-k-at-2m-height-era5-monthly-aggregates
    Explore at:
    html, wmtsAvailable download formats
    Dataset updated
    Apr 2, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    Description

    ERA5 Monthly Aggregates - Latest Climate Reanalysis produced by ECMWF / Copernicus Climate Change Service

    ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 replaces its predecessor, the ERA-Interim reanalysis.

    ERA5 MONTHLY provides aggregated values for each month for seven ERA5 climate reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind. Additionally, monthly minimum and maximum air temperature at 2m has been calculated based on the hourly 2m air temperature data. Monthly total precipitation values are given as monthly sums. All other parameters are provided as monthly averages.

    ERA5 data is available from 1979 to three months from real-time. More information and more ERA5 atmospheric parameters can be found at the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/).

    Provider's Note: Monthly aggregates have been calculated based on the ERA5 hourly values of each parameter.

  5. u

    ERA5 Reanalysis

    • data.ucar.edu
    • rda.ucar.edu
    • +1more
    grib
    Updated Aug 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2024). ERA5 Reanalysis [Dataset]. http://doi.org/10.5065/D6X34W69
    Explore at:
    gribAvailable download formats
    Dataset updated
    Aug 4, 2024
    Dataset provided by
    Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory
    Authors
    European Centre for Medium-Range Weather Forecasts
    Time period covered
    Jan 1, 2002 - Feb 1, 2019
    Area covered
    Description

    Please note: Please use ds633.0 to access RDA maintained ERA-5 data, see ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid) [https://rda.ucar.edu/datasets/ds633.0], RDA dataset ds633.0. This dataset is no longer being updated, and web access has been removed. After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time, though the first segment of data to be released will span the period 2010-2016. ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (18 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters, e.g. mean rates and accumulations, that are not available from the analyses. Improvements to ERA5, compared to ERA-Interim, include use of HadISST.2, reprocessed...

  6. w

    CCKP ERA5 Dataset

    • data360.worldbank.org
    Updated Apr 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). CCKP ERA5 Dataset [Dataset]. https://data360.worldbank.org/en/dataset/WB_CCKP
    Explore at:
    Dataset updated
    Apr 18, 2025
    Time period covered
    1950 - 2023
    Description

    The historical climate reanalysis data from ERA5 are offered at 0.25 x 0.25-degree resolution over the entire globe. ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate covering the period from January 1940 to the present. ERA5 uses a broad collection of observational data, including various satellite-derived products in multivariate data assimilation mode to capture global variability and change. The data are offered through the Copernicus Climate Change Service (C3S) as a public good and are updated operationally. Data are updated annually.

    Presented at monthly, seasonal, and annual scale Spatial resolution: 0.25o x 0.25o Historical Climatologies (20-year or 30-year periods used for climatologies and natural variability): 1986-2005, 1991-2020, 1995-2014
    Decadal trends calculated for: 1951-2020, 1971-2020, 1991-2020

    Recommended Use: ERA5 is considered one of the top reanalysis products. It provides consistent coverage of all variables found in climate models, making it a valuable reference. In areas with good station coverage, ERA5 closely aligns with CRU data, while in regions lacking stations, it offers reliable estimates and minimizes false trends from short satellite records. Temperature data from ERA5 is highly reliable, but for precipitation, it’s recommended to use multiple datasets due to the challenges in accurately measuring and modeling it.

  7. ERA5-Land weekly: Total precipitation, weekly time series for Europe at 1 km...

    • zenodo.org
    • data.mundialis.de
    • +1more
    png, zip
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Markus Metz; Markus Metz; Julia Haas; Julia Haas; Felix Kröber; Markus Neteler; Markus Neteler; Felix Kröber (2024). ERA5-Land weekly: Total precipitation, weekly time series for Europe at 1 km resolution (2016 - 2020) [Dataset]. http://doi.org/10.5281/zenodo.6559048
    Explore at:
    zip, pngAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Markus Metz; Markus Metz; Julia Haas; Julia Haas; Felix Kröber; Markus Neteler; Markus Neteler; Felix Kröber
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Overview:
    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.

    Total precipitation:
    Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). Precipitation variables do not include fog, dew or the precipitation that evaporates in the atmosphere before it lands at the surface of the Earth. This variable is accumulated from the beginning of the forecast time to the end of the forecast step. The units of precipitation are depth in metres. It is the depth the water would have if it were spread evenly over the grid box. Care should be taken when comparing model variables with observations, because observations are often local to a particular point in space and time, rather than representing averages over a model grid box and model time step.

