100+ datasets found
  1. P

    Data from: ImageNet Dataset

    • paperswithcode.com
    Updated Apr 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li (2024). ImageNet Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet
    Explore at:
    Dataset updated
    Apr 15, 2024
    Authors
    Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li
    Description

    The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly released dataset contains a set of manually annotated training images. A set of test images is also released, with the manual annotations withheld. ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label for the presence or absence of an object class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width of 50 pixels and height of 30 pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails and URLs of images are provided.

    Total number of non-empty WordNet synsets: 21841 Total number of images: 14197122 Number of images with bounding box annotations: 1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2 million

  2. h

    tiny-imagenet

    • huggingface.co
    • datasets.activeloop.ai
    Updated Aug 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hao Zheng (2022). tiny-imagenet [Dataset]. https://huggingface.co/datasets/zh-plus/tiny-imagenet
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 12, 2022
    Authors
    Hao Zheng
    License

    https://choosealicense.com/licenses/undefined/https://choosealicense.com/licenses/undefined/

    Description

    Dataset Card for tiny-imagenet

      Dataset Summary
    

    Tiny ImageNet contains 100000 images of 200 classes (500 for each class) downsized to 64×64 colored images. Each class has 500 training images, 50 validation images, and 50 test images.

      Languages
    

    The class labels in the dataset are in English.

      Dataset Structure
    
    
    
    
    
      Data Instances
    

    { 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=64x64 at 0x1A800E8E190, 'label': 15 }… See the full description on the dataset page: https://huggingface.co/datasets/zh-plus/tiny-imagenet.

  3. P

    Tiny ImageNet Dataset

    • library.toponeai.link
    • paperswithcode.com
    • +1more
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Le (2025). Tiny ImageNet Dataset [Dataset]. https://library.toponeai.link/dataset/tiny-imagenet
    Explore at:
    Dataset updated
    Feb 4, 2025
    Authors
    Le
    Description

    Tiny ImageNet contains 100000 images of 200 classes (500 for each class) downsized to 64×64 colored images. Each class has 500 training images, 50 validation images and 50 test images.

  4. T

    imagenet2012

    • tensorflow.org
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). imagenet2012 [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet2012
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    ILSVRC 2012, commonly known as 'ImageNet' is an image dataset organized according to the WordNet hierarchy. Each meaningful concept in WordNet, possibly described by multiple words or word phrases, is called a "synonym set" or "synset". There are more than 100,000 synsets in WordNet, majority of them are nouns (80,000+). In ImageNet, we aim to provide on average 1000 images to illustrate each synset. Images of each concept are quality-controlled and human-annotated. In its completion, we hope ImageNet will offer tens of millions of cleanly sorted images for most of the concepts in the WordNet hierarchy.

    The test split contains 100K images but no labels because no labels have been publicly released. We provide support for the test split from 2012 with the minor patch released on October 10, 2019. In order to manually download this data, a user must perform the following operations:

    1. Download the 2012 test split available here.
    2. Download the October 10, 2019 patch. There is a Google Drive link to the patch provided on the same page.
    3. Combine the two tar-balls, manually overwriting any images in the original archive with images from the patch. According to the instructions on image-net.org, this procedure overwrites just a few images.

    The resulting tar-ball may then be processed by TFDS.

    To assess the accuracy of a model on the ImageNet test split, one must run inference on all images in the split, export those results to a text file that must be uploaded to the ImageNet evaluation server. The maintainers of the ImageNet evaluation server permits a single user to submit up to 2 submissions per week in order to prevent overfitting.

    To evaluate the accuracy on the test split, one must first create an account at image-net.org. This account must be approved by the site administrator. After the account is created, one can submit the results to the test server at https://image-net.org/challenges/LSVRC/eval_server.php The submission consists of several ASCII text files corresponding to multiple tasks. The task of interest is "Classification submission (top-5 cls error)". A sample of an exported text file looks like the following:

    771 778 794 387 650
    363 691 764 923 427
    737 369 430 531 124
    755 930 755 59 168
    

