Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold rose to 3,354.76 USD/t.oz on July 11, 2025, up 0.92% from the previous day. Over the past month, Gold's price has fallen 0.92%, but it is still 39.14% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on July of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Trading in gold : how to buy, sell and profit in the market. It features 7 columns including author, publication date, language, and book publisher.
gold price dataset for a stock market analysis. Reference from Quandl https://www.quandl.com/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Silver rose to 38.37 USD/t.oz on July 11, 2025, up 3.65% from the previous day. Over the past month, Silver's price has risen 5.59%, and is up 24.68% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Silver - values, historical data, forecasts and news - updated on July of 2025.
Monthly gold prices in USD since 1833 (sourced from the World Gold Council). The data is derived from historical records compiled by Timothy Green and supplemented by data provided by the World Bank...
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Dataset historical price data for XAU/USD (gold vs USD) from 2004 to Feb 2025, captured across multiple timeframes including 5-minute, 15-minute, 30-minute, 1-hour, 4-hour, daily, weekly, and monthly intervals. Dataset includes Open, High, Low, Close prices, and Volume data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set includes currency data, Gold, silver, exchange rate and stock market data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Rhodium traded flat at 5,700 USD/t oz. on July 11, 2025. Over the past month, Rhodium's price has risen 3.64%, and is up 23.91% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Rhodium - values, historical data, forecasts and news - updated on July of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
These datasets can be used in predicting the Bitcoin price movement with respect to the Gold, Oil, and the Stock market. There are separate datasets for Oil, Bitcoin, and Gold, if one wants to work on a particular thing at a time.
The paper one may take inspiration from : Rama Malladi et al. (2019), "Predicting Bitcoin Return And Volatility Using Gold And The Stock Market"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This document contains statistical data and analysis of global gold demand and prices from 2010 to 2024, presented by Dojipedia, a website focused on Forex investment information. The data is organized quarterly and includes various categories of gold demand such as jewelry fabrication, technology use, investment, and central bank purchases. It also provides the LBMA gold price in US dollars per ounce for each quarter.The document highlights significant events that influenced gold prices and demand during this period. These events include major economic crises, geopolitical tensions, and market shifts. For instance, it mentions the European debt crisis in 2010, the U.S. credit rating downgrade in 2011, the Federal Reserve's quantitative easing tapering signals in 2013, and the COVID-19 pandemic's impact starting in 2020.The data shows how gold demand and prices often increase during times of economic uncertainty or political instability, as investors view gold as a safe-haven asset. For example, gold prices reached record highs in 2024 amid global economic and geopolitical uncertainties.Dojipedia presents itself as a platform with five years of Forex market investment experience. The site offers free educational content on technical analysis methods such as Elliott Wave, ICT Trading, and Smart Money Concept. It also mentions plans to publish free books on technical analysis.The document includes a disclaimer stating that the information provided is for general purposes only and not financial advice. It warns about the high risks associated with investing in financial markets like CFDs, Forex, cryptocurrencies, and gold. The disclaimer emphasizes that leveraged products may not be suitable for all investors due to the high risk to capital.Overall, this document serves as a comprehensive resource for those interested in gold market trends and their relationship to global economic events over the past decade and a half.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Rhodium price data, historical values, forecasts, and news provided by Money Metals Exchange. Rhodium prices and trends updated regularly to provide accurate market insights.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nickel fell to 15,143.75 USD/T on July 11, 2025, down 0.92% from the previous day. Over the past month, Nickel's price has risen 0.26%, but it is still 10.16% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Nickel - values, historical data, forecasts and news - updated on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The US_Stock_Data.csv
dataset offers a comprehensive view of the US stock market and related financial instruments, spanning from January 2, 2020, to February 2, 2024. This dataset includes 39 columns, covering a broad spectrum of financial data points such as prices and volumes of major stocks, indices, commodities, and cryptocurrencies. The data is presented in a structured CSV file format, making it easily accessible and usable for various financial analyses, market research, and predictive modeling. This dataset is ideal for anyone looking to gain insights into the trends and movements within the US financial markets during this period, including the impact of major global events.
The dataset captures daily financial data across multiple assets, providing a well-rounded perspective of market dynamics. Key features include:
The dataset’s structure is designed for straightforward integration into various analytical tools and platforms. Each column is dedicated to a specific asset's daily price or volume, enabling users to perform a wide range of analyses, from simple trend observations to complex predictive models. The inclusion of intraday data for Bitcoin provides a detailed view of market movements.
This dataset is highly versatile and can be utilized for various financial research purposes:
The dataset’s daily updates ensure that users have access to the most current data, which is crucial for real-time analysis and decision-making. Whether for academic research, market analysis, or financial modeling, the US_Stock_Data.csv
dataset provides a valuable foundation for exploring the complexities of financial markets over the specified period.
