A database providing detailed mortality and population data to those interested in the history of human longevity. For each country, the database includes calculated death rates and life tables by age, time, and sex, along with all of the raw data (vital statistics, census counts, population estimates) used in computing these quantities. Data are presented in a variety of formats with regard to age groups and time periods. The main goal of the database is to document the longevity revolution of the modern era and to facilitate research into its causes and consequences. New data series is continually added to this collection. However, the database is limited by design to populations where death registration and census data are virtually complete, since this type of information is required for the uniform method used to reconstruct historical data series. As a result, the countries and areas included are relatively wealthy and for the most part highly industrialized. The database replaces an earlier NIA-funded project, known as the Berkeley Mortality Database. * Dates of Study: 1751-present * Study Features: Longitudinal, International * Sample Size: 37 countries or areas
http://www.mortality.org/Public/UserAgreement.phphttp://www.mortality.org/Public/UserAgreement.php
The Human Mortality Database (HMD) was created to provide detailed mortality and population data to researchers, students, journalists, policy analysts, and others interested in the history of human longevity. The project began as an outgrowth of earlier projects in the Department of Demography at the University of California, Berkeley, USA, and at the Max Planck Institute for Demographic Research in Rostock, Germany (see history). It is the work of two teams of researchers in the USA and Germany (see research teams), with the help of financial backers and scientific collaborators from around the world (see acknowledgements).
The French Institute for Demographic Studies (INED) has also supported the further development of the database in recent years.
Link Function: information
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data used in this paper are the number of deaths and exposure to risk, which can be obtained directly from the Human Mortality Database. It is provided for both genders, male and female as well as the total population. The data is presented by single age ranging from 0 to 109, and age 110+ denotes those at higher ages for a particular year.
The dataset contains the life expectancy of US population across all ages from 2000 to 2015. Data is based on official estimates of life expectancy. The age pattern of mortality is based on life tables from the Human Mortality Database.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 tests, cases, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported daily, with
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The COVID-19 pandemic has revealed substantial coverage and quality gaps in existing international and national statistical monitoring systems. It is striking that obtaining timely, accurate, and comparable across countries data in order to adequately respond to unexpected epidemiological threats is very challenging. The most robust and reliable approach to quantify the mortality burden due to short-term risk factors is based on estimating weekly excess deaths. This approach is more reliable than monitoring deaths with COVID-19 diagnosis or calculating incidence or fatality rates affected by numerous problems such as testing coverage and comparability of diagnostic approaches. In response to the newly emerging data challenges, a new data resource on weekly mortality has been established. The Short-term Mortality Fluctuations (STMF, available at www.mortality.org) data series is the first international database providing open-access harmonized, uniform, and fully documented data on weekly all-cause mortality. The STMF online vizualisation tool provides an opportunity to perform a quick assessment of the excess weekly mortality in one or several countries by means of an interactive graphical interface.Version date: 01.05.2021
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Mortality Rate: Adult: Male: per 1000 Male Adults data was reported at 133.993 Ratio in 2015. This records an increase from the previous number of 131.567 Ratio for 2014. United States US: Mortality Rate: Adult: Male: per 1000 Male Adults data is updated yearly, averaging 176.083 Ratio from Dec 1960 (Median) to 2015, with 56 observations. The data reached an all-time high of 240.957 Ratio in 1968 and a record low of 131.037 Ratio in 2013. United States US: Mortality Rate: Adult: Male: per 1000 Male Adults data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Adult mortality rate, male, is the probability of dying between the ages of 15 and 60--that is, the probability of a 15-year-old male dying before reaching age 60, if subject to age-specific mortality rates of the specified year between those ages.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) University of California, Berkeley, and Max Planck Institute for Demographic Research. The Human Mortality Database.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Mortality Rate: Adult: Female: per 1000 Female Adults data was reported at 333.034 Ratio in 2016. This records a decrease from the previous number of 337.660 Ratio for 2015. Nigeria NG: Mortality Rate: Adult: Female: per 1000 Female Adults data is updated yearly, averaging 374.231 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 453.777 Ratio in 1960 and a record low of 333.034 Ratio in 2016. Nigeria NG: Mortality Rate: Adult: Female: per 1000 Female Adults data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank: Health Statistics. Adult mortality rate, female, is the probability of dying between the ages of 15 and 60--that is, the probability of a 15-year-old female dying before reaching age 60, if subject to age-specific mortality rates of the specified year between those ages.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) University of California, Berkeley, and Max Planck Institute for Demographic Research. The Human Mortality Database.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Elaborations from the Human Mortality Database.
