100+ datasets found
  1. Country Population and Growth Rate Analysis

    • kaggle.com
    Updated Mar 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gaurav Kumar (2025). Country Population and Growth Rate Analysis [Dataset]. https://www.kaggle.com/datasets/gauravkumar2525/country-population-and-growth-rate-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 6, 2025
    Dataset provided by
    Kaggle
    Authors
    Gaurav Kumar
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    ABOUT

    The Global Population Growth Dataset provides a comprehensive record of population trends across various countries over multiple decades. It includes detailed information such as the country name, ISO3 country code, year-wise population data, population growth, and growth rate. This dataset is valuable for researchers, demographers, policymakers, and data analysts interested in studying population dynamics, demographic trends, and economic development.

    Key features of the dataset:

    ✅ Covers multiple countries and regions worldwide
    ✅ Includes historical and recent population data
    ✅ Provides year-wise population growth and growth rate (%)
    ✅ Categorizes data by country and decade for better trend analysis

    This dataset serves as a crucial resource for analyzing global population trends, understanding demographic shifts, and supporting socio-economic research and policy-making.

    FILE INFORMATION

    The dataset consists of structured records related to country-wise population data, compiled from official sources. Each file contains information on yearly population figures, growth trends, and country-specific data. The structured format makes it useful for researchers, economists, and data scientists studying demographic patterns and changes. The file type is CSV.

    COLUMNS DESCRIPTION

    • Country – The name of the country.
    • ISO3 – The three-letter ISO code of the country.
    • Year – The year corresponding to the population data, useful for trend analysis.
    • Population – The total population of the country for the given year.
    • Population Growth – The absolute increase in population compared to the previous year.
    • Growth Rate (%) – The percentage change in population compared to the previous year.
    • Decade – The decade classification (e.g., 1990s, 2000s) for grouping long-term trends.
  2. f

    The Urbanity Global Network Dataset

    • figshare.com
    txt
    Updated Dec 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Winston Yap (2023). The Urbanity Global Network Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.22124219.v12
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 22, 2023
    Dataset provided by
    figshare
    Authors
    Winston Yap
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Global Urban Network (GUN) dataset provides pre-computed node and edge attribute features for various cities. Each layer is available in .geojson format and can easily be converted into NetworkX, igraph, PyG, and DGL graph formats.

    For node attributes, we adopt a uniform Euclidean approach, as it provides a consistent, straightforward, and extensible basis for integrating heterogeneous data sources across different network locations. Accordingly, we construct 100 metres euclidean buffers for each network node and compute the spatial intersection with spatial targets (e.g., street view imagery points, points of interest, and building footprints). To ensure spatial consistency and accurate distance computation, we project spatial entities into local coordinate reference systems (CRS). Users can employ the Urbanity package to generate Euclidean buffers of arbitrary distance.

    For edge attributes, we adopt a two-step approach: 1) compute the distance between each spatial point of interest and its proximate edges in the network, and 2) assign entities to the corresponding edge with lowest distance. To account for remote edges (e.g., peripheral routes that are not located close to any amenities), we specify a distance threshold of 50 metres. For buildings, we compute the distance between building centroids and their respective network edge. Accordingly, we compute spatial indicators based on the set of elements assigned to each network edge.

    We also release aggregated subzone statistics for each city. Similarly, users can employ the Urbanity package to generate aggregate statistics for any arbitrary geographic boundary.

    Urbanity Python package: https://github.com/winstonyym/urbanity.

  3. m

    Global Burden of Disease analysis dataset of BMI and CVD outcomes, risk...

    • data.mendeley.com
    Updated Aug 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Cundiff (2021). Global Burden of Disease analysis dataset of BMI and CVD outcomes, risk factors, and SAS codes [Dataset]. http://doi.org/10.17632/g6b39zxck4.6
    Explore at:
    Dataset updated
    Aug 17, 2021
    Authors
    David Cundiff
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This formatted dataset originates from raw data files from the Institute of Health Metrics and Evaluation Global Burden of Disease (GBD2017). It is population weighted worldwide data on male and female cohorts ages 15-69 years including body mass index (BMI) and cardiovascular disease (CVD) and associated dietary, metabolic and other risk factors. The purpose of creating this formatted database is to explore the univariate and multiple regression correlations of BMI and CVD and other health outcomes with risk factors. Our research hypothesis is that we can successfully apply artificial intelligence to model BMI and CVD risk factors and health outcomes. We derived a BMI multiple regression risk factor formula that satisfied all nine Bradford Hill causality criteria for epidemiology research. We found that animal products and added fats are negatively correlated with CVD early deaths worldwide but positively correlated with CVD early deaths in high quantities. We interpret this as showing that optimal cardiovascular outcomes come with moderate (not low and not high) intakes of animal foods and added fats.