    Processing steps:
    The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically:
    1. spatially aggregate CHELSA to the resolution of ERA5-Land
    2. calculate proportion of ERA5-Land / aggregated CHELSA
    3. interpolate proportion with a Gaussian filter to 30 arc seconds
    4. multiply the interpolated proportions with CHELSA
    Using proportions ensures that areas without precipitation remain areas without precipitation. Only if there was actual precipitation in a given area, precipitation was redistributed according to the spatial detail of CHELSA.

    The spatially enhanced daily ERA5-Land data has been aggregated on a weekly basis starting from Saturday for the time period 2016 - 2020.
    Data available is the weekly average of daily sums and the weekly sum of daily sums of total precipitation.

    File naming:
    Average of daily sum: era5_land_prectot_avg_weekly_YYYY_MM_DD.tif
    Sum of daily sum: era5_land_prectot_sum_weekly_YYYY_MM_DD.tif

    The date in the file name determines the start day of the week (Saturday).

    Pixel values:
    mm * 10
    Example: Value 218 = 21.8 mm

    Coordinate reference system:
    ETRS89 / LAEA Europe (EPSG:3035) (EPSG:3035)

    Spatial extent:
    north: 82:00:30N
    south: 18N
    west: 32:00:30W
    east: 70E

    Spatial resolution:
    1km

    Temporal resolution:
    weekly

    Period:
    01/01/2016 - 12/31/2020

    Lineage:
    Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used.

    Software used:
    GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)

    Original ERA5-Land dataset license:
    https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf

    CHELSA climatologies (V1.2):
    Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4
    Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122

    Other resources:
    https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/601ea08c-0768-4af3-a8fa-7da25fb9125b

    Format: GeoTIFF

    Representation type: Grid

    Processed by:
    mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

    Contact:
    mundialis GmbH & Co. KG, info@mundialis.de

  8. o

    ERA5 Land precipitation daily sum

    • data.opendatascience.eu
    Updated May 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land precipitation daily sum [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: precipitation daily sums from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent cumulative daily precipitation in mm x 10.

  9. ECMWF ERA5: model level analysis parameter data

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Jul 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (ECMWF) (2025). ECMWF ERA5: model level analysis parameter data [Dataset]. https://catalogue.ceda.ac.uk/uuid/f809e61a61ee4eb9a64d4957c3e5bfac
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    European Centre for Medium-Range Weather Forecasts (ECMWF)
    License

    https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf

    Area covered
    Earth
    Variables measured
    geopotential, eastward_wind, northward_wind, air_temperature, specific_humidity, atmosphere_relative_vorticity, mass_fraction_of_ozone_in_air
    Description

    This dataset contains ERA5 model level analysis parameter data. ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.

    Surface level analysis and forecast data to complement this dataset are also available. Data from a 10 member ensemble, run at lower spatial and temporal resolution, were also produced to provide an uncertainty estimate for the output from the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation producing data in this dataset.

    The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.

    An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.

  10. u

    ERA5 Reanalysis Model Level Data

    • data.ucar.edu
    • rda.ucar.edu
    • +2more
    netcdf
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2025). ERA5 Reanalysis Model Level Data [Dataset]. http://doi.org/10.5065/XV5R-5344
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory
    Authors
    European Centre for Medium-Range Weather Forecasts
    Time period covered
    Jan 1, 1979 - Apr 30, 2025
    Area covered
    Description

    After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time. ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (12 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters, for example mean rates and accumulations, that are not available from the analyses. Improvements to ERA5, compared to ERA-Interim, include use of HadISST.2, reprocessed ECMWF climate data records (CDR), and implementation of RTTOV11 radiative transfer. Variational bias corrections have not only been applied to satellite radiances, but also ozone retrievals, aircraft observations, surface pressure, and radiosonde profiles. Please note: DECS is producing a CF 1.6 compliant netCDF-4/HDF5 version of ERA5...

  11. ERA5-Land hourly data from 1950 to present

    • cds.climate.copernicus.eu
    • cds-stable-bopen.copernicus-climate.eu
    {grib,netcdf}
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5-Land hourly data from 1950 to present [Dataset]. http://doi.org/10.24381/cds.e2161bac
    Explore at:
    {grib,netcdf}Available download formats
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1950 - Jul 25, 2025
    Description

    ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. ERA5-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humidity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERA5-Land, they have an indirect influence through the atmospheric forcing used to run the simulation. In addition, the input air temperature, air humidity and pressure used to run ERA5-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERA5-Land. This correction is called 'lapse rate correction'.
    The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. The temporal and spatial resolutions of ERA5-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.

