https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Real gross domestic product per capita (A939RX0Q048SBEA) from Q1 1947 to Q1 2025 about per capita, real, GDP, and USA.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Gross domestic product is the total income earned through the production of goods and services in an economic territory during an accounting period. It can be measured in three different ways: using either the expenditure approach, the income approach, or the production approach. The core indicator has been divided by the general population to achieve a per capita estimate.This indicator is expressed in constant prices, meaning the series has been adjusted to account for price changes over time. The reference year for this adjustment is 2015. This indicator is expressed in United States dollars.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Gross domestic product is the total income earned through the production of goods and services in an economic territory during an accounting period. It can be measured in three different ways: using either the expenditure approach, the income approach, or the production approach. The core indicator has been divided by the general population to achieve a per capita estimate.This indicator is expressed in constant prices, meaning the series has been adjusted to account for price changes over time. The reference year for this adjustment varies by country. This series is expressed in local currency units.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This indicator provides values for gross domestic product (GDP) expressed in current international dollars, converted by purchasing power parities (PPPs). PPPs account for the different price levels across countries and thus PPP-based comparisons of economic output are more appropriate for comparing the output of economies and the average material well-being of their inhabitants than exchange-rate based comparisons. Gross domestic product is the total income earned through the production of goods and services in an economic territory during an accounting period. It can be measured in three different ways: using either the expenditure approach, the income approach, or the production approach. This series has been linked to produce a consistent time series to counteract breaks in series over time due to changes in base years, source data and methodologies. Thus, it may not be comparable with other national accounts series in the database for historical years. The core indicator has been divided by the general population to achieve a per capita estimate. This indicator is expressed in current prices, meaning no adjustment has been made to account for price changes over time. The PPP conversion factor is a currency conversion factor and a spatial price deflator. PPPs convert different currencies to a common currency and, in the process of conversion, equalize their purchasing power by eliminating the differences in price levels between countries, thereby allowing volume or output comparisons of GDP and its expenditure components.
This dataset provides economic indicators for FUAs of more than 250 000 inhabitants, including GDP, GDP per capita, jobs and labour productivity.
<h3>Data sources and methodology</h3>
<p align="justify">
When economic statistics are unavailable at a more granular level than the FUA (e.g. municipal level), indicators are estimated by adjusting regional (OECD TL2 and TL3 regions) values to FUA boundaries, based on the population distribution in each region. Regional values (GDP and jobs) in TL3 regions are used as data inputs and combined with gridded population data <a href=https://doi.org/10.2760/098587>(European Commission, GHSL Data Package 2023)</a>. FUA boundaries are intersected with TL3 borders to compute the share of the regional population that lives within FUAs in each region. This share is then applied to the variable of interest (e.g. GDP) and allocated to the FUA. In case several regions intersect the FUA, the adjusted values of intersecting regions are summed. For countries where TL3-level data is not available, data for TL2 regions is used. This approach assumes that the variable of interest has the same spatial distribution as population. Therefore, the modelled indicators should be interpreted with caution.<br /><br />
When a more granular level is available, data is aggregated for each FUA. For example in the United States, GDP estimates are available at the county-level (<a href=https://www.bea.gov/data/employment/employment-county-metro-and-other-areas>US Bureau of Economic Analysis</a>), and then aggregated by FUA.