This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
A database based on a random sample of the noninstitutionalized population of the United States, developed for the purpose of studying the effects of demographic and socio-economic characteristics on differentials in mortality rates. It consists of data from 26 U.S. Current Population Surveys (CPS) cohorts, annual Social and Economic Supplements, and the 1980 Census cohort, combined with death certificate information to identify mortality status and cause of death covering the time interval, 1979 to 1998. The Current Population Surveys are March Supplements selected from the time period from March 1973 to March 1998. The NLMS routinely links geographical and demographic information from Census Bureau surveys and censuses to the NLMS database, and other available sources upon request. The Census Bureau and CMS have approved the linkage protocol and data acquisition is currently underway. The plan for the NLMS is to link information on mortality to the NLMS every two years from 1998 through 2006 with research on the resulting database to continue, at least, through 2009. The NLMS will continue to incorporate data from the yearly Annual Social and Economic Supplement into the study as the data become available. Based on the expected size of the Annual Social and Economic Supplements to be conducted, the expected number of deaths to be added to the NLMS through the updating process will increase the mortality content of the study to nearly 500,000 cases out of a total number of approximately 3.3 million records. This effort would also include expanding the NLMS population base by incorporating new March Supplement Current Population Survey data into the study as they become available. Linkages to the SEER and CMS datasets are also available. Data Availability: Due to the confidential nature of the data used in the NLMS, the public use dataset consists of a reduced number of CPS cohorts with a fixed follow-up period of five years. NIA does not make the data available directly. Research access to the entire NLMS database can be obtained through the NIA program contact listed. Interested investigators should email the NIA contact and send in a one page prospectus of the proposed project. NIA will approve projects based on their relevance to NIA/BSR''s areas of emphasis. Approved projects are then assigned to NLMS statisticians at the Census Bureau who work directly with the researcher to interface with the database. A modified version of the public use data files is available also through the Census restricted Data Centers. However, since the database is quite complex, many investigators have found that the most efficient way to access it is through the Census programmers. * Dates of Study: 1973-2009 * Study Features: Longitudinal * Sample Size: ~3.3 Million Link: *ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/00134
The Mortality - Multiple Cause of Death data on CDC WONDER are county-level national mortality and population data spanning the years 1999-2009. Data are based on death certificates for U.S. residents. Each death certificate contains a single underlying cause of death, up to twenty additional multiple causes (Boolean set analysis), and demographic data. The number of deaths, crude death rates, age-adjusted death rates, standard errors and 95% confidence intervals for death rates can be obtained by place of residence (total U.S., region, state, and county), age group (including infants and single-year-of-age cohorts), race (4 groups), Hispanic ethnicity, gender, year of death, and cause-of-death (4-digit ICD-10 code or group of codes, injury intent and mechanism categories, or drug and alcohol related causes), year, month and week day of death, place of death and whether an autopsy was performed. The data are produced by the National Center for Health Statistics.
This dataset contains counts of deaths for California residents by ZIP Code based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths of California residents. The data tables include deaths of residents of California by ZIP Code of residence (by residence). The data are reported as totals, as well as stratified by age and gender. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chad TD: Mortality Rate: Adult: Male: per 1000 Male Adults data was reported at 379.573 Ratio in 2023. This records a decrease from the previous number of 386.516 Ratio for 2022. Chad TD: Mortality Rate: Adult: Male: per 1000 Male Adults data is updated yearly, averaging 420.460 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 575.365 Ratio in 1987 and a record low of 379.573 Ratio in 2023. Chad TD: Mortality Rate: Adult: Male: per 1000 Male Adults data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Chad – Table TD.World Bank.WDI: Social: Health Statistics. Adult mortality rate, male, is the probability of dying between the ages of 15 and 60--that is, the probability of a 15-year-old male dying before reaching age 60, if subject to age-specific mortality rates of the specified year between those ages.;(1) United Nations Population Division. World Population Prospects: 2024 Revision. (2) HMD. Human Mortality Database. Max Planck Institute for Demographic Research (Germany), University of California, Berkeley (USA), and French Institute for Demographic Studies (France). Available at www.mortality.org.;Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Mortality Rate: Adult: Female: per 1000 Female Adults data was reported at 80.229 Ratio in 2015. This records an increase from the previous number of 79.191 Ratio for 2014. United States US: Mortality Rate: Adult: Female: per 1000 Female Adults data is updated yearly, averaging 94.263 Ratio from Dec 1960 (Median) to 2015, with 56 observations. The data reached an all-time high of 130.823 Ratio in 1968 and a record low of 77.137 Ratio in 2010. United States US: Mortality Rate: Adult: Female: per 1000 Female Adults data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Adult mortality rate, female, is the probability of dying between the ages of 15 and 60--that is, the probability of a 15-year-old female dying before reaching age 60, if subject to age-specific mortality rates of the specified year between those ages.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) University of California, Berkeley, and Max Planck Institute for Demographic Research. The Human Mortality Database.; Weighted average;
Age-adjustment mortality rates are rates of deaths that are computed using a statistical method to create a metric based on the true death rate so that it can be compared over time for a single population (i.e. comparing 2006-2008 to 2010-2012), as well as enable comparisons across different populations with possibly different age distributions in their populations (i.e. comparing Hispanic residents to Asian residents). Age adjustment methods applied to Montgomery County rates are consistent with US Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS) as well as Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). PHS Planning and Epidemiology receives an annual data file of Montgomery County resident deaths registered with Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). Using SAS analytic software, MCDHHS standardizes, aggregates, and calculates age-adjusted rates for each of the leading causes of death category consistent with state and national methods and by subgroups based on age, gender, race, and ethnicity combinations. Data are released in compliance with Data Use Agreements between DHMH VSA and MCDHHS. This dataset will be updated Annually.