    The export format is described in full in "readme.txt" within the 2013 development kit available here: https://image-net.org/data/ILSVRC/2013/ILSVRC2013_devkit.tgz Please see the section entitled "3.3 CLS-LOC submission format". Briefly, the format of the text file is 100,000 lines corresponding to each image in the test split. Each line of integers correspond to the rank-ordered, top 5 predictions for each test image. The integers are 1-indexed corresponding to the line number in the corresponding labels file. See labels.txt.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet2012', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenet2012-5.1.0.png" alt="Visualization" width="500px">

  5. T

    imagenet_pi

    • tensorflow.org
    Updated Apr 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). imagenet_pi [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet_pi
    Explore at:
    Dataset updated
    Apr 6, 2023
    Description

    ImageNet-PI is a relabelled version of the standard ILSVRC2012 ImageNet dataset in which the labels are provided by a collection of 16 deep neural networks with different architectures pre-trained on the standard ILSVRC2012. Specifically, the pre-trained models are downloaded from tf.keras.applications.

    In addition to the new labels, ImageNet-PI also provides meta-data about the annotation process in the form of confidences of the models on their labels and additional information about each model.

    For more information see: ImageNet-PI

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet_pi', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  6. h

    imagenet-w21-wds

    • huggingface.co
    Updated Nov 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    imagenet-w21-wds [Dataset]. https://huggingface.co/datasets/timm/imagenet-w21-wds
    Explore at:
    Dataset updated
    Nov 21, 2024
    Dataset authored and provided by
    PyTorch Image Models
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Dataset Summary

    This is a copy of the full Winter21 release of ImageNet in webdataset tar format with JPEG images. This release consists of 19167 classes, 2674 fewer classes than the original 21841 class Fall11 release of the full ImageNet. The classes were removed due to these concerns: https://www.image-net.org/update-sep-17-2019.php

      Data Splits
    

    The full ImageNet dataset has no defined splits. This release follows that and leaves everything in the train split.… See the full description on the dataset page: https://huggingface.co/datasets/timm/imagenet-w21-wds.

  7. P

    ImageNet-64 Dataset

    • paperswithcode.com
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patryk Chrabaszcz; Ilya Loshchilov; Frank Hutter (2023). ImageNet-64 Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet-64
    Explore at:
    Dataset updated
    Sep 20, 2023
    Authors
    Patryk Chrabaszcz; Ilya Loshchilov; Frank Hutter
    Description

    Imagenet64 is a massive dataset of small images called the down-sampled version of Imagenet. Imagenet64 comprises 1,281,167 training data and 50,000 test data with 1,000 labels.

  8. T

    imagenet_lt

    • tensorflow.org
    Updated Dec 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). imagenet_lt [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet_lt
    Explore at:
    Dataset updated
    Dec 10, 2022
    Description

    ImageNet-LT is a subset of original ImageNet ILSVRC 2012 dataset. The training set is subsampled such that the number of images per class follows a long-tailed distribution. The class with the maximum number of images contains 1,280 examples, whereas the class with the minumum number of images contains only 5 examples. The dataset also has a balanced validation set, which is also a subset of the ImageNet ILSVRC 2012 training set and contains 20 images per class. The test set of this dataset is the same as the validation set of the original ImageNet ILSVRC 2012 dataset.

    The original ImageNet ILSVRC 2012 dataset must be downloaded manually, and its path should be set with --manual_dir in order to generate this dataset.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet_lt', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenet_lt-1.0.0.png" alt="Visualization" width="500px">

  9. P

    mini-Imagenet Dataset

    • paperswithcode.com
    Updated Sep 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oriol Vinyals; Charles Blundell; Timothy Lillicrap; Koray Kavukcuoglu; Daan Wierstra (2022). mini-Imagenet Dataset [Dataset]. https://paperswithcode.com/dataset/mini-imagenet
    Explore at:
    Dataset updated
    Sep 3, 2022
    Authors
    Oriol Vinyals; Charles Blundell; Timothy Lillicrap; Koray Kavukcuoglu; Daan Wierstra
    Description

    mini-Imagenet is proposed by Matching Networks for One Shot Learning . In NeurIPS, 2016. This dataset consists of 50000 training images and 10000 testing images, evenly distributed across 100 classes.