</p>
<h3>Defining FUAs and cities</h3>
<p align="justify">The OECD, in cooperation with the EU, has developed a harmonised <a href="https://www.oecd.org/en/data/datasets/oecd-definition-of-cities-and-functional-urban-areas.html">definition of functional urban areas</a> (FUAs) to capture the economic and functional reach of cities based on daily commuting patterns <a href=https://doi.org/10.1787/9789264174108-en>(OECD, 2012)</a>. FUAs consist of:
<ol>
<li><b>A city</b> – defined by urban centres in the degree of urbanisation, adapted to the closest local administrative units to define a city.</li>
<li><b>A commuting zone</b> – including all local areas where at least 15% of employed residents work in the city.</li>
</ol>
The delineation process includes:
<ul>
<li>Assigning municipalities surrounded by a single FUA to that FUA.</li>
<li>Excluding non-contiguous municipalities.</li>
</ul>
The definition identifies 1 285 FUAs and 1 402 cities in all OECD member countries except Costa Rica and three accession countries.</p>
<h3>Cite this dataset</h3>
<p>OECD Regions, cities and local areas database (<a href="http://data-explorer.oecd.org/s/1e5">Economy - FUAs</a>), <a href=http://oe.cd/geostats>http://oe.cd/geostats</a></p>
<h3>Further information</h3>
<ul>
<li> <a href=https://localdataportal.oecd.org/>OECD Local Data Portal </a> </li>
<li> <a href=https://www.oecd.org/en/publications/oecd-regions-and-cities-at-a-glance-2024_f42db3bf-en.html/>OECD Regions and Cities at a Glance </a> </li>
</ul>
<p align="justify">For questions and/or comments, please email <a href="mailto:CitiesStat@oecd.org">CitiesStat@oecd.org</a>
This dataset was assembled for the purpose of demonstrating a simple linear regression. The table compares GDP per Capita to Life Satisfaction; definitions of both are below. The goal is to explore the relationship between money and happines
Life Satisfaction Provided by Organization for Economic Co-Operation and Development The indicator considers people's evaluation of their life as a whole. It is a weighted-sum of different response categories based on people's rates of their current life relative to the best and worst possible lives for them on a scale from 0 to 10, using the Cantril Ladder (known also as the "Self-Anchoring Striving Scale").
GDP per Capita for 2015 Provided by International Monetary Fund. The gross domestic product of a nation divided by population of that nation.
This dataset provides statistics on real gross domestic product (GDP) and real GDP per capita for subnational regions. Real values are deflation-adjusted using the Regional Producer Price Index (ROPI), where available.
Data source and definition
Regional gross domestic product data is collected at current prices, in millions of national currency from Eurostat (reg_eco10) for EU countries and via delegates of the OECD Working Party on Territorial Indicators (WPTI), as well as from national statistical offices' websites.
To allow comparability over time and between countries, data at current prices are transformed into constant prices and purchasing power parity measures. Regional GDP per capita is calculated by dividing regional GDP by the average annual population of the region.
See method and detailed data sources in Regions and Cities at a Glance 2024, Annex.
Definition of regions
Regions are subnational units below national boundaries. OECD countries have two regional levels: large regions (territorial level 2 or TL2) and small regions (territorial level 3 or TL3). The OECD regions are presented in the OECD Territorial grid (pdf) and in the OECD Territorial correspondence table (xlsx).
Use of economic data on small regions
When economic analyses are carried out at the TL3 level, it is advisable to aggregate data at the metropolitan region level when several TL3 regions are associated to the same metropolitan region. Metropolitan regions combine TL3 regions when 50% or more of the regional population live in a functionnal urban areas above 250 000 inhabitants. This approach corrects the distortions created by commuting. Correspondence between TL3 and metropolitan regions:(xlsx).
Small regions (TL3) are categorized based on shared characteristics into regional typologies. See the economic indicators aggregated by territorial typology at country level on the access to City typology (link) and by urban-rural typology (link).
