100+ datasets found
  1. H

    GIS database

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Jul 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nang Tin Win (2023). GIS database [Dataset]. http://doi.org/10.7910/DVN/TV7J27
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Nang Tin Win
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/TV7J27https://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/TV7J27

    Time period covered
    Oct 1, 2020 - Sep 30, 2022
    Area covered
    Myanmar (Burma)
    Dataset funded by
    United States Agency for International Developmenthttp://usaid.gov/
    Description

    It is about updating to GIS information database, Decision Support Tool (DST) in collaboration with IWMI. With the support of the Fish for Livelihoods field team and IPs (MFF, BRAC Myanmar, PACT Myanmar, and KMSS) staff, collection of Global Positioning System GPS location data for year-1 (2019-20) 1,167 SSA farmer ponds, and year-2 (2020-21) 1,485 SSA farmer ponds were completed with different GPS mobile applications: My GPS Coordinates, GPS Status & Toolbox, GPS Essentials, Smart GPS Coordinates Locator and GPS Coordinates. The Soil and Water Assessment Tool (SWAT) model that integrates climate change analysis with water availability will provide an important tool informing decisions on scaling pond adoption. It can also contribute to a Decision Support Tool to better target pond scaling. GIS Data also contribute to identify the location point of the F4L SSA farmers ponds on the Myanmar Map by fiscal year from 1 to 5.

  2. GIS Data Object Publishing instructions

    • catalog.data.gov
    • s.cnmilf.com
    Updated Sep 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Security Administration (2025). GIS Data Object Publishing instructions [Dataset]. https://catalog.data.gov/dataset/gis-data-object-publishing-instructions
    Explore at:
    Dataset updated
    Sep 19, 2025
    Dataset provided by
    Social Security Administrationhttp://ssa.gov/
    Description

    Expands the use of internal data for creating Geographic Information System (GIS) maps. SSA's Database Systems division developed a map users guide for GIS data object publishing and was made available in an internal Sharepoint site for access throughout the agency. The guide acts as the reference for publishers of GIS objects across the life-cycle in our single, central geodatabase implementation.

  3. H

    AReNA’s DHS-GIS Database

    • dataverse.harvard.edu
    Updated Feb 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Food Policy Research Institute (IFPRI) (2021). AReNA’s DHS-GIS Database [Dataset]. http://doi.org/10.7910/DVN/OQIPRW
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 23, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    International Food Policy Research Institute (IFPRI)
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/OQIPRWhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.7910/DVN/OQIPRW

    Time period covered
    1980 - 2019
    Area covered
    Benin, Mali, Myanmar, Kenya, Bangladesh, Nigeria, Rwanda, Lesotho, Nepal, Burundi
    Dataset funded by
    The Bill & Melinda Gates Foundation
    Description

    Advancing Research on Nutrition and Agriculture (AReNA) is a 6-year, multi-country project in South Asia and sub-Saharan Africa funded by the Bill and Melinda Gates Foundation, being implemented from 2015 through 2020. The objective of AReNA is to close important knowledge gaps on the links between nutrition and agriculture, with a particular focus on conducting policy-relevant research at scale and crowding in more research on this issue by creating data sets and analytical tools that can benefit the broader research community. Much of the research on agriculture and nutrition is hindered by a lack of data, and many of the datasets that do contain both agriculture and nutrition information are often small in size and geographic scope. AReNA team constructed a large multi-level, multi-country dataset combining nutrition and nutrition-relevant information at the individual and household level from the Demographic and Health Surveys (DHS) with a wide variety of geo-referenced data on agricultural production, agroecology, climate, demography, and infrastructure (GIS data). This dataset includes 60 countries, 184 DHS, and 122,473 clusters. Over one thousand geospatial variables are linked with DHS. The entire dataset is organized into 13 individual files: DHS_distance, DHS_livestock, DHS_main, DHS_malaria, DHS NDVI, DHS_nightlight, DHS_pasture and climate (mean), DHS_rainfall, DHS_soil, DHS_SPAM, DHS_suit, DHS_temperature, and DHS_traveltime.

  4. D

    GIS Data Management Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). GIS Data Management Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-gis-data-management-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Data Management Market Outlook



    The global GIS Data Management market size is projected to grow from USD 12.5 billion in 2023 to USD 25.6 billion by 2032, exhibiting a CAGR of 8.4% during the forecast period. This impressive growth is driven by the increasing adoption of geographic information systems (GIS) across various sectors such as urban planning, disaster management, and agriculture. The rising need for effective data management systems to handle the vast amounts of spatial data generated daily also significantly contributes to the market's expansion.



