100+ datasets found
  1. d

    5.02 New Jobs Created (summary)

    • catalog.data.gov
    • data.tempe.gov
    • +10more
    Updated Oct 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). 5.02 New Jobs Created (summary) [Dataset]. https://catalog.data.gov/dataset/5-02-new-jobs-created-summary-3cc9b
    Explore at:
    Dataset updated
    Oct 4, 2025
    Dataset provided by
    City of Tempe
    Description

    Tempe is among Arizona's most educated cities, lending to a creative, smart atmosphere. With more than a dozen colleges, trade schools, and universities, about 40 percent of our residents over the age of 25 have Bachelor's degrees or higher. Having such an educated and accessible workforce is a driving factor in attracting and growing jobs for residents in the region.The City of Tempe is a member of the Greater Phoenix Economic Council (GPEC), and with the membership, staff tracks collaborative efforts to recruit business prospects and locations. The Greater Phoenix Economic Council (GPEC) is a performance-driven, public-private partnership. GPEC partners with the City of Tempe, Maricopa County, 22 other communities, and more than 170 private-sector investors to promote the region’s competitive position and attract quality jobs that enable strategic economic growth and provide increased tax revenue for Tempe. This dataset provides the target and actual job creation numbers for the City of Tempe and the Greater Phoenix Economic Council (GPEC). The job creation target for Tempe is calculated by multiplying GPEC's target by twice Tempe's proportion of the population. This page provides data for the New Jobs Created performance measure.The performance measure dashboard is available at 5.02 New Jobs Created. Additional Information Source: Extracted from GPEC monthly and annual reports and proprietary excel filesContact: Madalaine McConvilleContact Phone: 480-350-2927Data Source Type: Excel filesPreparation Method: Extracted from GPEC monthly and annual reports and proprietary Excel filesPublish Frequency: AnnuallyPublish Method: ManualData Dictionary

  2. Local Employment Dynamics (LED) for ESG Areas

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    • +1more
    Updated Jul 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Local Employment Dynamics (LED) for ESG Areas [Dataset]. https://hudgis-hud.opendata.arcgis.com/datasets/13f2dd85f2574e2abfd74d0c976cf031
    Explore at:
    Dataset updated
    Jul 31, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    The Local Employment Dynamics (LED) Partnership is a voluntary federal-state enterprise created for the purpose of merging employee, and employer data to provide a set of enhanced labor market statistics known collectively as Quarterly Workforce Indicators (QWI). The QWI are a set of economic indicators including employment, job creation, earnings, and other measures of employment flows. For the purposes of this dataset, LED data for 2018 is aggregated to Census Summary Level 070 (State + County + County Subdivision + Place/Remainder), and joined with the Emergency Solutions Grantee (ESG) areas spatial dataset for FY2018. The Emergency Solutions Grants (ESG), formally the Emergency Shelter Grants, program is designed to identify sheltered and unsheltered homeless persons, as well as those at risk of homelessness, and provide the services necessary to help those persons quickly regain stability in permanent housing after experiencing a housing crisis and/or homelessness. The ESG is a non-competitive formula grant awarded to recipients which are state governments, large cities, urban counties, and U.S. territories. Recipients make these funds available to eligible sub-recipients, which can be either local government agencies or private nonprofit organizations. The recipient agencies and organizations, which actually run the homeless assistance projects, apply for ESG funds to the governmental grantee, and not directly to HUD. Please note that this version of the data does not include Community Planning and Development (CPD) entitlement grantees. LED data for CPD entitlement areas can be obtained from the LED for CDBG Grantee Areas feature service. To learn more about the Local Employment Dynamics (LED) Partnership visit: https://lehd.ces.census.gov/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_LED for ESG Grantee Areas

    Date of Coverage: ESG-2021/LED-2018

  3. Means of Transportation to Work

    • catalog.data.gov
    • geodata.bts.gov
    • +2more
    Updated Jul 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Transportation Statistics (BTS) (Point of Contact) (2025). Means of Transportation to Work [Dataset]. https://catalog.data.gov/dataset/means-of-transportation-to-work2
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    Bureau of Transportation Statisticshttp://www.rita.dot.gov/bts
    Description

    The Means of Transportation to Work dataset was compiled using information from December 31, 2023 and updated December 12, 2024 from the Bureau of Transportation Statistics (BTS) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The Means of Transportation to Work table from the 2023 American Community Survey (ACS) 5-year estimates was joined to 2023 tract-level geographies for all 50 States, District of Columbia and Puerto Rico provided by the Census Bureau. A new file was created that combines the demographic variables from the former with the cartographic boundaries of the latter. The national level census tract layer contains data on the number and percentage of commuters (workers 16 years and over) that used various transportation modes to get to work. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529037