  12. ERA5 Reanalysis Monthly Means

    • rda.ucar.edu
    • data.ucar.edu
    Updated Oct 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2017). ERA5 Reanalysis Monthly Means [Dataset]. http://doi.org/10.5065/D63B5XW1
    Explore at:
    Dataset updated
    Oct 6, 2017
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    European Centre for Medium-Range Weather Forecasts
    Time period covered
    Jan 1, 2008 - Dec 31, 2017
    Area covered
    Description

    Please note: Please use ds633.1 to access RDA maintained ERA-5 Monthly Mean data, see ERA5 Reanalysis (Monthly Mean 0.25 Degree Latitude-Longitude Grid), RDA dataset ds633.1. This dataset is no longer being updated, and web access has been removed.

    After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time, though the first segment of data to be released will span the period 2010-2016.

    ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (18 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters, e.g. mean rates and accumulations, that are not available from the analyses. Together, the hourly analysis and twice daily forecast parameters form the basis of the monthly means (and monthly diurnal means) found in this dataset.

    Improvements to ERA5, compared to ERA-Interim, include use of HadISST.2, reprocessed ECMWF climate data records (CDR), and implementation of RTTOV11 radiative transfer. Variational bias corrections have not only been applied to satellite radiances, but also ozone retrievals, aircraft observations, surface pressure, and radiosonde profiles.

    NCAR's Data Support Section (DSS) is performing and supplying a grid transformed version of ERA5, in which variables originally represented as spectral coefficients or archived on a reduced Gaussian grid are transformed to a regular 1280 longitude by 640 latitude N320 Gaussian grid. In addition, DSS is also computing horizontal winds (u-component, v-component) from spectral vorticity and divergence where these are available. Finally, the data is reprocessed into single parameter time series.

    Please note: As of November 2017, DSS is also producing a CF 1.6 compliant netCDF-4/HDF5 version of ERA5 for CISL RDA at NCAR. The netCDF-4/HDF5 version is the de facto RDA ERA5 online data format. The GRIB1 data format is only available via NCAR's High Performance Storage System (HPSS). We encourage users to evaluate the netCDF-4/HDF5 version for their work, and to use the currently existing GRIB1 files as a reference and basis of comparison. To ease this transition, there is a one-to-one correspondence between the netCDF-4/HDF5 and GRIB1 files, with as much GRIB1 metadata as possible incorporated into the attributes of the netCDF-4/HDF5 counterpart.

  13. o

    ERA5 Land air temperature daily average

    • data.opendatascience.eu
    Updated May 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). ERA5 Land air temperature daily average [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=climate
    Explore at:
    Dataset updated
    May 4, 2022
    Description

    Overview: era5.copernicus: air temperature daily averages from 2000 to 2020 resampled with CHELSA to 1 km resolution Traceability (lineage): The data sources used to generate this dataset are ERA5-Land hourly data from 1950 to present (Copernicus Climate Data Store) and CHELSA monthly climatologies. Scientific methodology: The methodology used for downscaling follows established procedures as used by e.g. Worldclim and CHELSA. Usability: The substantial improvement of the spatial resolution together with the high temporal resolution of one day further improve the usability of the original ERA5 Land time series product which is useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset, the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states. Uncertainty quantification: The ERA5-Land dataset, as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical processes governing different components of the Earth System. In general, the uncertainty of model estimates grows as we go back in time, because the number of observations available to create a good quality atmospheric forcing is lower. ERA5-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields. Data validation approaches: Validation of the ERA5 Land ddataset against multiple in-situ datasets is presented in the reference paper (Muñoz-Sabater et al., 2021). Completeness: The dataset covers the entire Geo-harmonizer region as defined by the landmask raster dataset. However, some small islands might be missing if there are no data in the original ERA5 Land dataset. Consistency: ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past. Positional accuracy: 1 km spatial resolution Temporal accuracy: Daily maps for the years 2020-2020. Thematic accuracy: The raster values represent minimum, mean, and maximum daily air temperature 2m above ground in degrees Celsius x 10.