    One of the primary growth factors for the GIS Data Management market is the burgeoning demand for spatial data analytics. Businesses and governments are increasingly leveraging GIS data to make informed decisions and strategize operational efficiencies. With the rapid urbanization and industrialization worldwide, there's an unprecedented need to manage and analyze geographic data to plan infrastructure, monitor environmental changes, and optimize resource allocation. Consequently, the integration of GIS with advanced technologies like artificial intelligence and machine learning is becoming more prominent, further fueling market growth.



    Another significant factor propelling the market is the advancement in GIS technology itself. The development of sophisticated software and hardware solutions for GIS data management is making it easier for organizations to capture, store, analyze, and visualize geographic data. Innovations such as 3D GIS, real-time data processing, and cloud-based GIS solutions are transforming the landscape of geographic data management. These advancements are not only enhancing the capabilities of GIS systems but also making them more accessible to a broader range of users, from small enterprises to large governmental agencies.



    The growing implementation of GIS in disaster management and emergency response activities is also a critical factor driving market growth. GIS systems play a crucial role in disaster preparedness, response, and recovery by providing accurate and timely geographic data. This data helps in assessing risks, coordinating response activities, and planning resource deployment. With the increasing frequency and intensity of natural disasters, the reliance on GIS data management systems is expected to grow, resulting in higher demand for GIS solutions across the globe.



    Geospatial Solutions are becoming increasingly integral to the GIS Data Management landscape, offering enhanced capabilities for spatial data analysis and visualization. These solutions provide a comprehensive framework for integrating various data sources, enabling users to gain deeper insights into geographic patterns and trends. As organizations strive to optimize their operations and decision-making processes, the demand for robust geospatial solutions is on the rise. These solutions not only facilitate the efficient management of spatial data but also support advanced analytics and real-time data processing. By leveraging geospatial solutions, businesses and governments can improve their strategic planning, resource allocation, and environmental monitoring efforts, thereby driving the overall growth of the GIS Data Management market.



    Regionally, North America holds a significant share of the GIS Data Management market, driven by high technology adoption rates and substantial investments in GIS technologies by government and private sectors. However, Asia Pacific is anticipated to witness the highest growth rate during the forecast period. The rapid urbanization, economic development, and increasing adoption of advanced technologies in countries like China and India are major contributors to this growth. Governments in this region are also focusing on smart city projects and infrastructure development, which further boosts the demand for GIS data management solutions.



    Component Analysis



    The GIS Data Management market is segmented by component into software, hardware, and services. The software segment is the largest and fastest-growing segment, driven by the continuous advancements in GIS software capabilities. GIS software applications enable users to analyze spatial data, create maps, and manage geographic information efficiently. The integration of GIS software with other enterprise systems and the development of user-friendly interfaces are key factors propelling the growth of this segment. Furthermore, the rise of mobile GIS applications, which allow field data collectio

  5. d

    GIS Data | Global Geospatial data | Postal/Administrative boundaries |...

    • datarade.ai
    .json, .xml
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). GIS Data | Global Geospatial data | Postal/Administrative boundaries | Countries, Regions, Cities, Suburbs, and more [Dataset]. https://datarade.ai/data-products/geopostcodes-gis-data-gesopatial-data-postal-administrati-geopostcodes
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    France, United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (GIS data, Geospatial data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the GIS data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  6. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2024 - 2028
    Area covered
    Canada, United States
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover

  7. f

    GIS database structures

    • datasetcatalog.nlm.nih.gov
    • drs.britishmuseum.org
    Updated Nov 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simon, Pedro Rodriguez; González-Ruibal, Alfredo (2024). GIS database structures [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001498007
    Explore at:
    Dataset updated
    Nov 20, 2024
    Authors
    Simon, Pedro Rodriguez; González-Ruibal, Alfredo
    Description

    GIS database with the vector drawings of the structures documented.

  8. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  9. Rural & Statewide GIS/Data Needs (HEPGIS) - Lead

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated May 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Highway Administration (2024). Rural & Statewide GIS/Data Needs (HEPGIS) - Lead [Dataset]. https://catalog.data.gov/dataset/rural-statewide-gis-data-needs-hepgis-lead
    Explore at:
    Dataset updated
    May 8, 2024
    Dataset provided by
    Federal Highway Administrationhttps://highways.dot.gov/
    Description

    HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.