  4. datasets

    • figshare.com
    bin
    Updated May 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ibtihal Khlif (2025). datasets [Dataset]. http://doi.org/10.6084/m9.figshare.28931513.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    May 12, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Ibtihal Khlif
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This project explores the integration of Geographic Information Systems (GIS) and Natural Language Processing (NLP) to improve job–candidate matching in recruitment. Traditional AI-based e-recruitment systems often ignore geographic constraints. Our hybrid model addresses this gap by incorporating both textual similarity and spatial relevance in matching candidates to job postings.Data UsedCandidate Data (CVs)Source: Scraped from emploi.maSize: 1000 CVs after cleaningContent: Candidate names (anonymized), skills, experiences, locations (coordinates), availability, etc.Job DescriptionsSource: Publicly available dataset from KaggleSize: we took 1000 job postings using category :MoroccoContent: Titles, descriptions, required skills, sector labels, and office locations...All datasets have been cleaned and anonymized for privacy and research ethics compliance.

  5. a

    Our GIS Work

    • gis-request-management-1-utahdnr.hub.arcgis.com
    • gis-request-management-1-mimdard.hub.arcgis.com
    • +10more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utah DNR Online Maps (2024). Our GIS Work [Dataset]. https://gis-request-management-1-utahdnr.hub.arcgis.com/datasets/our-gis-work
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset authored and provided by
    Utah DNR Online Maps
    License
    Description

    An ArcGIS Dashboard used in the ArcGIS Hub site, GIS Service Center, to share information with the organization.

  6. GIS as a Career

    • teachwithgis.co.uk
    • lecturewithgis.co.uk
    Updated Feb 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2024). GIS as a Career [Dataset]. https://teachwithgis.co.uk/datasets/gis-as-a-career
    Explore at:
    Dataset updated
    Feb 20, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    Addy PopeHigher Education Manager - Esri UKStill think I am a glaciologistGIS consultant GIS EducationDidn't actually do any GIS as an undergrad.

  7. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +1more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  8. d

    Central Employment Areas

    • catalog.data.gov
    • s.cnmilf.com
    • +4more
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D.C. Office of the Chief Technology Officer (2025). Central Employment Areas [Dataset]. https://catalog.data.gov/dataset/central-employment-areas
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    D.C. Office of the Chief Technology Officer
    Description

    The dataset includes polygons representing the location and attributes of Central Employment Area (CEA). The CEA is the core area of the District of Columbia where the greatest concentration of employment in the city and region is encouraged, created as part of the DC Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Jurisdictions were identified from public records (map and written description created by the National Capital Planning Commission) and heads-up digitized from the 1995 orthophotographs.

  9. d

    Population and Employment Forecasts

    • opendata.dc.gov
    • datasets.ai
    • +4more
    Updated Jul 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2022). Population and Employment Forecasts [Dataset]. https://opendata.dc.gov/datasets/DCGIS::population-and-employment-forecasts
    Explore at:
    Dataset updated
    Jul 5, 2022
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This map shows areas where population and jobs growth will be concentrated in the District through the year 2045.

  10. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • geodata.colorado.gov
    • +5more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  11. Underground Storage Tank (working)

    • geodata.vermont.gov
    • anrgeodata.vermont.gov
    • +6more
    Updated Aug 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vermont Agency of Natural Resources (2019). Underground Storage Tank (working) [Dataset]. https://geodata.vermont.gov/datasets/VTANR::underground-storage-tank-working
    Explore at:
    Dataset updated
    Aug 7, 2019
    Dataset provided by
    Vermont Agency Of Natural Resourceshttp://www.anr.state.vt.us/
    Authors
    Vermont Agency of Natural Resources
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    Database contains information on ownership and system construction for underground storage tank facilities statewide. Database was developed in early 1990's for program management, and has been updated to more modern data systems periodically.

