100+ datasets found
  1. 02.1 Integrating Data in ArcGIS Pro

    • hub.arcgis.com
    Updated Feb 16, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 02.1 Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/cd5acdcc91324ea383262de3ecec17d0
    Explore at:
    Dataset updated
    Feb 16, 2017
    Dataset authored and provided by
    Iowa Department of Transportationhttps://iowadot.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.

  2. Charles M. Russell National Wildlife Refuge Fire History GIS Feature Classes...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Oct 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish and Wildlife Service (2025). Charles M. Russell National Wildlife Refuge Fire History GIS Feature Classes [Dataset]. https://catalog.data.gov/dataset/charles-m-russell-national-wildlife-refuge-fire-history-gis-feature-classes
    Explore at:
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Description

    Summary This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Records from FMIS (Fire Management Information System) were reviewed and compared to refuge records. Polygon data in FMIS only occurs from 2012 to current and many acreage estimates did not match. This dataset includes ALL fires no matter the size. This feature class documents the fire history on CMR from 1964 - present. This is 1 of 2 feature classes, a polygon and a point. This data has a variety of different origins which leads to differing quality of data. Within the polygon feature class, this contains perimeters that were mapped using a GPS, hand digitized, on-screen digitized, and buffered circles to the estimated acreage. These 2 files should be kept together. Within the point feature class, fires with only a location of latitude/longitude, UTM coordinate, TRS and no estimated acreage were mapped using a point location. GPS started being used in 1992 when the technology became available. Data origins include: Data origins include: 1) GPS Polygon-data (Best), 2) GPS Lat/Long or UTM, 3)TRS QS, 4)TRS Point, 6)Hand digitized from topo map, 7) Circle buffer, 8)Screen digitized, 9) FMIS Lat/Long. Started compiling fire history of CMR in 2007. This has been a 10 year process.FMIS doesn't include fires polygons that are less than 10 acres. This dataset has been sent to FMIS for FMIS records to be updated with correct information. The spreadsheet contains 10-15 records without spatial information and weren't included in either feature class. Fire information from 1964 - 1980 came from records Larry Eichhorn, BLM, provided to CMR staff. Mike Granger, CMR Fire Management Officer, tracked fires on an 11x17 legal pad and all this information was brought into Excel and ArcGIS. Frequently, other information about the fires were missing which made it difficult to back track and fill in missing data. Time was spent verifiying locations that were occasionally recorded incorrectly (DMS vs DD) and converting TRS into Lat/Long and/or UTM. CMR is divided into 2 different UTM zones, zone 12 and zone 13. This occasionally caused errors in projecting. Naming conventions caused confusion. Fires are frequently names by location and there are several "Soda Creek", "Rock Creek", etc fires. Fire numbers were occasionally missing or incorrect. Fires on BLM were included if they were "Assists". Also, fires on satellite refuges and the district were also included. Acreages from GIS were compared to FMIS acres. Please see documentation in ServCat (URL) to see how these were handled.

  3. a

    Integrating Data in ArcGIS Pro

    • hub.arcgis.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2020). Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/3a11f895a7dc4d28ad45cee9cc5ba6d8
    Explore at:
    Dataset updated
    Mar 25, 2020
    Dataset authored and provided by
    State of Delaware
    Description

    In this course, you will learn about some common types of data used for GIS mapping and analysis, and practice adding data to a file geodatabase to support a planned project.Goals Create a file geodatabase. Add data to a file geodatabase. Create an empty geodatabase feature class.

  4. Activity FACTS Common Attributes (Feature Layer)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +6more
    Updated Oct 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Activity FACTS Common Attributes (Feature Layer) [Dataset]. https://catalog.data.gov/dataset/activity-facts-common-attributes-feature-layer-dcdbb
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The data in this map service is updated every weekend.Note: This data includes all activities regardless of whether there is a spatial feature attached.Note: This is a large dataset. Metadata and Downloads are available at: https://data.fs.usda.gov/geodata/edw/datasets.php?xmlKeyword=FACTS+common+attributesTo download FACTS activities layers, search for the activity types you want, such as timber harvest or hazardous fuels treatments. The Forest Service's Natural Resource Manager (NRM) Forest Activity Tracking System (FACTS) is the agency standard for managing information about activities related to fire/fuels, silviculture, and invasive species. This feature class contains the FACTS attributes most commonly needed to describe FACTS activities.