  10. DEMIX GIS Database Version 2

    • zenodo.org
    csv, pdf
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter L Guth; Peter L Guth (2025). DEMIX GIS Database Version 2 [Dataset]. http://doi.org/10.5281/zenodo.8062008
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter L Guth; Peter L Guth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Due to a coding error when we created the newer versions of this database, the record does not link to the new versions. You should use them in all cases:

    Guth, P. (2025). DEMIX GIS Database Version 4 (Version 4) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.17538186

    This database supports the work of the Digital Elevation Model Intercomparison eXperiment (DEMIX) working group (Strobl and others, 2021; Guth and others, 2021; Bielski and others, 2023, 2024). The two files have the database in CSV format, and a metadata file describing the contents of each field in the database.

    To understand the use of the database, see the prepint (Bielski and others, 2023).

    Changes to version 2 which is the only version you should use:

    1. Added 2 new areas, Stateline and Canary Islands East which should have minimal differences between the DSM and the DTM and no significant changes over the last 20 years.

    2. Added the country to the database

    3. Added a number of areas in France

    4. Added some additional tiles for a few areas

    5. Total number of tiles almost doubled

    6. Now using GDAL to compute the datum shift, horizontal and vertical, for USGS 3DEP

    7. Fixed some anomalies computing pixel-is-area DEMs

    8. Recomputed all the reference data and the version 1.0 GIS database (Guth, 2022)

    9. New file naming conventions

    References:

    Bielski, C.; López-Vázquez, C.; Guth. P.L.; Grohmann, C.H. and the TMSG DEMIX Working Group, 2023. DEMIX Wine Contest Method Ranks ALOS AW3D30, COPDEM, and FABDEM as Top 1” Global DEMs: https://arxiv.org/pdf/2302.08425.pdf

    Bielski, C.; López-Vázquez, C.; Grohmann, C.H.; Guth. P.L.; Hawker, L.; Gesch, D.; Trevisani, S.; Herrera-Cruz, V.; Riazanoff, S.; Corseaux, A.; Reuter, H.; Strobl, P., 2024. Novel approach for ranking DEMs: Copernicus DEM improves one arc second open global topography. IEEE Transactions on Geoscience & Remote Sensing. vol. 62, pp. 1-22, 2024, Art no. 4503922, https://doi.org/10.1109/TGRS.2024.3368015

    Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.-P.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera-Cruz, V.; Riazanoff, S.; López-Vázquez, C.; Carabajal, C.C.; Albinet, C.; Strobl, P. Digital Elevation Models: Terminology and Definitions. Remote Sens. 2021, 13, 3581. https://doi.org/10.3390/rs13183581

    Strobl, P.A.; Bielski, C.; Guth, P.L.; Grohmann, C.H.; Muller, J.P.; López-Vázquez, C.; Gesch, D.B.; Amatulli, G.; Riazanoff, S.; Carabajal, C. The Digital Elevation Model Intercomparison eXperiment DEMIX, a community based approach at global DEM benchmarking. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B4-2021, 395–400. https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-395-2021

  11. r

    GIS database of archaeological remains on Samoa

    • researchdata.se
    • demo.researchdata.se
    • +1more
    Updated Dec 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olof Håkansson (2023). GIS database of archaeological remains on Samoa [Dataset]. http://doi.org/10.5878/003012
    Explore at:
    (10994657)Available download formats
    Dataset updated
    Dec 19, 2023
    Dataset provided by
    Uppsala University
    Authors
    Olof Håkansson
    Area covered
    Samoa
    Description

    Data set that contains information on archaeological remains of the pre historic settlement of the Letolo valley on Savaii on Samoa. It is built in ArcMap from ESRI and is based on previously unpublished surveys made by the Peace Corps Volonteer Gregory Jackmond in 1976-78, and in a lesser degree on excavations made by Helene Martinsson Wallin and Paul Wallin. The settlement was in use from at least 1000 AD to about 1700- 1800. Since abandonment it has been covered by thick jungle. However by the time of the survey by Jackmond (1976-78) it was grazed by cattle and the remains was visible. The survey is at file at Auckland War Memorial Museum and has hitherto been unpublished. A copy of the survey has been accessed by Olof Håkansson through Martinsson Wallin and Wallin and as part of a Masters Thesis in Archeology at Uppsala University it has been digitised.