Cite this dataset
OECD Regions and Cities databases http://oe.cd/geostats
Further information
Contact: RegionStat@oecd.org
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Greenland GDP per Capita: PPP data was reported at 68,086.460 Intl $ in 2021. This records an increase from the previous number of 64,857.629 Intl $ for 2020. Greenland GDP per Capita: PPP data is updated yearly, averaging 40,283.810 Intl $ from Dec 1990 (Median) to 2021, with 32 observations. The data reached an all-time high of 68,086.460 Intl $ in 2021 and a record low of 20,092.096 Intl $ in 1993. Greenland GDP per Capita: PPP data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Greenland – Table GL.World Bank.WDI: Gross Domestic Product: Purchasing Power Parity. This indicator provides per capita values for gross domestic product (GDP) expressed in current international dollars converted by purchasing power parity (PPP) conversion factor. GDP is the sum of gross value added by all resident producers in the country plus any product taxes and minus any subsidies not included in the value of the products. conversion factor is a spatial price deflator and currency converter that controls for price level differences between countries. Total population is a mid-year population based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.;International Comparison Program, World Bank | World Development Indicators database, World Bank | Eurostat-OECD PPP Programme.;Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Faroe Islands GDP per Capita: PPP data was reported at 78,103.483 Intl $ in 2023. This records an increase from the previous number of 74,282.307 Intl $ for 2022. Faroe Islands GDP per Capita: PPP data is updated yearly, averaging 54,000.238 Intl $ from Dec 2008 (Median) to 2023, with 16 observations. The data reached an all-time high of 78,103.483 Intl $ in 2023 and a record low of 39,330.596 Intl $ in 2009. Faroe Islands GDP per Capita: PPP data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Faroe Islands – Table FO.World Bank.WDI: Gross Domestic Product: Purchasing Power Parity. This indicator provides per capita values for gross domestic product (GDP) expressed in current international dollars converted by purchasing power parity (PPP) conversion factor. GDP is the sum of gross value added by all resident producers in the country plus any product taxes and minus any subsidies not included in the value of the products. conversion factor is a spatial price deflator and currency converter that controls for price level differences between countries. Total population is a mid-year population based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.;International Comparison Program, World Bank | World Development Indicators database, World Bank | Eurostat-OECD PPP Programme.;Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Andorra GDP per Capita: PPP data was reported at 71,730.669 Intl $ in 2023. This records an increase from the previous number of 68,470.076 Intl $ for 2022. Andorra GDP per Capita: PPP data is updated yearly, averaging 44,215.495 Intl $ from Dec 1990 (Median) to 2023, with 34 observations. The data reached an all-time high of 71,730.669 Intl $ in 2023 and a record low of 22,958.326 Intl $ in 1993. Andorra GDP per Capita: PPP data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Andorra – Table AD.World Bank.WDI: Gross Domestic Product: Purchasing Power Parity. This indicator provides per capita values for gross domestic product (GDP) expressed in current international dollars converted by purchasing power parity (PPP) conversion factor. GDP is the sum of gross value added by all resident producers in the country plus any product taxes and minus any subsidies not included in the value of the products. conversion factor is a spatial price deflator and currency converter that controls for price level differences between countries. Total population is a mid-year population based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.;International Comparison Program, World Bank | World Development Indicators database, World Bank | Eurostat-OECD PPP Programme.;Weighted average;
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This indicator provides values for gross domestic product (GDP) expressed in constant international dollars, converted by purchasing power parities (PPPs). PPPs account for the different price levels across countries and thus PPP-based comparisons of economic output are more appropriate for comparing the output of economies and the average material well-being of their inhabitants than exchange-rate based comparisons. Gross domestic product is the total income earned through the production of goods and services in an economic territory during an accounting period. It can be measured in three different ways: using either the expenditure approach, the income approach, or the production approach. The core indicator has been divided by the general population to achieve a per capita estimate. This indicator is expressed in constant prices, meaning the series has been adjusted to account for price changes over time. The reference year for this adjustment is 2021. The PPP conversion factor is a currency conversion factor and a spatial price deflator. PPPs convert different currencies to a common currency and, in the process of conversion, equalize their purchasing power by eliminating the differences in price levels between countries, thereby allowing volume or output comparisons of GDP and its expenditure components.