    For questions, please email davidkcundiff@gmail.com. Thanks.

  4. Global Historical Climatology Network - Daily (GHCN-Daily), Version 2...

    • catalog.data.gov
    • data.cnra.ca.gov
    • +2more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NCEI > National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce (Point of Contact) (2023). Global Historical Climatology Network - Daily (GHCN-Daily), Version 2 (Version Superseded) [Dataset]. https://catalog.data.gov/dataset/global-historical-climatology-network-daily-ghcn-daily-version-2-version-superseded1
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    United States Department of Commercehttp://commerce.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Environmental Satellite, Data, and Information Service
    Description

    Please note, this dataset has been superseded by a newer version (see below). Users should not use this version except in rare cases (e.g., when reproducing previous studies that used this version). The Global Historical Climatology Network - Daily (GHCN-Daily) dataset addresses the need for historical daily records over global land areas. Like its monthly counterpart (GHCN-Monthly), GHCN-Daily is a composite of climate records from numerous sources that were merged and then subjected to a suite of quality assurance reviews. The meteorological elements measured for the data set include, but are not limited to, daily maximum and minimum temperature, temperature at the time of observation, precipitation (i.e., rainfall and snow water equivalent), snowfall and snow depth. GHCN-Daily serves as the official archive for daily data from the Global Climate Observing System (GCOS) Surface Network (GSN) and is particularly well suited for monitoring and assessment activities related to the frequency and magnitude of extremes. Sources for the GHCN-Daily data set include, but are not limited, to U.S. Cooperative Summary of the Day, U.S. Fort data, U.S. Climate Reference Network, Community Collaborative Rain, Hail and Snow Network, and numerous international sources. The dataset contains measurements from over 75,000 stations worldwide,about two thirds of which are for precipitation measurement only. Approximately 8500 are regularly updated with observations from within the last month. While most of these sites report precipitation, daily maximum and minimum temperatures are available at more than 25,000 of them, and over 24,000 contain records of snowfall and/or snow depth. The process of integrating data from multiple sources into the GHCN-Daily dataset takes place in three steps: screening the source data for stations whose identity is unknown or questionable; classifying each station in a source dataset either as one that is already represented in GHCN-Daily or as a new site; and mingling the data from the different sources. The first two of these steps are performed whenever a new source dataset or additional stations become available, while the actual mingling of data is part of the automated processing that creates GHCN-Daily on a regular basis. GHCN-Daily data are subject to a suite of quality assurance checks. The checks consist of several types of carefully evaluated tests that detect duplicated data, climatological outliers, and various inconsistencies (internal, temporal, and spatial). Manual review of random samples of flagged values was used to set the threshold for each procedure such that the tests false-positive rate is minimized. In addition, the tests are performed in a deliberate sequence in an effort to enhance the performance of the later checks by detecting errors with the checks applied earlier in the sequence.

  5. Data from: GlobBiomass - global datasets of forest biomass

    • doi.pangaea.de
    • datadiscoverystudio.org
    html, tsv
    Updated Sep 24, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maurizio Santoro (2018). GlobBiomass - global datasets of forest biomass [Dataset]. http://doi.org/10.1594/PANGAEA.894711
    Explore at:
    tsv, htmlAvailable download formats
    Dataset updated
    Sep 24, 2018
    Dataset provided by
    PANGAEA
    Authors
    Maurizio Santoro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    File name, File size, Uniform resource locator/link to file
    Description

    The data products consist of four (4) global layers that include estimates of

    1) growing stock volume (GSV, unit: m3/ha) for the year 2010 (raster dataset)