  5. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • geodata.colorado.gov
    • +5more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  6. WSDOT - GIS Polygon Feature Class Template

    • gisdata-wsdot.opendata.arcgis.com
    • geo.wa.gov
    Updated Jan 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WSDOT Online Map Center (2020). WSDOT - GIS Polygon Feature Class Template [Dataset]. https://gisdata-wsdot.opendata.arcgis.com/datasets/WSDOT::wsdot-gis-polygon-feature-class-template/about
    Explore at:
    Dataset updated
    Jan 16, 2020
    Dataset provided by
    Washington State Department of Transportationhttps://wsdot.wa.gov/
    Authors
    WSDOT Online Map Center
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    WSDOT template for Esri file geodatabase polygon feature class. Template has pre-defined attribute schema to help users create data that is more consistent or compliant with agency standards. Metadata has been created using the FGDC metadata style but stored in the ArcGIS format. Content presentation will change upon export to FGDC format.This service is maintained by the WSDOT Transportation Data, GIS & Modeling Office. If you are having trouble viewing the service, please contact Online Map Support at onlinemapsupport@wsdot.wa.gov.

  7. Geospatial data for the Vegetation Mapping Inventory Project of Pictured...

    • catalog.data.gov
    Updated Oct 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Pictured Rocks National Lakeshore [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-pictured-rocks-national-la
    Explore at:
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Pictured Rocks
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.

  8. w

    ArcGIS Tool: Inserts file name into attribute table

    • data.wu.ac.at
    • data.amerigeoss.org
    zip
    Updated Jun 24, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2013). ArcGIS Tool: Inserts file name into attribute table [Dataset]. https://data.wu.ac.at/schema/data_gov/MGZmNGZlM2EtYWEyNy00ODRmLTlhODctNGE2YmJlOWFiOGQ1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 24, 2013
    Dataset provided by
    Department of the Interior
    Description

    This ArcGIS model inserts a file name into a feature class attribute table. The tool allows an user to identify features by a field that reference the name of the original file. It is useful when an user have to merge multiple feature classes and needs to identify which layer the features come from.

  9. National Hydrography Dataset Plus High Resolution

    • oregonwaterdata.org
    • hub.arcgis.com
    • +2more
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://www.oregonwaterdata.org/maps/f1f45a3ba37a4f03a5f48d7454e4b654
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  10. WSDOT - GIS Line Feature Class Template

    • gisdata-wsdot.opendata.arcgis.com
    • data-wutc.opendata.arcgis.com
    Updated Jan 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WSDOT Online Map Center (2020). WSDOT - GIS Line Feature Class Template [Dataset]. https://gisdata-wsdot.opendata.arcgis.com/datasets/wsdot-gis-line-feature-class-template
    Explore at:
    Dataset updated
    Jan 16, 2020
    Dataset provided by
    Washington State Department of Transportationhttps://wsdot.wa.gov/
    Authors
    WSDOT Online Map Center
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    WSDOT template for Esri file geodatabase line feature class. Template has pre-defined attribute schema to help users create data that is more consistent or compliant with agency standards. Metadata has been created using the FGDC metadata style but stored in the ArcGIS format. Content presentation will change upon export to FGDC format.This service is maintained by the WSDOT Transportation Data, GIS & Modeling Office. If you are having trouble viewing the service, please contact Online Map Support at onlinemapsupport@wsdot.wa.gov.

  11. d

    Data and Results for GIS-Based Identification of Areas that have Resource...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Data and Results for GIS-Based Identification of Areas that have Resource Potential for Lode Gold in Alaska [Dataset]. https://catalog.data.gov/dataset/data-and-results-for-gis-based-identification-of-areas-that-have-resource-potential-for-lo
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    U.S. Geological Survey
    Description

    This data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.