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The database used includes annual frequency data for 43 countries, defined by the IMF as 24 advanced countries and 19 emerging countries, for the years 1992-2018.The database contains the fiscal stress variable and a set of variables that can be classified as follows: macroeconomic and global economy (interest rates in the US, OECD; real GDP in the US, y-o-y, OECD; real GDP in China, y-o-y, World Bank; oil price, y-o-y, BP p.l.c.; VIX, CBOE; real GDP, y-o-y, World Bank, OECD, IMF WEO; GDP per capita in PPS, World Bank); financial (nominal USD exchange rate, y-o-y, IMF IFS; private credit to GDP, change in p.p., IMF IFS, World Bank and OECD); fiscal (general government balance, % GDP, IMF WEO; general government debt, % GDP, IMF WEO, effective interest rate on the g.g. debt, IMF WEO); competitiveness and domestic demand (currency overvaluation, IMF WEO; current account balance, % GDP, IMF WEO; share in global exports, y-o-y, World Bank, OECD; gross fixed capital formation, y-o-y, World Bank, OECD; CPI, IMF IFS, IMF WEO; real consumption, y-o-y, World Bank, OECD); labor market (unemployment rate, change in p.p., IMF WEO; labor productivity, y-o-y, ILO).In line with the convention adopted in the literature, the fiscal stress variable is a binary variable equal to 1 in the case of a fiscal stress event and 0 otherwise. In more recent literature in this field, the dependent variable tends to be defined broadly, reflecting not only outright default or debt restructuring, but also less extreme events. Therefore, following Baldacci et al. (2011), the definition used in the present database is broad, and the focus is on signalling fiscal stress events, in contrast to the narrower event of a fiscal crisis related to outright default or debt restructuring. Fiscal problems can take many forms; in particular, some of the outright defaults can be avoided through timely, targeted responses, like support programs of international institutions. The fiscal stress variable is shifted with regard to the other variables: crisis_next_year – binary variable shifted by 1 year, all years of a fiscal stress coded as 1; crisis_next_period – binary variable shifted by 2 years, all years of a fiscal stress coded as 1; crisis_first_year1 – binary variable shifted by 1 year, only the first year of a fiscal stress coded as 1; crisis_first_year2 - binary variable shifted by 2 years, only the first year of a fiscal stress coded as 1.
This dataset contains data on expenditure per full-time equivalent student and per full-time equivalent student as a percentage of GPD per capita. The default table displays data for 2021 in current USD PPP and as a percentage of GDP per capita, from all expenditure sources, and unfiltered by type of expenditure. The selection can be changed to display data: by year, by source of expenditure, by destination of expenditure and by type of expenditure. Please note that the filters are inter related, meaning that selection in one category may impact the possibility to select options in another category.
For more information, please consult Education at a Glance 2024 and the OECD Handbook for Internationally Comparative Education Statistics: Concepts, Standards, Definitions and Classifications. Additional details regarding the methodology used, references to the sources, and specific notes for each country can be found in Education at a Glance 2024 Sources, Methodologies and Technical Notes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product per capita in India was last recorded at 2396.71 US dollars in 2024. The GDP per Capita in India is equivalent to 19 percent of the world's average. This dataset provides - India GDP per capita - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The Rural Access Index (RAI) is a measure of access, developed by the World Bank in 2006. It was adopted as Sustainable Development Goal (SDG) indicator 9.1.1 in 2015, to measure the accessibility of rural populations. It is currently the only indicator for the SDGs that directly measures rural access.The RAI measures the proportion of the rural population that lives within 2 km of an all-season road. An all-season road is one that is motorable all year, but may be temporarily unavailable during inclement weather (Roberts, Shyam, & Rastogi, 2006). This dataset implements and expands on the most recent official methodology put forward by the World Bank, ReCAP's 2019 RAI Supplemental Guidelines. This is, to date, the only publicly available application of this method at a global scale.MethodologyReCAP's methodology provided new insight on what makes a road all-season and how this data should be handled: instead of removing unpaved roads from the network, the ones that are classified as unpaved are to be intersected with topographic and climatic conditions and, whenever there’s an overlap with excess precipitation and slope, a multiplying factor ranging from 0% to 100% is applied to the population that would access to that road. This present dataset developed by SDSN's SDG Transformation Centre proposes that authorities ability to maintain and remediate road conditions also be taken into account.Data sourcesThe indicator relies on four major items of geospatial data: land cover (rural or urban), population distribution, road