    Definition: volume of all living trees more than 10 cm in diameter at breast height measured over bark from ground or stump height to a top stem diameter of 0 cm. Excludes: smaller branches, twigs, foliage, flowers, seeds, stump and roots (definition of FAO). […]

  6. Global annual surface air temperature change

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Global annual surface air temperature change [Dataset]. https://catalog.data.gov/dataset/global-annual-surface-air-temperature-change
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    The data are maintained by NASA (https://data.giss.nasa.gov/gistemp/) and provides an estimate of global annual surface air temperature change expressed as temperature anomaly in degrees Celsius. This dataset is not publicly accessible because: It is secondary data. It can be accessed through the following means: The data are maintained by NASA (https://data.giss.nasa.gov/gistemp/). Format: The dataset is secondary data gathered from the NASA site (https://data.giss.nasa.gov/gistemp/) and can be downloaded in a variety of formats including .txt and .csv. This dataset is associated with the following publication: Ahmad, N., S. Derrible, T. Eason, and H. Cabezas. Using Fisher information to track stability in multivariate systems. Royal Society Open Science. Royal Society Publishing, London, UK, 01-08, (2016).

  7. Global Green Economy Index (GGEI)

    • kaggle.com
    Updated May 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeremy Tamanini (2024). Global Green Economy Index (GGEI) [Dataset]. https://www.kaggle.com/datasets/jeremytamanini/global-green-economy-index-ggei
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 8, 2024
    Dataset provided by
    Kaggle
    Authors
    Jeremy Tamanini
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    For the first time, the full results from the Global Green Economy Index (GGEI) are available in the public domain. Historically, only the aggregate results have been publicly accessible. The full dataset has been paywalled and accessible to our subscribers only. But the way in which we release GGEI data to the public is changing. Read on for a quick explanation for how and why.

    First, the how. The GGEI file publicly accessible today represents that dataset officially compiled in 2022. It contains the full results for each of the 18 indicators in the GGEI for 160 countries, across the four main dimensions of climate change & social equity, sector decarbonization, markets & ESG investment and the environment. Some (not all) of these data points have since been updated, as new datasets have been published. The GGEI is a dynamic model, updating in real-time as new data becomes available. Our subscribing clients will still receive this most timely version of the model, along with any customizations they may request.

    Now, the why. First and foremost, there is huge demand among academic researchers globally for the full GGEI dataset. Academic inquiry around the green transition, sustainable development, ESG investing, and green energy systems has exploded over the past several years. We receive hundreds of inquiries annually from these students and researchers to access the full GGEI dataset. Making it publicly accessible as we are today makes it easier for these individuals and institutions to use these GGEI to promote learning and green progress within their institutions.

    More broadly, the landscape for data has changed significantly. A decade ago when the GGEI was first published, datasets existed more in silos and users might subscribe to one specific dataset like the GGEI to answer a specific question. But today, data usage in the sustainability space has become much more of a system, whereby myriad data sources are synthesized into increasingly sophisticated models, often fueled by artificial intelligence. Making the GGEI more accessible will accelerate how this perspective on the global green economy can be integrated to these systems.

  8. A

    GAR15 Global Exposure Dataset for Israel

    • data.amerigeoss.org
    • data.humdata.org
    • +1more
    shp
    Updated May 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2023). GAR15 Global Exposure Dataset for Israel [Dataset]. https://data.amerigeoss.org/dataset/gar15-global-exposure-dataset-for-israel
    Explore at:
    shp(379041)Available download formats
    Dataset updated
    May 25, 2023
    Dataset provided by
    UN Humanitarian Data Exchange
    Area covered
    Israel
    Description

    The GAR15 global exposure database is based on a top-down approach where statistical information including socio-economic, building type, and capital stock at a national level are transposed onto the grids of 5x5 or 1x1 using geographic distribution of population data and gross domestic product (GDP) as proxies.