  10. VQ-VAE ImageNet TPU

    • kaggle.com
    Updated Aug 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maunish dave (2021). VQ-VAE ImageNet TPU [Dataset]. https://www.kaggle.com/datasets/maunish/vqvae-imagenet-tpu
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 29, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Maunish dave
    Description

    Context

    This is a Vector Quantized Variational AutoEncoder Mode Trained using some part of ImageNet DataSet

    Content

    This notebook shows the architecture and training of model

  11. a

    MXNet pre-trained model Full ImageNet Network inception-21k.tar.gz

    • academictorrents.com
    bittorrent
    Updated Jul 22, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    dmlc (2016). MXNet pre-trained model Full ImageNet Network inception-21k.tar.gz [Dataset]. https://academictorrents.com/details/27330fbd1ec0648e72b2cf5c40aa0d4df1931221
    Explore at:
    bittorrent(125141204)Available download formats
    Dataset updated
    Jul 22, 2016
    Dataset authored and provided by
    dmlc
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    Full ImageNet Network This model is a pretrained model on full imagenet dataset [1] with 14,197,087 images in 21,841 classes. The model is trained by only random crop and mirror augmentation. The network is based on Inception-BN network [2], and added more capacity. This network runs roughly 2 times slower than standard Inception-BN Network. We trained this network on a machine with 4 GeForce GTX 980 GPU. Each round costs 23 hours, the released model is the 9 round. Train Top-1 Accuracy over 21,841 classes: 37.19% Single image prediction memory requirement: 15MB ILVRC2012 Validation Performance: | | Over 1,000 classes | Over 21,841 classes | | ——— | ————————— | —————————- | | Top-1 | 68.3% | 41.9% | | Top-5 | 89.0% | 69.6% |

  12. Imagenet extracted features with ResNet

    • kaggle.com
    zip
    Updated Jul 21, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    J.Guzman (2019). Imagenet extracted features with ResNet [Dataset]. https://www.kaggle.com/jgoodman8/imagenet-features-resnet
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Jul 21, 2019
    Authors
    J.Guzman
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Overview

    This dataset contains features extracted from the Imagenet dataset using a pre-trained ResNet neural network. The network was configured with an input layer of (200, 200, 3). Feature extraction was performed using the Python package Py Image Feature Extractor.

    Source

    Related datasets

  13. Model Zoo: A Dataset of Diverse Populations of Resnet-18 Models - Tiny...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Aug 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth; Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth (2022). Model Zoo: A Dataset of Diverse Populations of Resnet-18 Models - Tiny ImageNet [Dataset]. http://doi.org/10.5281/zenodo.7023278
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 28, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth; Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 27 model zoos with varying hyperparameter combinations are generated and includes 50’360 unique neural network models resulting in over 2’585’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.

    Dataset

    This dataset is part of a larger collection of model zoos and contains the zoo of 1000 ResNet18 models trained on Tiny Imagenet. All zoos with extensive information and code can be found at www.modelzoos.cc.

    The complete zoo is 2.6TB large. Due to the size, this repository contains the checkpoints of the first 115 models at their last epoch 60. For a link to the full dataset as well as more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.

  14. P

    ImageNet 50 samples per class Dataset

    • paperswithcode.com
    Updated Oct 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lorenzo Brigato; Björn Barz; Luca Iocchi; Joachim Denzler (2021). ImageNet 50 samples per class Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet-50-samples-per-class
    Explore at:
    Dataset updated
    Oct 14, 2021
    Authors
    Lorenzo Brigato; Björn Barz; Luca Iocchi; Joachim Denzler
    Description

    This ImageNet version contains only 50 training images per class while the original testing set remains unchanged. It is one of the datasets comprising the data-efficient image classification (DEIC) benchmark. It was proposed to challenge the generalization capabilities of modern image classifiers.