  12. c

    i07 PreSGMA GroundWaterManagementPlans

    • gis.data.cnra.ca.gov
    • data.ca.gov
    • +7more
    Updated Feb 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos.Lewis@water.ca.gov_DWR (2023). i07 PreSGMA GroundWaterManagementPlans [Dataset]. https://gis.data.cnra.ca.gov/items/7cdf65e496e24b43af4252d9bf9be824
    Explore at:
    Dataset updated
    Feb 7, 2023
    Dataset authored and provided by
    Carlos.Lewis@water.ca.gov_DWR
    Area covered
    Description

    This polygon feature class is a data set compiled by DWR employees in 2013 and represents the statewide Groundwater Management Plan (Plan) boundaries predating the Sustainable Groundwater Management Act (SGMA) requirements. Each polygon represents the area in which a Plan is to be implemented. The boundaries were provided to DWR by the affiliated public agency and compiled into a single statewide data set. Spatial plan boundaries were provided by agencies to DWR either via shapefiles or PDFs. PDFs were georeferenced and turned into GIS layers by DWR employees. This feature class is for legacy purposes only and will not be changed nor updated. It needs to be memorialized for spatial coverage of Groundwater Management Plans prior to SGMA and because SGMA only requires medium and high priority basins to have a Groundwater Sustainability Plan. The Plans outlined in this shapefile by medium and high priority basins are in effect until SGMA goes into effect. Some low and very low priority basins will likely use the existing plans to get funding for future basin management (since it is only voluntary for them to provide a Plan under SGMA, but they already have one in place). The data set is considered complete because of its legacy status. However, anyone using the data set will notice boundary inconsistencies, agency plan overlaps, mismatches, and other topology errors. The data set is based on boundary estimations and in the cases of medium and high priority basins will be outdated with in implementation of SGMA.The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.1, dated September 11, 2019. This data set was not produced by DWR. Data were originally developed and supplied by each individual plan agency and compiled by DWR. DWR makes no warranties or guarantees — either expressed or implied— as to the completeness, accuracy, or correctness of the data. DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements, updates, or suggestions should be forwarded to GIS@water.ca.gov.

  13. i07 Water Shortage Vulnerability Sections

    • data.cnra.ca.gov
    • data.ca.gov
    • +5more
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). i07 Water Shortage Vulnerability Sections [Dataset]. https://data.cnra.ca.gov/dataset/i07-water-shortage-vulnerability-sections
    Explore at:
    kml, csv, arcgis geoservices rest api, geojson, zipAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset represents a water shortage vulnerability analysis performed by DWR using modified PLSS sections pulled from the Well Completion Report PLSS Section Summaries. The attribute table includes water shortage vulnerability indicators and scores from an analysis done by CA Department of Water Resources, joined to modified PLSS sections. Several relevant summary statistics from the Well Completion Reports are included in this table as well. This data is from the 2024 analysis.

    Water Code Division 6 Part 2.55 Section 8 Chapter 10 (Assembly Bill 1668) effectively requires California Department of Water Resources (DWR), in consultation with other agencies and an advisory group, to identify small water suppliers and “rural communities” that are at risk of drought and water shortage. Following legislation passed in 2021 and signed by Governor Gavin Newsom, the Water Code Division 6, Section 10609.50 through 10609.80 (Senate Bill 552 of 2021) effectively requires the California Department of Water Resources to update the scoring and tool periodically in partnership with the State Water Board and other state agencies. This document describes the indicators, datasets, and methods used to construct this deliverable.  This is a statewide effort to systematically and holistically consider water shortage vulnerability statewide of rural communities, focusing on domestic wells and state small water systems serving between 4 and 14 connections. The indicators and scoring methodology will be revised as better data become available and stake-holders evaluate the performance of the indicators, datasets used, and aggregation and ranking method used to aggregate and rank vulnerability scores. Additionally, the scoring system should be adaptive, meaning that our understanding of what contributes to risk and vulnerability of drought and water shortage may evolve. This understanding may especially be informed by experiences gained while navigating responses to future droughts.”

    A spatial analysis was performed on the 2020 Census Block Groups, modified PLSS sections, and small water system service areas using a variety of input datasets related to drought vulnerability and water shortage risk and vulnerability. These indicator values were subsequently rescaled and summed for a final vulnerability score for the sections and small water system service areas. The 2020 Census Block Groups were joined with ACS data to represent the social vulnerability of communities, which is relevant to drought risk tolerance and resources. These three feature datasets contain the units of analysis (modified PLSS sections, block groups, small water systems service areas) with the model indicators for vulnerability in the attribute table. Model indicators are calculated for each unit of analysis according to the Vulnerability Scoring documents provided by Julia Ekstrom (Division of Regional Assistance).