    Olof Håkansson has built the data base structure in the software from ESRI, and digitised the data in 2015 to 2017. One of the aims of the Masters Thesis was to discuss hierarchies. To do this, subsets of the data have been displayed in various ways on maps. Another aim was to discuss archaeological methodology when working with spatial data, but the data in itself can be used without regard to the questions asked in the Masters Thesis. All data that was unclear has been removed in an effort to avoid errors being introduced. Even so, if there is mistakes in the data set it is to be blamed on the researcher, Olof Håkansson. A more comprehensive account of the aim, questions, purpose, method, as well the results of the research, is to be found in the Masters Thesis itself. Direkt link http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1149265&dswid=9472

    Purpose:

    The purpose is to examine hierarchies in prehistoric Samoa. The purpose is further to make the produced data sets available for study.

    Prehistoric remains of the settlement of Letolo on the Island of Savaii in Samoa in Polynesia

  12. s

    Global GIS Database: Digital Atlas of Central and South America

    • geo2.scholarsportal.info
    • geo1.scholarsportal.info
    Updated Mar 13, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Global GIS Database: Digital Atlas of Central and South America [Dataset]. http://geo2.scholarsportal.info/proxy.html?http:_giseditor.scholarsportal.info/details/view.html?uri=/NAP/UT/35.xml&show_as_standalone=true
    Explore at:
    Dataset updated
    Mar 13, 2012
    Time period covered
    Jan 1, 2001
    Area covered
    Description

    The Digital Data Series encompasses a broad range of digital data, including computer programs, interpreted results of investigations, comprehensive reviewed data bases, spatial data sets, digital images and animation, and multimedia presentations that are not intended for printed release. Scientific reports in this series cover a wide variety of subjects on all facets of U.S. Geological Survey investigations and research that are of lasting scientific interest and value. Releases in the Digital Data Series offer access to scientific information that is available in digital form; the information is primarily for viewing, processing, and (or) analyzing by computer

    Available on CD Rom through the Map and Data Library. CD #008.

  13. S

    How to Use GIS Open Data Portal

    • data.sanjoseca.gov
    html
    Updated Oct 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Enterprise GIS (2020). How to Use GIS Open Data Portal [Dataset]. https://data.sanjoseca.gov/dataset/how-to-use-gis-open-data-portal
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 6, 2020
    Dataset provided by
    City of San José
    Authors
    Enterprise GIS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This page contains the help documentation for the GIS Open Data Portal. Refer to https://gisdata-csj.opendata.arcgis.com/pages/help.

  14. Global map of tree density

    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A. (2023). Global map of tree density [Dataset]. http://doi.org/10.6084/m9.figshare.3179986.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).

    Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.

    Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.

    Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------

    Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.

    Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.

    References:

    Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.

  15. s

    Data from: Global GIS Database: Digital Atlas of South Pacific

    • geo1.scholarsportal.info
    Updated Aug 13, 2002
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2002). Global GIS Database: Digital Atlas of South Pacific [Dataset]. http://geo1.scholarsportal.info/proxy.html?http:_giseditor.scholarsportal.info/details/view.html?uri=/NAP/UT/37.xml&show_as_standalone=true
    Explore at:
    Dataset updated
    Aug 13, 2002
    Time period covered
    Jan 1, 2001
    Area covered
    Description

    The Digital Data Series encompasses a broad range of digital data, including computer programs, interpreted results of investigations, comprehensive reviewed data bases, spatial data sets, digital images and animation, and multimedia presentations that are not intended for printed release. Scientific reports in this series cover a wide variety of subjects on all facets of U.S. Geological Survey investigations and research that are of lasting scientific interest and value. Releases in the Digital Data Series offer access to scientific information that is available in digital form; the information is primarily for viewing, processing, and (or) analyzing by computer

    Available on CD Rom at the Map and Data Library. CD #007.

  16. U

    Compilation of Geospatial Data (GIS) for the Mineral Industries and Related...