  9. H

    GAR15 Global Exposure Dataset for Guyana

    • data.humdata.org
    • data.amerigeoss.org
    • +1more
    shp
    Updated Sep 23, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Office for Disaster Risk Reduction (UNDRR) (2021). GAR15 Global Exposure Dataset for Guyana [Dataset]. https://data.humdata.org/dataset/gar15-global-exposure-dataset-for-guyana
    Explore at:
    shp(443457)Available download formats
    Dataset updated
    Sep 23, 2021
    Dataset provided by
    United Nations Office for Disaster Risk Reduction (UNDRR)
    Area covered
    Guyana
    Description

    The GAR15 global exposure database is based on a top-down approach where statistical information including socio-economic, building type, and capital stock at a national level are transposed onto the grids of 5x5 or 1x1 using geographic distribution of population data and gross domestic product (GDP) as proxies.

  10. A

    GAR15 Global Exposure Dataset for Cuba

    • data.amerigeoss.org
    • cloud.csiss.gmu.edu
    • +1more
    shp
    Updated Oct 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2021). GAR15 Global Exposure Dataset for Cuba [Dataset]. https://data.amerigeoss.org/tr/dataset/gar15-global-exposure-dataset-for-cuba
    Explore at:
    shp(834604)Available download formats
    Dataset updated
    Oct 12, 2021
    Dataset provided by
    UN Humanitarian Data Exchange
    Area covered
    Cuba
    Description

    The GAR15 global exposure database is based on a top-down approach where statistical information including socio-economic, building type, and capital stock at a national level are transposed onto the grids of 5x5 or 1x1 using geographic distribution of population data and gross domestic product (GDP) as proxies.

  11. Monthly Climatic Data for the World

    • data.cnra.ca.gov
    • datadiscoverystudio.org
    • +4more
    html
    Updated Mar 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2023). Monthly Climatic Data for the World [Dataset]. https://data.cnra.ca.gov/dataset/monthly-climatic-data-for-the-world
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 1, 2023
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    Publication of monthly mean temperature, pressure, precipitation, vapor pressure, and hours of sunshine for approximately 2,000 surface data collection stations worldwide, and monthly mean upper air temperatures, dew point depressions, and wind velocities for approximately 500 observing sites.

  12. Temperature and precipitation gridded data for global and regional domains...

    • cds.climate.copernicus.eu
    netcdf
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Temperature and precipitation gridded data for global and regional domains derived from in-situ and satellite observations [Dataset]. http://doi.org/10.24381/cds.11dedf0c
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf

    Time period covered
    Jan 1, 1750 - Jan 1, 2021
    Description

    This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.

  13. GAR15 Global Exposure Dataset for Colombia

    • data.amerigeoss.org
    • data.wu.ac.at
    shp
    Updated May 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2023). GAR15 Global Exposure Dataset for Colombia [Dataset]. https://data.amerigeoss.org/dataset/gar15-global-exposure-dataset-for-colombia
    Explore at:
    shp(3084205)Available download formats
    Dataset updated
    May 26, 2023
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    Colombia
    Description

    The GAR15 global exposure database is based on a top-down approach where statistical information including socio-economic, building type, and capital stock at a national level are transposed onto the grids of 5x5 or 1x1 using geographic distribution of population data and gross domestic product (GDP) as proxies.

  14. Ensemble median global sea surface temperature dataset

    • seanoe.org
    nc
    Updated Dec 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomita Hiroyuki; Hihara Tsutomu (2019). Ensemble median global sea surface temperature dataset [Dataset]. http://doi.org/10.17882/70991
    Explore at:
    ncAvailable download formats
    Dataset updated
    Dec 2019
    Dataset provided by
    SEANOE
    Authors
    Tomita Hiroyuki; Hihara Tsutomu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1987 - Feb 27, 2019
    Area covered
    Description

    ensemble median global sea surface temperature (emsst) is a daily sst dataset constructed by nagoya university from an ensemble of 18 global sst products for the period from january 1, 1988 to february 28, 2019. the data set includes sst calculated as an ensemble median on each 0.25 degree by 0.25 degree grids over global ice-free oceans. the data set also includes an ensemble mean, standard deviation, minimum, maximum, number and kind of source products used.

  15. d

    International Data Base

    • dknet.org
    • rrid.site
    • +2more
    Updated Jan 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). International Data Base [Dataset]. http://identifiers.org/RRID:SCR_013139
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    A computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490

  16. w

    Global Financial Inclusion (Global Findex) Database 2021 - Canada

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    Updated Dec 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - Canada [Dataset]. https://microdata.worldbank.org/index.php/catalog/4625
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    Canada
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    Northwest Territories, Yukon, and Nunavut (representing approximately 0.3 percent of the Canadian population) were excluded.