    All three feature classes are DWR analysis zones that are based off existing GIS datasets. The spatial data for the sections feature class is extracted from the Well Completion Reports PLSS sections to be aligned with the work and analysis that SGMA is doing. These are not true PLSS sections, but a version of the projected section lines in areas where there are gaps in PLSS. The spatial data for the Census block group feature class is downloaded from the Census. ACS (American Communities Survey) data is joined by block group, and statistics calculated by DWR have been added to the attribute table. The spatial data for the small water systems feature class was extracted from the State Water Resources Control Board (SWRCB) SABL dataset, using a definition query to filter for active water systems with 3000 connections or less. None of these datasets are intended to be the authoritative datasets for representing PLSS sections, Census block groups, or water service areas. The spatial data of these feature classes is used as units of analysis for the spatial analysis performed by DWR.

    These datasets are intended to be authoritative datasets of the scoring tools required from DWR according to Senate Bill 552. Please refer to the Drought and Water Shortage Vulnerability Scoring: California's Domestic Wells and State Smalls Systems documentation for more information on indicators and scoring. These estimated indicator scores may sometimes be calculated in several different ways, or may have been calculated from data that has since be updated. Counts of domestic wells may be calculated in different ways. In order to align with DWR SGMO's (State Groundwater Management Office) California Groundwater Live dashboards, domestic wells were calculated using the same query. This includes all domestic wells in the Well Completion Reports dataset that are completed after 12/31/1976, and have a 'RecordType' of 'WellCompletion/New/Production or Monitoring/NA'.

    Please refer to the Well Completion Reports metadata for more information. The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.4, dated September 14, 2022. DWR makes no warranties or guarantees — either expressed or implied— as to the completeness, accuracy, or correctness of the data.

    DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements, updates, or suggestions should be forwarded to GIS@water.ca.gov.

  14. i07 Water Shortage Vulnerability Small Water Systems

    • gis.data.cnra.ca.gov
    • data.cnra.ca.gov
    • +4more
    Updated Feb 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos.Lewis@water.ca.gov_DWR (2023). i07 Water Shortage Vulnerability Small Water Systems [Dataset]. https://gis.data.cnra.ca.gov/datasets/7090c3f1620f42a2b91d4c3ae7eb173f_0
    Explore at:
    Dataset updated
    Feb 8, 2023
    Dataset provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Authors
    Carlos.Lewis@water.ca.gov_DWR
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset represents a water shortage vulnerability analysis performed by DWR using Small Water System boundaries pulled from the SWRCB (State Water Resource Control Board) water system boundary layer (SABL). The water systems were then restricted to only active water systems with under 3000 connections that had SDWIS (Safe Drinking Water Information System) data. This data is from the 2024 analysis.The spatial data of these feature classes is used as units of analysis for the spatial analysis performed by DWR. These datasets are intended to be authoritative datasets of the scoring tools required from DWR according to Senate Bill 552. Please refer to the source metadata for more information on completeness.The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.4, dated September 14, 2022. DWR makes no warranties or guarantees — either expressed or implied— as to the completeness, accuracy, or correctness of the data. DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Comments, problems, improvements, updates, or suggestions should be forwarded to GIS@water.ca.gov.

  15. o

    Building Footprints

    • geohub.oregon.gov
    • data.oregon.gov
    • +4more
    Updated Jan 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2023). Building Footprints [Dataset]. https://geohub.oregon.gov/datasets/oregon-geo::building-footprints
    Explore at:
    Dataset updated
    Jan 1, 2023
    Dataset authored and provided by
    State of Oregon
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This feature class is a compliation GIS dataset that contains building footprints depicting building shape and location in the state of Oregon. All contributing datasets were compiled into the stateside dataset. Static datasets or infrequently maintained datasets were reviewed for quality. New building footprint data were reviewed and digitized from 2017 and 2018 imagery accessed from the Oregon Statewide Imagery Program.