The dataset contains risk-adjusted mortality rates, quality ratings, and number of deaths and cases for 6 medical conditions treated (Acute Stroke, Acute Myocardial Infarction, Heart Failure, Gastrointestinal Hemorrhage, Hip Fracture and Pneumonia) and 3 procedures performed (Carotid Endarterectomy, Pancreatic Resection, and Percutaneous Coronary Intervention) in California hospitals. The 2023 IMIs were generated using AHRQ Version 2024, while previous years' IMIs were generated with older versions of AHRQ software (2022 IMIs by Version 2023, 2021 IMIs by Version 2022, 2020 IMIs by Version 2021, 2019 IMIs by Version 2020, 2016-2018 IMIs by Version 2019, 2014 and 2015 IMIs by Version 5.0, and 2012 and 2013 IMIs by Version 4.5). The differences in the statistical method employed and inclusion and exclusion criteria using different versions can lead to different results. Users should not compare trends of mortality rates over time. However, many hospitals showed consistent performance over years; “better” performing hospitals may perform better and “worse” performing hospitals may perform worse consistently across years. This dataset does not include conditions treated or procedures performed in outpatient settings. Please refer to statewide table for California overall rates: https://data.chhs.ca.gov/dataset/california-hospital-inpatient-mortality-rates-and-quality-ratings/resource/af88090e-b6f5-4f65-a7ea-d613e6569d96
A collection of population life tables covering a multitude of countries and many years. Most of the HLD life tables are life tables for national populations, which have been officially published by national statistical offices. Some of the HLD life tables refer to certain regional or ethnic sub-populations within countries. Parts of the HLD life tables are non-official life tables produced by researchers. Life tables describe the extent to which a generation of people (i.e. life table cohort) dies off with age. Life tables are the most ancient and important tool in demography. They are widely used for descriptive and analytical purposes in demography, public health, epidemiology, population geography, biology and many other branches of science. HLD includes the following types of data: * complete life tables in text format; * abridged life tables in text format; * references to statistical publications and other data sources; * scanned copies of the original life tables as they were published. Three scientific institutions are jointly developing the HLD: the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany, the Department of Demography at the University of California at Berkeley, USA and the Institut national d''��tudes d��mographiques (INED) in Paris, France. The MPIDR is responsible for maintaining the database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Egypt EG: Mortality Rate: Adult: Male: per 1000 Male Adults data was reported at 186.231 Ratio in 2016. This records a decrease from the previous number of 188.040 Ratio for 2015. Egypt EG: Mortality Rate: Adult: Male: per 1000 Male Adults data is updated yearly, averaging 233.762 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 286.696 Ratio in 1960 and a record low of 186.231 Ratio in 2016. Egypt EG: Mortality Rate: Adult: Male: per 1000 Male Adults data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Egypt – Table EG.World Bank: Health Statistics. Adult mortality rate, male, is the probability of dying between the ages of 15 and 60--that is, the probability of a 15-year-old male dying before reaching age 60, if subject to age-specific mortality rates of the specified year between those ages.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) University of California, Berkeley, and Max Planck Institute for Demographic Research. The Human Mortality Database.; Weighted average;
A database providing detailed mortality and population data to those interested in the history of human longevity. For each country, the database includes calculated death rates and life tables by age, time, and sex, along with all of the raw data (vital statistics, census counts, population estimates) used in computing these quantities. Data are presented in a variety of formats with regard to age groups and time periods. The main goal of the database is to document the longevity revolution of the modern era and to facilitate research into its causes and consequences. New data series is continually added to this collection. However, the database is limited by design to populations where death registration and census data are virtually complete, since this type of information is required for the uniform method used to reconstruct historical data series. As a result, the countries and areas included are relatively wealthy and for the most part highly industrialized. The database replaces an earlier NIA-funded project, known as the Berkeley Mortality Database. * Dates of Study: 1751-present * Study Features: Longitudinal, International * Sample Size: 37 countries or areas