network extent and the “all-season” status of those roads.Land cover data (urban/rural distinction)Since the indicator measures the acess rural populations, it's necessary to define what is and what isn't rural. This dataset uses the DegUrba Methodology, proposed by the United Nations Expert Group on Statistical Methodology for Delineating Cities and Rural Areas (United Nations Expert Group, 2019). This approach has been developed by the European Commission Global Human Settlement Layer (GHSL-SMOD) project, and is designed to instil some consistency into the definitions based on population density on a 1-km grid, but adjusted for local situations.Population distributionThe source for population distribution data is WorldPop. This uses national census data, projections and other ancillary data from countries to produce aggregated, 100 m2 population data. Road extentTwo widely recognized road datasets are used: the real-time updated crowd-sourced OpenStreetMap (OSM) or the GLOBIO’s 2018 GRIP database, which draws data from official national sources. The reasons for picking the latter are mostly related to its ability to provide information on the surface (pavement) of these roads, to the detriment of the timeliness of the data, which is restrained to the year 2018. Additionally, data from Microsoft Bing's recent Road Detection project is used to ensure completeness. This dataset is completely derived from machine learning methods applied over satellite imagery, and detected 1,165 km of roads missing from OSM.Roads’ all-season statusThe World Bank's original 2006 methodology defines the term all-season as “… a road that is motorable all year round by the prevailing means of rural transport, allowing for occasional interruptions of short duration”. ReCAP's 2019 methodology makes a case for passability equating to the all-season status of a road, along with the assumption that typically the wet season is when roads become impassable, especially so in steep roads that are more exposed to landslides.This dataset follows the ReCAP methodology by creating an passability index. The proposed use of passability factors relies on the following three aspects:• Surface type. Many rural roads in LICs (and even in large high-income countries including the USA and Australia) are unpaved. As mentioned before, unpaved roads deteriorate rapidly and in a different way to paved roads. They are very susceptible to water ingress to the surface, which softens the materials and makes them very vulnerable to the action of traffic. So, when a road surface becomes saturated and is subject to traffic, the deterioration is accelerated. • Climate. Precipitation has a significant effect on the condition of a road, especially on unpaved roads, which predominate in LICs and provide much of the extended connectivity to rural and poor areas. As mentioned above, the rainfall on a road is a significant factor in its deterioration, but the extent depends on the type of rainfall in terms of duration and intensity, and how well the roadside drainage copes with this. While ReCAP suggested the use of general climate zones, we argue that better spatial and temporal resolutions can be acquired through the Copernicus Programme precipitation data, which is made available freely at ~30km pixel size for each month of the year.• Terrain. The gradient and altitude of roads also has an effect on their accessibility. Steep roads become impassable more easily due to the potential for scour during heavy rainfall, and also due to slipperiness as a result of the road surface materials used. Here this is drawn from slope calculated from SRTM Digital Terrain data.• Road maintenance. The ability of local authorities to remediate damaged caused by precipitation and landslides is proposed as a correcting factor to the previous ones. Ideally this would be measured by the % of GDP invested in road construction and maintenance, but this isn't available for all countries. For this reason, GDP per capita is adopted as a proxy instead. The data range is normalized in such a way that a road maxed out in terms of precipitation and slope (accessibility score of 0.25) in a country at the top of the GDP per capita range is brought back at to the higher end of the accessibility score (0.95), while the accessibility score of a road meeting the same passability conditions in a country which GDP per capita is towards the lower end is kept unchanged.Data processingThe roads from the three aforementioned datasets (Bing, GRIP and OSM) are merged together to them is applied a 2km buffer. The populations falling exclusively on unpaved road buffers are multiplied by the resulting passability index, which is defined as the normalized sum of the aforementioned components, ranging from 0.25 to. 0.9, with 0.95 meaning 95% probability that the road is all-season. The index applied to the population data, so, when calculated, the RAI includes the probability that the roads which people are using in each area will be all-season or not. For example, an unpaved road in a flat area with low rainfall would have an accessibility factor of 0.95, as this road is designed to be accessible all year round and the environmental effects on its impassability are minimal.The code for generating this dataset is available on Github at: https://github.com/sdsna/rai