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for Canada is 1007.

    Mode of data collection

    Landline and mobile telephone

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  17. GAR15 Global Exposure Dataset for Belgium

    • data.amerigeoss.org
    • data.wu.ac.at
    shp
    Updated Oct 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2023). GAR15 Global Exposure Dataset for Belgium [Dataset]. https://data.amerigeoss.org/nl/dataset/gar15-global-exposure-dataset-for-belgium
    Explore at:
    shp(556647)Available download formats
    Dataset updated
    Oct 11, 2023
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    Belgium
    Description

    The GAR15 global exposure database is based on a top-down approach where statistical information including socio-economic, building type, and capital stock at a national level are transposed onto the grids of 5x5 or 1x1 using geographic distribution of population data and gross domestic product (GDP) as proxies.

  18. n

    HadISD: Global sub-daily, surface meteorological station data, 1931-2023,...

    • data-search.nerc.ac.uk
    • catalogue.ceda.ac.uk
    Updated Jul 24, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). HadISD: Global sub-daily, surface meteorological station data, 1931-2023, v3.4.0.2023f [Dataset]. https://data-search.nerc.ac.uk/geonetwork/srv/search?keyword=dewpoint
    Explore at:
    Dataset updated
    Jul 24, 2021
    Description

    This is version v3.4.0.2023f of Met Office Hadley Centre's Integrated Surface Database, HadISD. These data are global sub-daily surface meteorological data. This update (v3.4.0.2023f) to HadISD corrects a long-standing bug which was discovered in autumn 2023 whereby the neighbour checks (and associated [un]flagging for some other tests) were not being implemented. For more details see the posts on the HadISD blog: https://hadisd.blogspot.com/2023/10/bug-in-buddy-checks.html & https://hadisd.blogspot.com/2024/01/hadisd-v3402023f-future-look.html The quality controlled variables in this dataset are: temperature, dewpoint temperature, sea-level pressure, wind speed and direction, cloud data (total, low, mid and high level). Past significant weather and precipitation data are also included, but have not been quality controlled, so their quality and completeness cannot be guaranteed. Quality control flags and data values which have been removed during the quality control process are provided in the qc_flags and flagged_values fields, and ancillary data files show the station listing with a station listing with IDs, names and location information. The data are provided as one NetCDF file per station. Files in the station_data folder station data files have the format "station_code"_HadISD_HadOBS_19310101-20240101_v3.4.1.2023f.nc. The station codes can be found under the docs tab. The station codes file has five columns as follows: 1) station code, 2) station name 3) station latitude 4) station longitude 5) station height. To keep informed about updates, news and announcements follow the HadOBS team on twitter @metofficeHadOBS. For more detailed information e.g bug fixes, routine updates and other exploratory analysis, see the HadISD blog: http://hadisd.blogspot.co.uk/ References: When using the dataset in a paper you must cite the following papers (see Docs for link to the publications) and this dataset (using the "citable as" reference) : Dunn, R. J. H., (2019), HadISD version 3: monthly updates, Hadley Centre Technical Note. Dunn, R. J. H., Willett, K. M., Parker, D. E., and Mitchell, L.: Expanding HadISD: quality-controlled, sub-daily station data from 1931, Geosci. Instrum. Method. Data Syst., 5, 473-491, doi:10.5194/gi-5-473-2016, 2016. Dunn, R. J. H., et al. (2012), HadISD: A Quality Controlled global synoptic report database for selected variables at long-term stations from 1973-2011, Clim. Past, 8, 1649-1679, 2012, doi:10.5194/cp-8-1649-2012 Smith, A., N. Lott, and R. Vose, 2011: The Integrated Surface Database: Recent Developments and Partnerships. Bulletin of the American Meteorological Society, 92, 704–708, doi:10.1175/2011BAMS3015.1 For a homogeneity assessment of HadISD please see this following reference Dunn, R. J. H., K. M. Willett, C. P. Morice, and D. E. Parker. "Pairwise homogeneity assessment of HadISD." Climate of the Past 10, no. 4 (2014): 1501-1522. doi:10.5194/cp-10-1501-2014, 2014.