  14. i

    WFDE5 over land merged with ERA5 over the ocean (W5E5 v2.0)

    • data.isimip.org
    Updated May 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stefan Lange; Christoph Menz; Stephanie Gleixner; Marco Cucchi; Graham P. Weedon; Alessandro Amici; Nicolas Bellouin; Hannes Müller Schmied; Hans Hersbach; Carlo Buontempo; Chiara Cagnazzo (2021). WFDE5 over land merged with ERA5 over the ocean (W5E5 v2.0) [Dataset]. http://doi.org/10.48364/ISIMIP.342217
    Explore at:
    Dataset updated
    May 5, 2021
    Dataset provided by
    ISIMIP Repository
    Authors
    Stefan Lange; Christoph Menz; Stephanie Gleixner; Marco Cucchi; Graham P. Weedon; Alessandro Amici; Nicolas Bellouin; Hannes Müller Schmied; Hans Hersbach; Carlo Buontempo; Chiara Cagnazzo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The W5E5 dataset was compiled to support the bias adjustment of climate input data for the impact assessments carried out in phase 3b of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3b).
    Version 2.0 of the W5E5 dataset covers the entire globe at 0.5° horizontal and daily temporal resolution from 1979 to 2019. Data sources of W5E5 are version 2.0 of WATCH Forcing Data methodology applied to ERA5 data (WFDE5; Weedon et al., 2014; Cucchi et al., 2020), ERA5 reanalysis data (Hersbach et al., 2020), and precipitation data from version 2.3 of the Global Precipitation Climatology Project (GPCP; Adler et al., 2003).
    Variables (with short names and units in brackets) included in the W5E5 dataset are Near Surface Relative Humidity (hurs, %), Near Surface Specific Humidity (huss, kg kg-1), Precipitation (pr, kg m-2 s-1), Snowfall Flux (prsn, kg m-2 s-1), Surface Air Pressure (ps, Pa), Sea Level Pressure (psl, Pa), Surface Downwelling Longwave Radiation (rlds, W m-2), Surface Downwelling Shortwave Radiation (rsds, W m-2), Near Surface Wind Speed (sfcWind, m s-1), Near-Surface Air Temperature (tas, K), Daily Maximum Near Surface Air Temperature (tasmax, K), Daily Minimum Near Surface Air Temperature (tasmin, K), Surface Altitude (orog, m), and WFDE5-ERA5 Mask (mask, 1).

  15. u

    ERA5 Reanalysis (Monthly Mean 0.25 Degree Latitude-Longitude Grid)

    • data.ucar.edu
    • rda.ucar.edu
    • +1more
    grib
    Updated Aug 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (2024). ERA5 Reanalysis (Monthly Mean 0.25 Degree Latitude-Longitude Grid) [Dataset]. http://doi.org/10.5065/P8GT-0R61
    Explore at:
    gribAvailable download formats
    Dataset updated
    Aug 4, 2024
    Dataset provided by
    Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory
    Authors
    European Centre for Medium-Range Weather Forecasts
    Time period covered
    Dec 31, 1978 - Dec 31, 2022
    Area covered
    Earth
    Description

    For RDA ERA5 monthly mean data prior to 1979, please see ds633.5: ERA5 monthly mean back extension 1950-1978 (Preliminary version) [https://rda.ucar.edu/datasets/ds633.5/] After many years of research and technical preparation, the production of a new ECMWF climate reanalysis to replace ERA-Interim is in progress. ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, which started with the FGGE reanalyses produced in the 1980s, followed by ERA-15, ERA-40 and most recently ERA-Interim. ERA5 will cover the period January 1950 to near real time. ERA5 is produced using high-resolution forecasts (HRES) at 31 kilometer resolution (one fourth the spatial resolution of the operational model) and a 62 kilometer resolution ten member 4D-Var ensemble of data assimilation (EDA) in CY41r2 of ECMWF's Integrated Forecast System (IFS) with 137 hybrid sigma-pressure (model) levels in the vertical, up to a top level of 0.01 hPa. Atmospheric data on these levels are interpolated to 37 pressure levels (the same levels as in ERA-Interim). Surface or single level data are also available, containing 2D parameters such as precipitation, 2 meter temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. The IFS is coupled to a soil model, the parameters of which are also designated as surface parameters, and an ocean wave model. Generally, the data is available at an hourly frequency and consists of analyses and short (12 hour) forecasts, initialized twice daily from analyses at 06 and 18 UTC. Most analyses parameters are also available from the forecasts. There are a number of forecast parameters, e.g. mean rates and accumulations, that are not available from the analyses. Improvements to ERA5, compared to ERA-Interim, include use of HadISST.2, reprocessed ECMWF climate data records (CDR), and implementation of RTTOV11 radiative transfer. Variational bias corrections have not only been applied to satellite radiances, but...