The dataset presents the countries where the community has the economic means (>20 000 USD/year) to adapt to climate change and associated hazards. This indicator provides per capita values for gross domestic product (GDP) expressed in current international dollars converted by purchasing power parity (PPP) conversion factor. GDP is the sum of gross value added by all resident producers in the country plus any product taxes and minus any subsidies not included in the value of the products. conversion factor is a spatial price deflator and currency converter that controls for price level differences between countries. Total population is a mid-year population based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
This public dataset was created by the Bureau of Economic Analysis (BEA). It provides a county level view of income, wages, proprietors' income, dividends, interest, rents, and government benefits, including a number of federal and state-level subsidies. Per capita income can be used to gauge the average financial health and associated social needs of an area. Analysis across regions offers a way to assess relative standard of living and quality of life of the population. Trends analysis of these data over time can also uncover specific regions of economic growth or decline across a variety of indicators. These personal income data represent an important lens into the financial security and socioeconomic determinants of health at the community level. They are used by the federal government to allocate hundreds of billions of dollars into state and local programs, to project budgets and trust fund balances, and to develop a more complete picture of labor costs. Personal income statistics can also help illustrate the dynamics between Americans' incomes, spending, and savings. The data summarize per capita income at the county level, including personal income, net earnings, transfer receipts, benefits programs, unemployment insurance, subsidy programs, retirement, dividends, insurance compensation, and several other economic indicators measured by the Department of Commerce or reported to other public agencies. For more information, please refer to the BEA’s Regional Economic Accounts Definitions .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic characteristics of selected participants.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database that can be used for macro-level analysis of road accidents on interurban roads in Europe. Through the variables it contains, road accidents can be explained using variables related to economic resources invested in roads, traffic, road network, socioeconomic characteristics, legislative measures and meteorology. This repository contains the data used for the analysis carried out in the papers:
1. Calvo-Poyo F., Navarro-Moreno J., de Oña J. (2020) Road Investment and Traffic Safety: An International Study. Sustainability 12:6332. https://doi.org/10.3390/su12166332
2. Navarro-Moreno J., Calvo-Poyo F., de Oña J. (2022) Influence of road investment and maintenance expenses on injured traffic crashes in European roads. Int J Sustain Transp 1–11. https://doi.org/10.1080/15568318.2022.2082344
3. Navarro-Moreno, J., Calvo-Poyo, F., de Oña, J. (2022) Investment in roads and traffic safety: linked to economic development? A European comparison. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-022-22567
The file with the database is available in excel.
DATA SOURCES
The database presents data from 1998 up to 2016 from 20 european countries: Austria, Belgium, Croatia, Czechia, Denmark, Estonia, Finland, France, Germany, Ireland, Italy, Latvia, Netherlands, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden and United Kingdom. Crash data were obtained from the United Nations Economic Commission for Europe (UNECE) [2], which offers enough level of disaggregation between crashes occurring inside versus outside built-up areas.
With reference to the data on economic resources invested in roadways, deserving mention –given its extensive coverage—is the database of the Organisation for Economic Cooperation and Development (OECD), managed by the International Transport Forum (ITF) [1], which collects data on investment in the construction of roads and expenditure on their maintenance, following the definitions of the United Nations System of National Accounts (2008 SNA). Despite some data gaps, the time series present consistency from one country to the next. Moreover, to confirm the consistency and complete missing data, diverse additional sources, mainly the national Transport Ministries of the respective countries were consulted. All the monetary values were converted to constant prices in 2015 using the OECD price index.
To obtain the rest of the variables in the database, as well as to ensure consistency in the time series and complete missing data, the following national and international sources were consulted:
DATA BASE DESCRIPTION
The database was made trying to combine the longest possible time period with the maximum number of countries with complete dataset (some countries like Lithuania, Luxemburg, Malta and Norway were eliminated from the definitive dataset owing to a lack of data or breaks in the time series of records). Taking into account the above, the definitive database is made up of 19 variables, and contains data from 20 countries during the period between 1998 and 2016. Table 1 shows the coding of the variables, as well as their definition and unit of measure.