This dataset would not be possible without the contributions of Dhaval Patel, who initially curated the US stock market data spanning from 2020 to 2024. Full credit goes to Dhaval Patel for creating and maintaining the dataset. You can find the original dataset here: US Stock Market 2020 to 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the context of the COVID-19’s outbreak and its implications for the financial sector, this study analyses the aspect of hedging and safe-haven under pandemic. Drawing on the daily data from 02 August 2019 to 17 April 2020, our key findings suggest that the contagious effects in financial assets’ returns significantly increased under COVID-19, indicating exacerbated market risk. The connectedness spiked in the middle of March, consistent with lockdown timings in major economies. The effect became severe with the WHO’s declaration of a pandemic, confirming negative news effects. The return connectedness suggests that COVID-19 has been a catalyst of contagious effects on the financial markets. The crude oil and the government bonds are however not as much affected by the spillovers as their endogenous innovation. In term of spillovers, we do find the safe-haven function of Gold and Bitcoin. Comparatively, the safe-haven effectiveness of Bitcoin is unstable over the pandemic. Whereas, GOLD is the most promising hedge and safe-haven asset, as it remains robust during the current crisis of COVID-19 and thus exhibits superiority over Bitcoin and Tether. Our findings are useful for investors, portfolio managers and policymakers interested in spillovers and safe havens during the current pandemic.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides **insights into copper prices**, including current rates, historical trends, and key factors affecting price fluctuations. Copper is essential in **construction**, **electronics**, and **transportation** industries. Investors, traders, and analysts use accurate copper price data to guide decisions related to **trading**, **futures**, and **commodity investments**.
### **Key Features of the Dataset**
#### **Live Market Data and Updates**
Stay updated with the latest **copper price per pound** in USD. This data is sourced from exchanges like the **London Metal Exchange (LME)** and **COMEX**. Price fluctuations result from **global supply-demand shifts**, currency changes, and geopolitical factors.
#### **Interactive Copper Price Charts**
Explore **dynamic charts** showcasing real-time and historical price movements. These compare copper with **gold**, **silver**, and **aluminium**, offering insights into **market trends** and inter-metal correlations.
### **Factors Driving Copper Prices**
#### **1. Supply and Demand Dynamics**
Global copper supply is driven by mining activities in regions like **Peru**, **China**, and the **United States**. Disruptions in production or policy changes can cause **supply shocks**. On the demand side, **industrial growth** in countries like **India** and **China** sustains demand for copper.
#### **2. Economic and Industry Trends**
Copper prices often reflect **economic trends**. The push for **renewable energy** and **electric vehicles** has boosted long-term demand. Conversely, economic downturns and **inflation** can reduce demand, lowering prices.
#### **3. Impact of Currency and Trade Policies**
As a globally traded commodity, copper prices are influenced by **currency fluctuations** and **tariff policies**. A strong **US dollar** typically suppresses copper prices by increasing costs for international buyers. Trade tensions can also disrupt **commodity markets**.
### **Applications and Benefits**
This dataset supports **commodity investors**, **traders**, and **industry professionals**:
- **Investors** forecast price trends and manage **investment risks**.
- **Analysts** perform **market research** using price data to assess **copper futures**.
- **Manufacturers** optimize supply chains and **cost forecasts**.
Explore more about copper investments on **Money Metals**:
- [**Buy Copper Products**](https://www.moneymetals.com/buy/copper)
- [**95% Copper Pennies (Pre-1983)**](https://www.moneymetals.com/pre-1983-95-percent-copper-pennies/4)
- [**Copper Buffalo Rounds**](https://www.moneymetals.com/copper-buffalo-round-1-avdp-oz-999-pure-copper/297)
### **Copper Price Comparisons with Other Metals**
Copper prices often correlate with those of **industrial** and **precious metals**:
- **Gold** and **silver** are sensitive to **inflation** and currency shifts.
- **Iron ore** and **aluminium** reflect changes in **global demand** within construction and manufacturing sectors.
These correlations help traders develop **hedging strategies** and **investment models**.
### **Data Variables and Availability**
Key metrics include:
- **Copper Price Per Pound:** The current market price in USD.
- **Copper Futures Price:** Data from **COMEX** futures contracts.
- **Historical Price Trends:** Long-term movements, updated regularly.
Data is available in **CSV** and **JSON** formats, enabling integration with analytical tools and platforms.
### **Conclusion**
Copper price data is crucial for **monitoring global commodity markets**. From **mining** to **investment strategies**, copper impacts industries worldwide. Reliable data supports **risk management**, **planning**, and **economic forecasting**.
For more tools and data, visit the **Money Metals** [Copper Prices Page](https://www.moneymetals.com/copper-prices).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was collected for the period spanning between 01/07/2019 and 31/12/2022.The historical Twitter volume were retrieved using ‘‘Bitcoin’’ (case insensitive) as the keyword from bitinfocharts.com. Google search volume was retrieved using library Gtrends. 2000 tweets per day using 4 times interval were crawled by employing Twitter API with the keyword “Bitcoin. The daily closing prices of Bitcoin, oil price, gold price, and U.S stock market indexes (S&P 500, NASDAQ, and Dow Jones Industrial Average) were collected using R libraries either Quantmod or Quandl.
COMEX is a division of the CME Group. It is one of the primary futures and options trading platforms for metals, including gold, silver, copper, and aluminum.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Currently, the stock market is attractive, and it is challenging to develop an efficient investment model with high accuracy due to changes in the values of the shares for political, economic, and social reasons. This paper presents an innovative proposal for a short-term, automatic investment model to reduce capital loss during trading, applying a reinforcement learning (RL) model. On the other hand, we propose an adaptable data window structure to enhance the learning and accuracy of investment agents in three foreign exchange markets: crude oil, gold, and the Euro. In addition, the RL model employs an actor-critic neural network with rectified linear unit (ReLU) neurons to generate specialized investment agents, enabling more efficient trading, minimizing investment losses across different time periods, and reducing the model's learning time. The proposed RL model obtained a reduction average loss of 0.03% in Euro, 0.25% in Gold, and 0.13% in Crude Oil in the test phase with varying initial conditions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold rose to 3,354.76 USD/t.oz on July 11, 2025, up 0.92% from the previous day. Over the past month, Gold's price has fallen 0.92%, but it is still 39.14% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on July of 2025.