  15. a

    ImageNet-21K-P dataset (processed from fall11_whole.tar)

    • academictorrents.com
    bittorrent
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://arxiv.org/pdf/2104.10972 (2021). ImageNet-21K-P dataset (processed from fall11_whole.tar) [Dataset]. https://academictorrents.com/details/84461687ecb08ce9d0f24b70d0528e4ae5d6966e
    Explore at:
    bittorrent(279013071677)Available download formats
    Dataset updated
    May 4, 2021
    Dataset provided by
    https://arxiv.org/pdf/2104.10972
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    ImageNet-1K serves as the primary dataset for pretraining deep learning models for computer vision tasks. ImageNet-21K dataset, which contains more pictures and classes, is used less frequently for pretraining, mainly due to its complexity, and underestimation of its added value compared to standard ImageNet-1K pretraining. This paper aims to close this gap, and make high-quality efficient pretraining on ImageNet-21K available for everyone. Via a dedicated preprocessing stage, utilizing WordNet hierarchies, and a novel training scheme called semantic softmax, we show that different models, including small mobile-oriented models, significantly benefit from ImageNet-21K pretraining on numerous datasets and tasks. We also show that we outperform previous ImageNet-21K pretraining schemes for prominent new models like ViT. Our proposed pretraining pipeline is efficient, accessible, and leads to SoTA reproducible results, from a publicly available dataset.

  16. h

    mini-imagenet

    • huggingface.co
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PyTorch Image Models (2024). mini-imagenet [Dataset]. https://huggingface.co/datasets/timm/mini-imagenet
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 21, 2024
    Dataset authored and provided by
    PyTorch Image Models
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Dataset Description

    A mini version of ImageNet-1k with 100 of 1000 classes present. Unlike some 'mini' variants this one includes the original images at their original sizes. Many such subsets downsample to 84x84 or other smaller resolutions.

      Data Splits
    
    
    
    
    
      Train
    

    50000 samples from ImageNet-1k train split

      Validation
    

    10000 samples from ImageNet-1k train split

      Test
    

    5000 samples from ImageNet-1k validation split (all 50 samples per class)… See the full description on the dataset page: https://huggingface.co/datasets/timm/mini-imagenet.

  17. h

    ImageNet-AB

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seong Joon Oh, ImageNet-AB [Dataset]. https://huggingface.co/datasets/coallaoh/ImageNet-AB
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Seong Joon Oh
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    General Information

    Title: ImageNet-AB Description: ImageNet-AB is an extended version of the ImageNet-1K training set, enriched with annotation byproducts (AB). In addition to the image and corresponding class labels, this dataset provides a rich history of interactions per input signal per front-end component during the annotation process. They include mouse traces, click locations, annotation times, as well as anonymised worker IDs. Links:

    ICCV'23 Paper Main Repository ImageNet… See the full description on the dataset page: https://huggingface.co/datasets/coallaoh/ImageNet-AB.

  18. T

    imagenet2012_multilabel

    • tensorflow.org
    Updated Dec 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). imagenet2012_multilabel [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenet2012_multilabel
    Explore at:
    Dataset updated
    Dec 10, 2022
    Description

    This dataset contains ILSVRC-2012 (ImageNet) validation images annotated with multi-class labels from "Evaluating Machine Accuracy on ImageNet", ICML, 2020. The multi-class labels were reviewed by a panel of experts extensively trained in the intricacies of fine-grained class distinctions in the ImageNet class hierarchy (see paper for more details). Compared to the original labels, these expert-reviewed multi-class labels enable a more semantically coherent evaluation of accuracy.

    Version 3.0.0 of this dataset contains more corrected labels from "When does dough become a bagel? Analyzing the remaining mistakes on ImageNet as well as the ImageNet-Major (ImageNet-M) 68-example split under 'imagenet-m'.

    Only 20,000 of the 50,000 ImageNet validation images have multi-label annotations. The set of multi-labels was first generated by a testbed of 67 trained ImageNet models, and then each individual model prediction was manually annotated by the experts as either correct (the label is correct for the image),wrong (the label is incorrect for the image), or unclear (no consensus was reached among the experts).

    Additionally, during annotation, the expert panel identified a set of problematic images. An image was problematic if it met any of the below criteria:

    • The original ImageNet label (top-1 label) was incorrect or unclear
    • Image was a drawing, painting, sketch, cartoon, or computer-rendered
    • Image was excessively edited
    • Image had inappropriate content

    The problematic images are included in this dataset but should be ignored when computing multi-label accuracy. Additionally, since the initial set of 20,000 annotations is class-balanced, but the set of problematic images is not, we recommend computing the per-class accuracies and then averaging them. We also recommend counting a prediction as correct if it is marked as correct or unclear (i.e., being lenient with the unclear labels).