    • data.usgs.gov
    • datasets.ai
    • +1more
    Updated Oct 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abraham Padilla; Spencer Buteyn; Elizabeth Neustaedter; Donya Otarod; Erica Wolfe; Philip Freeman; Michael Trippi; Ryan Kemna; Loyd Trimmer; Karine Renaud; Philip Szczesniak; Ji Moon; Jaewon Chung; Connie Dicken; Jane Hammarstrom (2023). Compilation of Geospatial Data (GIS) for the Mineral Industries and Related Infrastructure of Select Countries in Southwest Asia [Dataset]. http://doi.org/10.5066/P9OCRYYO
    Explore at:
    Dataset updated
    Oct 24, 2023
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Abraham Padilla; Spencer Buteyn; Elizabeth Neustaedter; Donya Otarod; Erica Wolfe; Philip Freeman; Michael Trippi; Ryan Kemna; Loyd Trimmer; Karine Renaud; Philip Szczesniak; Ji Moon; Jaewon Chung; Connie Dicken; Jane Hammarstrom
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Sep 30, 2021
    Area covered
    Asia, West Asia
    Description

    The U.S. Geological Survey (USGS) has compiled a geodatabase containing mineral-related geospatial data for 10 countries of interest in Southwest Asia (area of study): Afghanistan, Cambodia, Laos, India, Indonesia, Iran, Nepal, North Korea, Pakistan, and Thailand. The data can be used in analyses of the extractive fuel and nonfuel mineral industries and related economic and physical infrastructure integral for the successful operation of the mineral industries within the area of study as well as the movement of mineral products across domestic and global markets. This geodatabase reflects the USGS ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports for the countries in the area of study. The geodatabase contains data feat ...

  17. DEMIX GIS Database Version 3.5

    • zenodo.org
    csv
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Guth; Peter Guth (2025). DEMIX GIS Database Version 3.5 [Dataset]. http://doi.org/10.5281/zenodo.17247343
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter Guth; Peter Guth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This was developed for a forthcoming paper. A reference will be posted here when it is published.

    This database supports the work of the Digital Elevation Model Intercomparison eXperiment (DEMIX) working group (Strobl and others, 2021; Guth and others, 2021; Bielski and others, 2024). The four files have the database tables in CSV format.

    • Difference distributions for elevation, slope, and surface roughness. The provides continuity with \cite{BielskiOthers2024, GuthOthers2024}; for readers who want, it has the statistics like RMSE and LE90 for elevation and two LSPs, as well as the signed mean and median differences.
    • FUV for a mixed suite of LSPs chosen to sample the full range of LSPs calculated from DEMs. These provide a better rankings of the test DEMs, and provides an estimate of the robustness of LSPs and suggest that some should be used with caution.
    • FUV for the partial derivatives used for slope, aspect, and curvature.
    • FUV for the suite of integrated curvature measures (Minar and others, 2020.

    This version adds to CopDEM, ALOS AW3D30, and FABDEM:

    The database contains 1381 tiles, about 10x10 km, in 140 areas. The tiles are based on the local projected grid, a change from earlier versions of the DEMIX database which used geographic outlines.

    It does not consider the low altitude coastal DEMs; for those use version 3 (https://zenodo.org/records/13331458 ).

    References:

    Bielski, C.; López-Vázquez, C.; Grohmann, C.H.; Guth. P.L.; Hawker, L.; Gesch, D.; Trevisani, S.; Herrera-Cruz, V.; Riazanoff, S.; Corseaux, A.; Reuter, H.; Strobl, P., 2024. Novel approach for ranking DEMs: Copernicus DEM improves one arc second open global topography. IEEE Transactions on Geoscience & Remote Sensing. vol. 62, pp. 1-22, 2024, Art no. 4503922, https://doi.org/10.1109/TGRS.2024.3368015

    Guth, P.L.; Trevisani, S.; Grohmann, C.H.; Lindsay, J.; Gesch, D.; Hawker, L.; Bielski, C. Ranking of 10 Global One-Arc-Second DEMs Reveals Limitations in Terrain Morphology Representation. Remote Sens. 2024, 16, 3273. https://doi.org/10.3390/rs16173273

    Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.-P.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera-Cruz, V.; Riazanoff, S.; López-Vázquez, C.; Carabajal, C.C.; Albinet, C.; Strobl, P. Digital Elevation Models: Terminology and Definitions. Remote Sens. 2021, 13, 3581. https://doi.org/10.3390/rs13183581

    Minár, J., Ian S. Evans, Marián Jenčo, 2020, A comprehensive system of definitions of land surface (topographic) curvatures, with implications for their application in geoscience modelling and prediction, Earth-Science Reviews, Volume 211, 103414, ISSN 0012-8252, https://doi.org/10.1016/j.earscirev.2020.103414

    Strobl, P.A.; Bielski, C.; Guth, P.L.; Grohmann, C.H.; Muller, J.P.; López-Vázquez, C.; Gesch, D.B.; Amatulli, G.; Riazanoff, S.; Carabajal, C. The Digital Elevation Model Intercomparison eXperiment DEMIX, a community based approach at global DEM benchmarking. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B4-2021, 395–400. https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-395-2021