  12. d

    1.11 Feeling Safe in Work (summary)

    • catalog.data.gov
    • data-academy.tempe.gov
    • +9more
    Updated Jul 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). 1.11 Feeling Safe in Work (summary) [Dataset]. https://catalog.data.gov/dataset/1-11-feeling-safe-in-work-summary-b5f31
    Explore at:
    Dataset updated
    Jul 5, 2025
    Dataset provided by
    City of Tempe
    Description

    This dataset comes from the biennial City of Tempe Employee Survey question about feeling safe in the physical work environment (building). The Employee Survey question relating to this performance measure: “Please rate your level of agreement: My physical work environment (building) is safe, clean & maintained in good operating order.” Survey respondents are asked to rate their agreement level on a scale of 5 to 1, where 5 means “Strongly Agree” and 1 means “Strongly Disagree” (without “don’t know” responses included).The survey was voluntary, and employees were allowed to complete the survey during work hours or at home. The survey allowed employees to respond anonymously and has a 95% confidence level. This page provides data about the Feeling Safe in City Facilities performance measure. The performance measure dashboard is available at 1.11 Feeling Safe in City FacilitiesAdditional InformationSource: Employee SurveyContact: Wydale HolmesContact E-Mail: Wydale_Holmes@tempe.govData Source Type: CSVPreparation Method: Data received from vendor and entered in CSVPublish Frequency: BiennialPublish Method: ManualData Dictionary (update pending)

  13. Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

  14. Digital Bedrock Geologic-GIS Map of Lincoln Boyhood National Memorial and...

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Bedrock Geologic-GIS Map of Lincoln Boyhood National Memorial and Vicinity, Indiana (NPS, GRD, GRI, LIBO, LIBO_bedrock digital map) adapted from a Indiana Geological Survey unpublished working maps by Hutchinson (1959) [Dataset]. https://catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-lincoln-boyhood-national-memorial-and-vicinity-indiana
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Indiana
    Description

    The Digital Bedrock Geologic-GIS Map of Lincoln Boyhood National Memorial and Vicinity, Indiana is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (libo_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (libo_bedrock_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (libo_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (libo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (libo_bedrock_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (libo_bedrock_geology_metadata_faq.pdf). Please read the libo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Indiana Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (libo_bedrock_geology_metadata.txt or libo_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  15. d

    Datasets for Computational Methods and GIS Applications in Social Science

    • search.dataone.org
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fahui Wang; Lingbo Liu (2025). Datasets for Computational Methods and GIS Applications in Social Science [Dataset]. http://doi.org/10.7910/DVN/4CM7V4
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Fahui Wang; Lingbo Liu
    Description

    Dataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...

  16. Digital Bedrock Geologic-GIS Map of Saugus Iron Works National Historic...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Bedrock Geologic-GIS Map of Saugus Iron Works National Historic Site, Massachusetts (NPS, GRD, GRI, SAIR, SAIR_bedrock digital map) adapted from a Massachusetts Geological Survey Preliminary Report map by Kopera (2011) and a U.S. Geological Survey Miscellaneous Field Studies Map by Kaye (1980) [Dataset]. https://catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-saugus-iron-works-national-historic-site-massachusetts
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Saugus, Massachusetts
    Description

    The Digital Bedrock Geologic-GIS Map of Saugus Iron Works National Historic Site, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (sair_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (sair_bedrock_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (sair_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sair_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sair_bedrock_geology_metadata_faq.pdf). Please read the sair_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Massachusetts Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sair_bedrock_geology_metadata.txt or sair_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  17. d

    Polygon Data | Marina Polygon Dataset for US & Canada | GIS Maps &...

    • datarade.ai
    Updated Mar 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xtract (2023). Polygon Data | Marina Polygon Dataset for US & Canada | GIS Maps & Geospatial Insights [Dataset]. https://datarade.ai/data-products/xtract-io-geometry-data-marinas-in-us-and-canada-xtract
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Mar 23, 2023
    Dataset authored and provided by
    Xtract
    Area covered
    Canada, United States
    Description

    This specialized location dataset delivers detailed information about marina establishments. Maritime industry professionals, coastal planners, and tourism researchers can leverage precise location insights to understand maritime infrastructure, analyze recreational boating landscapes, and develop targeted strategies.

    How Do We Create Polygons?

    -All our polygons are manually crafted using advanced GIS tools like QGIS, ArcGIS, and similar applications. This involves leveraging aerial imagery, satellite data, and street-level views to ensure precision. -Beyond visual data, our expert GIS data engineers integrate venue layout/elevation plans sourced from official company websites to construct highly detailed polygons. This meticulous process ensures maximum accuracy and consistency. -We verify our polygons through multiple quality assurance checks, focusing on accuracy, relevance, and completeness.

    What's More?

    -Custom Polygon Creation: Our team can build polygons for any location or category based on your requirements. Whether it’s a new retail chain, transportation hub, or niche point of interest, we’ve got you covered. -Enhanced Customization: In addition to polygons, we capture critical details such as entry and exit points, parking areas, and adjacent pathways, adding greater context to your geospatial data. -Flexible Data Delivery Formats: We provide datasets in industry-standard GIS formats like WKT, GeoJSON, Shapefile, and GDB, making them compatible with various systems and tools. -Regular Data Updates: Stay ahead with our customizable refresh schedules, ensuring your polygon data is always up-to-date for evolving business needs.