    One possible way of doing this is with the following NumPy code:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet2012_multilabel', split='validation')
    
    # We assume that predictions is a dictionary from file_name to a class index between 0 and 999
    
    num_correct_per_class = {}
    num_images_per_class = {}
    
    for example in ds:
      # We ignore all problematic images
      if example[‘is_problematic’].numpy():
        continue
    
      # The label of the image in ImageNet
      cur_class = example['original_label'].numpy()
    
      # If we haven't processed this class yet, set the counters to 0
      if cur_class not in num_correct_per_class:
        num_correct_per_class[cur_class] = 0
        assert cur_class not in num_images_per_class
        num_images_per_class[cur_class] = 0
    
      num_images_per_class[cur_class] += 1
    
      # Get the predictions for this image
      cur_pred = predictions[example['file_name'].numpy()]
    
      # We count a prediction as correct if it is marked as correct or unclear
      # (i.e., we are lenient with the unclear labels)
      if cur_pred is in example['correct_multi_labels'].numpy() or cur_pred is in example['unclear_multi_labels'].numpy():
        num_correct_per_class[cur_class] += 1
    
    # Check that we have collected accuracy data for each of the 1,000 classes
    num_classes = 1000
    assert len(num_correct_per_class) == num_classes
    assert len(num_images_per_class) == num_classes
    
    # Compute the per-class accuracies and then average them
    final_avg = 0
    for cid in range(num_classes):
     assert cid in num_correct_per_class
     assert cid in num_images_per_class
     final_avg += num_correct_per_class[cid] / num_images_per_class[cid]
    final_avg /= num_classes
    
    

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenet2012_multilabel', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenet2012_multilabel-3.0.0.png" alt="Visualization" width="500px">

  19. h

    imagenet.int8

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simo Ryu, imagenet.int8 [Dataset]. https://huggingface.co/datasets/cloneofsimo/imagenet.int8
    Explore at:
    Authors
    Simo Ryu
    Description

    Imagenet.int8: Entire Imagenet dataset in 5GB

    original, reconstructed from float16, reconstructed from uint8 Find 138 GB of imagenet dataset too bulky? Did you know entire imagenet actually just fits inside apple watch?

    Resized, Center-croped to 256x256 VAE compressed with SDXL's VAE Further quantized to int8 near-lossless manner, compressing the entire training dataset of 1,281,167 images down to just 5GB!

    Introducing Imagenet.int8, the new MNIST of 2024. After the… See the full description on the dataset page: https://huggingface.co/datasets/cloneofsimo/imagenet.int8.

  20. T

    imagenette

    • tensorflow.org
    • opendatalab.com
    • +1more
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). imagenette [Dataset]. https://www.tensorflow.org/datasets/catalog/imagenette
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    Imagenette is a subset of 10 easily classified classes from the Imagenet dataset. It was originally prepared by Jeremy Howard of FastAI. The objective behind putting together a small version of the Imagenet dataset was mainly because running new ideas/algorithms/experiments on the whole Imagenet take a lot of time.

    This version of the dataset allows researchers/practitioners to quickly try out ideas and share with others. The dataset comes in three variants:

    • Full size
    • 320 px
    • 160 px

    Note: The v2 config correspond to the new 70/30 train/valid split (released in Dec 6 2019).

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imagenette', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/imagenette-full-size-v2-1.0.0.png" alt="Visualization" width="500px">

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li (2024). ImageNet Dataset [Dataset]. https://paperswithcode.com/dataset/imagenet

Data from: ImageNet Dataset

Related Article
Explore at:
28 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 15, 2024
Authors
Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Fei-Fei Li
Description

The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly released dataset contains a set of manually annotated training images. A set of test images is also released, with the manual annotations withheld. ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label for the presence or absence of an object class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width of 50 pixels and height of 30 pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails and URLs of images are provided.

Total number of non-empty WordNet synsets: 21841 Total number of images: 14197122 Number of images with bounding box annotations: 1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2 million

Search
Clear search
Close search
Google apps
Main menu