    Uhe, P., Lucas, C., Hawker, L., Brine, M., Wilkinson, H., Cooper, A., & Sampson, C. (2025). FathomDEM: an improved global terrain map using a hybrid vision transformer model. Environmental Research Letters, 20(3), 034002. https://doi.org/10.1088/1748-9326/ada972

  18. a

    KyGovMaps Open Data Portal

    • hub.arcgis.com
    • data.lojic.org
    • +1more
    Updated Dec 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KyGovMaps (2018). KyGovMaps Open Data Portal [Dataset]. https://hub.arcgis.com/content/31ace50dd2204932b8b11c48f24f6e76
    Explore at:
    Dataset updated
    Dec 11, 2018
    Dataset authored and provided by
    KyGovMaps
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This open data site is for exploring, accessing and downloading Kentucky-specific GIS data and discovering mapping apps. It provides simple access to information and tools that allow users to understand geospatial data. You can analyze and combine datasets using maps, as well as develop new web and mobile applications. Explore data by category, interact with web mapping applications, use Story Maps, or access our services directly. All data on the site is fed from a variety of authoritative sources.DO NOT DELETE OR MODIFY THIS ITEM. This item is managed by the ArcGIS Hub application. To make changes to this site, please visit https://hub.arcgis.com/admin/

  19. a

    GIS Data Sources

    • hub.arcgis.com
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King County (2024). GIS Data Sources [Dataset]. https://hub.arcgis.com/documents/kingcounty::gis-data-sources?uiVersion=content-views
    Explore at:
    Dataset updated
    Apr 2, 2024
    Dataset authored and provided by
    King County
    Area covered
    Description

    This page is an index of all the data sources that the GIS Center has to offer. If you're looking for anything, you'll find it here!

  20. s

    Data from: Global GIS Database: Digital Atlas of Africa

    • geo2.scholarsportal.info
    • geo1.scholarsportal.info
    Updated Aug 13, 2002
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2002). Global GIS Database: Digital Atlas of Africa [Dataset]. http://geo2.scholarsportal.info/proxy.html?http:_giseditor.scholarsportal.info/details/view.html?uri=/NAP/UT/36.xml&show_as_standalone=true
    Explore at:
    Dataset updated
    Aug 13, 2002
    Time period covered
    Jan 1, 2001
    Area covered
    Description

    The Digital Data Series encompasses a broad range of digital data, including computer programs, interpreted results of investigations, comprehensive reviewed data bases, spatial data sets, digital images and animation, and multimedia presentations that are not intended for printed release. Scientific reports in this series cover a wide variety of subjects on all facets of U.S. Geological Survey investigations and research that are of lasting scientific interest and value. Releases in the Digital Data Series offer access to scientific information that is available in digital form; the information is primarily for viewing, processing, and (or) analyzing by comput

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nang Tin Win (2023). GIS database [Dataset]. http://doi.org/10.7910/DVN/TV7J27

GIS database

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jul 12, 2023
Dataset provided by
Harvard Dataverse
Authors
Nang Tin Win
License

https://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/TV7J27https://dataverse.harvard.edu/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.7910/DVN/TV7J27

Time period covered
Oct 1, 2020 - Sep 30, 2022
Area covered
Myanmar (Burma)
Dataset funded by
United States Agency for International Developmenthttp://usaid.gov/
Description

It is about updating to GIS information database, Decision Support Tool (DST) in collaboration with IWMI. With the support of the Fish for Livelihoods field team and IPs (MFF, BRAC Myanmar, PACT Myanmar, and KMSS) staff, collection of Global Positioning System GPS location data for year-1 (2019-20) 1,167 SSA farmer ponds, and year-2 (2020-21) 1,485 SSA farmer ponds were completed with different GPS mobile applications: My GPS Coordinates, GPS Status & Toolbox, GPS Essentials, Smart GPS Coordinates Locator and GPS Coordinates. The Soil and Water Assessment Tool (SWAT) model that integrates climate change analysis with water availability will provide an important tool informing decisions on scaling pond adoption. It can also contribute to a Decision Support Tool to better target pond scaling. GIS Data also contribute to identify the location point of the F4L SSA farmers ponds on the Myanmar Map by fiscal year from 1 to 5.

Search
Clear search
Close search
Google apps
Main menu