  19. Global Hawk Navigation EPOCH V1 - Dataset - NASA Open Data Portal

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Global Hawk Navigation EPOCH V1 - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/global-hawk-navigation-epoch-v1
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The Global Hawk Navigation EPOCH dataset consists of the real-time navigation and housekeeping data that was acquired by various instruments aboard the Global Hawk during the East Pacific Origins and Characteristics of Hurricanes (EPOCH) project. EPOCH was a NASA program manager training opportunity directed at training NASA young scientists in conceiving, planning, and executing a major airborne science field program. The goals of the EPOCH project were to sample tropical cyclogenesis or intensification of an Eastern Pacific hurricane and to train the next generation of NASA Airborne Science Program leadership. The data files are available from July 27, 2017 through August 31, 2017 in CSV format with associated KML browse files.

  20. c

    AI Global Index Dataset

    • cubig.ai
    Updated Jun 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). AI Global Index Dataset [Dataset]. https://cubig.ai/store/products/529/ai-global-index-dataset
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Privacy-preserving data transformation via differential privacy, Synthetic data generation using AI techniques for model training
    Description

    1) Data Introduction • The AI Global Index Dataset is a comprehensive index that benchmarks 62 countries based on the level of AI investment, innovation, and implementation, including seven key indicators (human resources, infrastructure, operational environment, research, development, government strategy, commercialization) and general information by country (region, cluster, income group, political system).

    2) Data Utilization (1) AI Global Index Dataset has characteristics that: • This dataset consists of a total of 13 columns with 5 categorical variables (regions, clusters, etc.) and 8 numerical variables (scores for each indicator), covering 62 countries. • The seven key indicators are classified into three pillars: △ implementation (human resources/infrastructure/operational environment) △ innovation (R&D) △ investment (government strategy/commercialization), and assess each country's overall AI ecosystem capabilities in multiple dimensions. (2) AI Global Index Dataset can be used to: • Global AI leadership pattern analysis: Correlation analysis between seven indicators can identify AI strengths and weaknesses by country and perform group comparisons by region and income level. • Machine learning-based predictive model: It can be used for data science education and application, such as country-specific index prediction through regression analysis or classification of AI development types through clustering.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Gaurav Kumar (2025). Country Population and Growth Rate Analysis [Dataset]. https://www.kaggle.com/datasets/gauravkumar2525/country-population-and-growth-rate-analysis
Organization logo

Country Population and Growth Rate Analysis

Analyzing Global Population Growth Trends with Country-wise Yearly Data

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Mar 6, 2025
Dataset provided by
Kaggle
Authors
Gaurav Kumar
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

ABOUT

The Global Population Growth Dataset provides a comprehensive record of population trends across various countries over multiple decades. It includes detailed information such as the country name, ISO3 country code, year-wise population data, population growth, and growth rate. This dataset is valuable for researchers, demographers, policymakers, and data analysts interested in studying population dynamics, demographic trends, and economic development.

Key features of the dataset:

✅ Covers multiple countries and regions worldwide
✅ Includes historical and recent population data
✅ Provides year-wise population growth and growth rate (%)
✅ Categorizes data by country and decade for better trend analysis

This dataset serves as a crucial resource for analyzing global population trends, understanding demographic shifts, and supporting socio-economic research and policy-making.

FILE INFORMATION

The dataset consists of structured records related to country-wise population data, compiled from official sources. Each file contains information on yearly population figures, growth trends, and country-specific data. The structured format makes it useful for researchers, economists, and data scientists studying demographic patterns and changes. The file type is CSV.

COLUMNS DESCRIPTION

  • Country – The name of the country.
  • ISO3 – The three-letter ISO code of the country.
  • Year – The year corresponding to the population data, useful for trend analysis.
  • Population – The total population of the country for the given year.
  • Population Growth – The absolute increase in population compared to the previous year.
  • Growth Rate (%) – The percentage change in population compared to the previous year.
  • Decade – The decade classification (e.g., 1990s, 2000s) for grouping long-term trends.
Search
Clear search
Close search
Google apps
Main menu