Table. Database metadata
Code |
Variable and unit |
fatal_pc_km |
Fatalities per billion passenger-km |
fatal_mIn |
Fatalities per million inhabitants |
accid_adj_pc_km |
Accidents per billion passenger-km |
p_km |
Billions of passenger-km |
croad_inv_km |
Investment in roads construction per kilometer, €/km (2015 constant prices) |
croad_maint_km |
Expenditure on roads maintenance per kilometer €/km (2015 constant prices) |
prop_motorwa |
Proportion of motorways over the total road network (%) |
populat |
Population, in millions of inhabitants |
unemploy |
Unemployment rate (%) |
petro_car |
Consumption of gasolina and petrol derivatives (tons), per tourism |
alcohol |
Alcohol consumption, in liters per capita (age > 15) |
mot_index |
Motorization index, in cars per 1,000 inhabitants |
den_populat |
Population density, inhabitants/km2 |
cgdp |
Gross Domestic Product (GDP), in € (2015 constant prices) |
cgdp_cap |
GDP per capita, in € (2015 constant prices) |
precipit |
Average depth of rain water during a year (mm) |
prop_elder |
Proportion of people over 65 years (%) |
dps |
Demerit Point System, dummy variable (0: no; 1: yes) |
freight |
Freight transport, in billions of ton-km |
ACKNOWLEDGEMENTS
This database was carried out in the framework of the project “Inversión en carreteras y seguridad vial: un análisis internacional (INCASE)”, financed by: FEDER/Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación/Proyecto RTI2018-101770-B-I00, within Spain´s National Program of R+D+i Oriented to Societal Challenges.
Moreover, the authors would like to express their gratitude to the Ministry of Transport, Mobility and Urban Agenda of Spain (MITMA), and the Federal Ministry of Transport and Digital Infrastructure of Germany (BMVI) for providing data for this study.
REFERENCES
1. International Transport Forum OECD iLibrary | Transport infrastructure investment and maintenance.
2. United Nations Economic Commission for Europe UNECE Statistical Database Available online: https://w3.unece.org/PXWeb2015/pxweb/en/STAT/STAT_40-TRTRANS/?rxid=18ad5d0d-bd5e-476f-ab7c-40545e802eeb (accessed on Apr 28, 2020).
3. European Commission Database - Eurostat Available online: https://ec.europa.eu/eurostat/data/database (accessed on Apr 28, 2021).
4. Directorate-General for Mobility and Transport. European Commission EU Transport in figures - Statistical Pocketbooks Available online: https://ec.europa.eu/transport/facts-fundings/statistics_en (accessed on Apr 28, 2021).
5. World Bank Group World Bank Open Data | Data Available online: https://data.worldbank.org/ (accessed on Apr 30, 2021).
6. World Health Organization (WHO) WHO Global Information System on Alcohol and Health Available online: https://apps.who.int/gho/data/node.main.GISAH?lang=en (accessed on Apr 29, 2021).
7. European Transport Safety Council (ETSC) Traffic Law Enforcement across the EU - Tackling the Three Main Killers on Europe’s Roads; Brussels, Belgium, 2011;
8. Copernicus Climate Change Service Climate data for the European energy sector from 1979 to 2016 derived from ERA-Interim Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-european-energy-sector?tab=overview (accessed on Apr 29, 2021).
9. Klipp, S.; Eichel, K.; Billard, A.; Chalika, E.; Loranc, M.D.; Farrugia, B.; Jost, G.; Møller, M.; Munnelly, M.; Kallberg, V.P.; et al. European Demerit Point Systems : Overview of their main features and expert opinions. EU BestPoint-Project 2011, 1–237.
10. Ministerstvo dopravy Serie: Ročenka dopravy; Ročenka dopravy; Centrum dopravního výzkumu: Prague, Czech Republic;
11. Bundesministerium
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table shows basic figures on population and economic development for sixty countries. It concerns the following elementary indicators: - Gross Domestic Product; - Gross Domestic Product per capita; - Exports of goods and services; - Exports of high-tech goods; - Incoming Foreign Direct Investments; - Value added in services; - Population size.
These indicators give an overall picture of the economic size and trade position of a country. The national economic development defines the basic climate within which companies develop their activities. A good economic development ensures a favourable investment climate in which enterprises can function well.
Note: Comparable definitions are used to compare the figures presented internationally. The definitions sometimes differ from definitions used by Statistics Netherlands. The figures in this table could differ from Dutch figures presented elsewhere on the website of Statistics Netherlands.
Data available from 1990 - 2009.
Status of the figures: All figures are final.
Changes as of April 2019: This table has been discontinued.
When will new figures be published? No longer applicable.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Real gross domestic product per capita (A939RX0Q048SBEA) from Q1 1947 to Q1 2025 about per capita, real, GDP, and USA.