  16. o

    ECMWF ERA5 Reanalysis

    • registry.opendata.aws
    Updated Jul 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intertrust (2018). ECMWF ERA5 Reanalysis [Dataset]. https://registry.opendata.aws/ecmwf-era5/
    Explore at:
    Dataset updated
    Jul 12, 2018
    Dataset provided by
    <a href="https://www.intertrust.com/">Intertrust</a>
    Description

    ERA5 is the fifth generation of ECMWF atmospheric reanalyses of the global climate, and the first reanalysis produced as an operational service. It utilizes the best available observation data from satellites and in-situ stations, which are assimilated and processed using ECMWF's Integrated Forecast System (IFS) Cycle 41r2. The dataset provides all essential atmospheric meteorological parameters like, but not limited to, air temperature, pressure and wind at different altitudes, along with surface parameters like rainfall, soil moisture content and sea parameters like sea-surface temperature and wave height. ERA5 provides data at a considerably higher spatial and temporal resolution than its legacy counterpart ERA-Interim. ERA5 consists of high resolution version with 31 km horizontal resolution, and a reduced resolution ensemble version with 10 members. It is currently available since 2008, but will be continuously extended backwards, first until 1979 and then to 1950. Learn more about ERA5 in Jon Olauson's paper ERA5: The new champion of wind power modelling?.

  17. Historical Daily Precipitation Data of CMIP6 GCMs and ERA5

    • figshare.com
    bin
    Updated Dec 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    YoungHoon Song (2024). Historical Daily Precipitation Data of CMIP6 GCMs and ERA5 [Dataset]. http://doi.org/10.6084/m9.figshare.27999167.v5
    Explore at:
    binAvailable download formats
    Dataset updated
    Dec 11, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    YoungHoon Song
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset contains historical daily precipitation data from 11 CMIP6 GCMs (1980–2014) and ERA5 (1979–2014), covering a global scale across six continents. CMIP6 GCM outputs have been re-gridded to a resolution of 1° x 1° using linear interpolation.Provided CMIP6 GCM Model InformationACCESS-CM2ACCESS-ESM1-5BCC-CSM2-MRCanESM5CESM2-WACCMCMCC-CM2-SR5CMCC-ESM2EC-Earth3-Veg-LRGFDL-ESM4INM-CM4-8IPSL-CM6A-LRDataset Overview: Coverage: Global (land and ocean); Temporal Coverage: 1980-01-01 to 2014-12-31; Spatial Resolution: 1° x 1° (latitude/longitude grid); Temporal Resolution: Daily accumulated precipitation; Re-gridding Method: Linear interpolationProvided ERA5 Model InformationData Source: The ERA5 daily precipitation data was obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) through the COPERNICUS Climate Change Service (C3S). The data is part of the FROGS (Frequent Rainfall Observations on Grids) database, which includes gridded daily precipitation from reanalysis, satellite, and rain gauge observations.Dataset Overview: Title: Frogs daily 1° x 1° gridded precipitation for ECMWF ReAnalysis 5 (ERA5); Coverage: Global (land and ocean); Temporal Coverage: 1979-01-01 to 2014-12-31; Spatial Resolution: 1° x 1° (latitude/longitude grid); Temporal Resolution: Daily accumulated precipitationData Attributes: Institution: ECMWF/LEGOS/IPSL; Publisher: ESPRI/IPSL; Conventions: ACDD-1.3, CF-1.8; DOI: 10.14768/06337394-73A9-407C-9997-0E380DAC5598

  18. A

    Precipitation flux - AgERA5 (Global - Monthly - ~10km)

    • data.amerigeoss.org
    • data.apps.fao.org
    png, wms, wmts
    Updated Jun 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2024). Precipitation flux - AgERA5 (Global - Monthly - ~10km) [Dataset]. https://data.amerigeoss.org/dataset/36a3a273-cbb2-438a-bfb5-5758b1bf5e36
    Explore at:
    wms, png, wmtsAvailable download formats
    Dataset updated
    Jun 25, 2024
    Dataset provided by
    Food and Agriculture Organization
    Description