    Unlock the Power of POI and Geospatial Data

    With our robust polygon datasets and point-of-interest data, you can: -Perform detailed market and location analyses to identify growth opportunities. -Pinpoint the ideal locations for your next store or business expansion. -Decode consumer behavior patterns using geospatial insights. -Execute location-based marketing campaigns for better ROI. -Gain an edge over competitors by leveraging geofencing and spatial intelligence.

    Why Choose LocationsXYZ?

    LocationsXYZ is trusted by leading brands to unlock actionable business insights with our accurate and comprehensive spatial data solutions. Join our growing network of successful clients who have scaled their operations with precise polygon and POI datasets. Request your free sample today and explore how we can help accelerate your business growth.

  18. w

    Dataset of books called Learning GIS using open source software : an applied...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Learning GIS using open source software : an applied guide for geo-spatial analysis [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Learning+GIS+using+open+source+software+%3A+an+applied+guide+for+geo-spatial+analysis
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is Learning GIS using open source software : an applied guide for geo-spatial analysis. It features 7 columns including author, publication date, language, and book publisher.

  19. w

    Moving!! - SDOT ROW Work (points)...

    • data.wu.ac.at
    application/excel +5
    Updated Mar 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SDOT GIS (2018). Moving!! - SDOT ROW Work (points) [arcgis_rest_services_SDOT_EXT_DSG_datasharing_MapServer_45] [Dataset]. https://data.wu.ac.at/schema/data_seattle_gov/aWFmZi1lYTdx
    Explore at:
    json, application/excel, xml, application/xml+rdf, csv, xlsxAvailable download formats
    Dataset updated
    Mar 12, 2018
    Dataset provided by
    SDOT GIS
    Description

    This dataset will be moving! The City is working on a new Open Data Portal for GIS data. This dataset will soon be available at https://data-seattlecitygis.opendata.arcgis.com/. We apologize for any inconvenience, but this new platform will allow us to regularly update our data and provided better tools for our spatial data. https://gisrevprxy.seattle.gov/arcgis/rest/services/SDOT_EXT/DSG_datasharing/MapServer/45

  20. w

    Data from: U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2...

    • data.wu.ac.at
    • data.globalchange.gov
    • +2more
    esri rest
    Updated Jun 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2018). U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2 [Dataset]. https://data.wu.ac.at/schema/data_gov/MmMzYjljMzQtZmJjMy00NjUwLWE3YmMtNzRlOWRmMTFkZTVj
    Explore at:
    esri restAvailable download formats
    Dataset updated
    Jun 8, 2018
    Dataset provided by
    Department of the Interior
    Area covered
    d8998031d4cf34652dda2763c83c7b599a8a3521
    Description

    This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Tempe (2025). 5.02 New Jobs Created (summary) [Dataset]. https://catalog.data.gov/dataset/5-02-new-jobs-created-summary-3cc9b

5.02 New Jobs Created (summary)

Explore at:
Dataset updated
Oct 4, 2025
Dataset provided by
City of Tempe
Description

Tempe is among Arizona's most educated cities, lending to a creative, smart atmosphere. With more than a dozen colleges, trade schools, and universities, about 40 percent of our residents over the age of 25 have Bachelor's degrees or higher. Having such an educated and accessible workforce is a driving factor in attracting and growing jobs for residents in the region.The City of Tempe is a member of the Greater Phoenix Economic Council (GPEC), and with the membership, staff tracks collaborative efforts to recruit business prospects and locations. The Greater Phoenix Economic Council (GPEC) is a performance-driven, public-private partnership. GPEC partners with the City of Tempe, Maricopa County, 22 other communities, and more than 170 private-sector investors to promote the region’s competitive position and attract quality jobs that enable strategic economic growth and provide increased tax revenue for Tempe. This dataset provides the target and actual job creation numbers for the City of Tempe and the Greater Phoenix Economic Council (GPEC). The job creation target for Tempe is calculated by multiplying GPEC's target by twice Tempe's proportion of the population. This page provides data for the New Jobs Created performance measure.The performance measure dashboard is available at 5.02 New Jobs Created. Additional Information Source: Extracted from GPEC monthly and annual reports and proprietary excel filesContact: Madalaine McConvilleContact Phone: 480-350-2927Data Source Type: Excel filesPreparation Method: Extracted from GPEC monthly and annual reports and proprietary Excel filesPublish Frequency: AnnuallyPublish Method: ManualData Dictionary

Search
Clear search
Close search
Google apps
Main menu