  16. V

    Loudoun Address Points

    • data.virginia.gov
    • data-carltoncounty.opendata.arcgis.com
    • +8more
    csv, geojson, html +2
    Updated Feb 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loudoun County (2024). Loudoun Address Points [Dataset]. https://data.virginia.gov/dataset/loudoun-address-points
    Explore at:
    kml, csv, zip, html, geojsonAvailable download formats
    Dataset updated
    Feb 2, 2024
    Dataset provided by
    Loudoun County GIS
    Authors
    Loudoun County
    Area covered
    Loudoun County
    Description

    More Metadata


    Data updated daily.


    Address points mark the location of each addressable structure and its access point. The access point is the place where a driveway intersects the road. The building point is where the structure is located. An addressable structure is one where people live, work, or gather. A 1 to 5-digit number designates an address. Purpose: The access point is used to assign an address to the structure. Addresses are also assigned to assist in the provision of emergency services; they can be queried at all Fire and Rescue stations and by E-911 dispatchers. Supplemental Information: Data are stored in the corporate ArcSDE Geodatabase as a feature class. The coordinate system is Virginia State Plane (North), Zone 4501, datum NAD83 HARN. Maintenance and Update Frequency: Daily Completeness Report: Features may have been eliminated or generalized due to scale and intended use. To assist Loudoun County, Virginia in the maintenance of the data, please provide any information concerning discovered errors, omissions, or other discrepancies found in the data.

    Data Owner: Office of Mapping and Geographic Information

  17. s

    Census Block Group

    • opendata.suffolkcountyny.gov
    • hub.arcgis.com
    • +1more
    Updated Jul 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suffolk County GIS (2020). Census Block Group [Dataset]. https://opendata.suffolkcountyny.gov/datasets/census-block-group/geoservice
    Explore at:
    Dataset updated
    Jul 20, 2020
    Dataset authored and provided by
    Suffolk County GIS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This feature class was created by exporting the Census Block Group features from the 2020 TIGER/Line Geodatabase.TIGER Geodatabases are spatial extracts from the Census Bureau’s MAF/TIGER database. These files do not include demographic data, but they contain geographic entity codes that can be linked to the Census Bureau’s demographic data.

  18. d

    Data from: Digital data for the Salinas Valley Geological Framework,...

    • catalog.data.gov
    • data.usgs.gov
    Updated Sep 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Digital data for the Salinas Valley Geological Framework, California [Dataset]. https://catalog.data.gov/dataset/digital-data-for-the-salinas-valley-geological-framework-california
    Explore at:
    Dataset updated
    Sep 23, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California, Salinas, Salinas Valley
    Description

    This digital dataset was created as part of a U.S. Geological Survey study, done in cooperation with the Monterey County Water Resource Agency, to conduct a hydrologic resource assessment and develop an integrated numerical hydrologic model of the hydrologic system of Salinas Valley, CA. As part of this larger study, the USGS developed this digital dataset of geologic data and three-dimensional hydrogeologic framework models, referred to here as the Salinas Valley Geological Framework (SVGF), that define the elevation, thickness, extent, and lithology-based texture variations of nine hydrogeologic units in Salinas Valley, CA. The digital dataset includes a geospatial database that contains two main elements as GIS feature datasets: (1) input data to the 3D framework and textural models, within a feature dataset called “ModelInput”; and (2) interpolated elevation, thicknesses, and textural variability of the hydrogeologic units stored as arrays of polygonal cells, within a feature dataset called “ModelGrids”. The model input data in this data release include stratigraphic and lithologic information from water, monitoring, and oil and gas wells, as well as data from selected published cross sections, point data derived from geologic maps and geophysical data, and data sampled from parts of previous framework models. Input surface and subsurface data have been reduced to points that define the elevation of the top of each hydrogeologic units at x,y locations; these point data, stored in a GIS feature class named “ModelInputData”, serve as digital input to the framework models. The location of wells used a sources of subsurface stratigraphic and lithologic information are stored within the GIS feature class “ModelInputData”, but are also provided as separate point feature classes in the geospatial database. Faults that offset hydrogeologic units are provided as a separate line feature class. Borehole data are also released as a set of tables, each of which may be joined or related to well location through a unique well identifier present in each table. Tables are in Excel and ascii comma-separated value (CSV) format and include separate but related tables for well location, stratigraphic information of the depths to top and base of hydrogeologic units intercepted downhole, downhole lithologic information reported at 10-foot intervals, and information on how lithologic descriptors were classed as sediment texture. Two types of geologic frameworks were constructed and released within a GIS feature dataset called “ModelGrids”: a hydrostratigraphic framework where the elevation, thickness, and spatial extent of the nine hydrogeologic units were defined based on interpolation of the input data, and (2) a textural model for each hydrogeologic unit based on interpolation of classed downhole lithologic data. Each framework is stored as an array of polygonal cells: essentially a “flattened”, two-dimensional representation of a digital 3D geologic framework. The elevation and thickness of the hydrogeologic units are contained within a single polygon feature class SVGF_3DHFM, which contains a mesh of polygons that represent model cells that have multiple attributes including XY location, elevation and thickness of each hydrogeologic unit. Textural information for each hydrogeologic unit are stored in a second array of polygonal cells called SVGF_TextureModel. The spatial data are accompanied by non-spatial tables that describe the sources of geologic information, a glossary of terms, a description of model units that describes the nine hydrogeologic units modeled in this study. A data dictionary defines the structure of the dataset, defines all fields in all spatial data attributer tables and all columns in all nonspatial tables, and duplicates the Entity and Attribute information contained in the metadata file. Spatial data are also presented as shapefiles. Downhole data from boreholes are released as a set of tables related by a unique well identifier, tables are in Excel and ascii comma-separated value (CSV) format.