    Total volume of liquid water (mm3) precipitated over the period 00h-24h local time per unit of area (mm2), per month. Unit: mm month-1. The Precipitation flux variable is part of the Agrometeorological indicators dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service (C3S). The Agrometeorological indicators dataset provides daily surface meteorological data for the period from 1979 to present as input for agriculture and agro-ecological studies. This dataset is based on the hourly ECMWF ERA5 data at surface level and is referred to as AgERA5. References: https://doi.org/10.24381/cds.6c68c9bb

    The Copernicus Climate Change Service (C3S) aims to combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate in Europe and worldwide. ECMWF operates the Copernicus Climate Change Service on behalf of the European Union and will bring together expertise from across Europe to deliver the service.

    Data publication: 2021-01-30

    Data revision: 2021-10-05

    Contact points:

    Metadata Contact: ECMWF - European Centre for Medium-Range Weather Forecasts

    Resource Contact: ECMWF Support Portal

    Data lineage:

    Agrometeorological data were aggregated to daily time steps at the local time zone and corrected towards a finer topography at a 0.1° spatial resolution. The correction to the 0.1° grid was realized by applying grid and variable-specific regression equations to the ERA5 dataset interpolated at 0.1° grid. The equations were trained on ECMWF's operational high-resolution atmospheric model (HRES) at a 0.1° resolution. This way the data is tuned to the finer topography, finer land use pattern and finer land-sea delineation of the ECMWF HRES model.

    Resource constraints:

    License Permission This License is free of charge, worldwide, non-exclusive, royalty free and perpetual. Access to Copernicus Products is given for any purpose in so far as it is lawful, whereas use may include, but is not limited to: reproduction; distribution; communication to the public; adaptation, modification and combination with other data and information; or any combination of the foregoing. Where the Licensee communicates or distributes Copernicus Products to the public, the Licensee shall inform the recipients of the source by using the following or any similar notice: • 'Generated using Copernicus Climate Change Service information [Year]' and/or • 'Generated using Copernicus Atmosphere Monitoring Service information [Year]'

    More information on Copernicus License in PDF version at https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf

    Online resources:

  19. Z

    Radar-derived rainfall event characteristics and ERA5 parameters

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bowden, Annabel Jayne (2024). Radar-derived rainfall event characteristics and ERA5 parameters [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11559754
    Explore at:
    Dataset updated
    Jun 11, 2024
    Dataset authored and provided by
    Bowden, Annabel Jayne
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Contains interpolated time series of areal radar variables from 01/01/2010 to 31/12/2020 for 15 operational radars (refer to radar_codes.txt) for specific sites, dataset of clustered rainfall events over all radar sites, and mean ERA5 variables over event duration for each event. Rainfall events were identified only using data within a 100km radius of the radar, with gaps of one timestep interpolated over using the arithmetic mean of value on either side of the gap, and using an areal mean rain rate threshold of 0.1 mm/h. Created using Level 2 rain rate and Steiner classification data from the Australian Unified Radar Archive (AURA) and ERA5 reanalysis data, both of which are available through NCI.

  20. ECMWF ERA5: 10 ensemble member surface level analysis parameter data

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (ECMWF) (2025). ECMWF ERA5: 10 ensemble member surface level analysis parameter data [Dataset]. https://catalogue.ceda.ac.uk/uuid/bd302093953a48359ab33e4b48324f5f
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    European Centre for Medium-Range Weather Forecasts (ECMWF)
    License

    https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf

    Area covered
    Earth
    Variables measured
    cloud_area_fraction, sea_ice_area_fraction, air_pressure_at_mean_sea_level, lwe_thickness_of_atmosphere_mass_content_of_water_vapor
    Description

    This dataset contains ERA5 surface level analysis parameter data from 10 ensemble runs. ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. The ensemble members were used to derive means and spread data (see linked datasets). Ensemble means and spreads were calculated from the ERA5t 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.

    Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble member and ensemble mean data.

    The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.

    An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ECMWF (2025). ERA5 hourly data on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.adbb2d47
Organization logo

ERA5 hourly data on single levels from 1940 to present

Explore at:
gribAvailable download formats
Dataset updated
Jul 31, 2025
Dataset provided by
European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
Authors
ECMWF
License

https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

Time period covered
Jan 1, 1940 - Jul 25, 2025
Description

ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days. In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 hourly data on single levels from 1940 to present".

Search
Clear search
Close search
Google apps
Main menu