  19. a

    Census County Subdivision

    • hub.arcgis.com
    • opendata.suffolkcountyny.gov
    • +1more
    Updated Dec 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suffolk County GIS (2020). Census County Subdivision [Dataset]. https://hub.arcgis.com/maps/SuffolkGIS::census-county-subdivision/about
    Explore at:
    Dataset updated
    Dec 8, 2020
    Dataset authored and provided by
    Suffolk County GIS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This feature class was created by exporting the Census County Subdivision polygon features from the 2020 TIGER/Line Geodatabase.TIGER Geodatabases are spatial extracts from the Census Bureau’s MAF/TIGER database. These files do not include demographic data, but they contain geographic entity codes that can be linked to the Census Bureau’s demographic data.

  20. m

    Impervious Surface

    • gis.data.mass.gov
    • hub.arcgis.com
    Updated Jun 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Cambridge (2020). Impervious Surface [Dataset]. https://gis.data.mass.gov/datasets/CambridgeGIS::impervious-surface/about
    Explore at:
    Dataset updated
    Jun 24, 2020
    Dataset authored and provided by
    City of Cambridge
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Description

    Impervious layers are a compilation of GIS layers which include buildings, structures, paved surfaces (road, sidewalk, parking lots, driveways), patio, concrete pads, plaza, transmission tower pad, electric boxes, and irrigation devices, This is a snapshot from April 14, 2010City of Cambridge, MA GIS basemap development project encompasses the land area of City of Cambridge with a 200 foot fringe surrounding the area and Charles River shoreline towards Boston. The basemap data was developed at 1" = 40' mapping scale using digital photogrammetric techniques. Planimetric features; both man-made and natural features like vegetation, rivers have been depicted. These features are important to all GIS/mapping applications and publication. A set of data layers such as Buildings, Roads, Rivers, Utility structures, 1 ft. interval contours are developed and represented in the geodatabase. The features are labeled and coded in order to represent specific feature class for thematic representation and topology between the features is maintained for an accurate representation at the 1:40 mapping scale for both publication and analysis. The basemap data has been developed using procedures designed to produce data to the National Standard for Spatial Data Accuracy (NSSDA) and is intended for use at 1" = 40 ' mapping scale.Explore all our data on the Cambridge GIS Data Dictionary.Attributes NameType DetailsDescription TYPE type: Stringwidth: 50precision: 0 Feature class which was used to create the impervious surfaces layer

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Iowa Department of Transportation (2017). 02.1 Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/cd5acdcc91324ea383262de3ecec17d0
Organization logo

02.1 Integrating Data in ArcGIS Pro

Explore at:
Dataset updated
Feb 16, 2017
Dataset authored and provided by
Iowa Department of Transportationhttps://iowadot.gov/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.

Search
Clear search
Close search
Google apps
Main menu