35 datasets found
  1. d

    Strategic Measure_EOA.B.2 Distribution of Household Income

    • catalog.data.gov
    • datahub.austintexas.gov
    • +2more
    Updated Apr 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.austintexas.gov (2025). Strategic Measure_EOA.B.2 Distribution of Household Income [Dataset]. https://catalog.data.gov/dataset/strategic-measure-eoa-b-2-distribution-of-household-income
    Explore at:
    Dataset updated
    Apr 25, 2025
    Dataset provided by
    data.austintexas.gov
    Description

    This is a historical measure for Strategic Direction 2023. For more data on Austin demographics please visit austintexas.gov/demographics. The purpose of this dataset is to track the distribution of aggregate city income between the 5 quintile of population segments. The dataset comes from the 2019 U.S. Census Bureau, American Communities Survey (5yr) Table B19082. The row levels contain total percentage of income shares by the middle 3 quintiles (20-80%) of population. This data can be used to provide insights into growth/decline of middle class. Distribution of household income (Note: This indicator can provide insights into growth/decline of middle class) View more details and insights related to this measure on the story page: https://data.austintexas.gov/stories/s/Distribution-of-Household-Income/i3a3-vjnc/

  2. N

    Income Distribution by Quintile: Mean Household Income in Middle Inlet,...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Middle Inlet, Wisconsin [Dataset]. https://www.neilsberg.com/research/datasets/94c785c2-7479-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wisconsin, Middle Inlet
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Middle Inlet, Wisconsin, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 21,360, while the mean income for the highest quintile (20% of households with the highest income) is 162,915. This indicates that the top earners earn 8 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 282,509, which is 173.41% higher compared to the highest quintile, and 1322.61% higher compared to the lowest quintile.

    Mean household income by quintiles in Middle Inlet, Wisconsin (in 2022 inflation-adjusted dollars))

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Middle Inlet town median household income. You can refer the same here

  3. Income statistics by economic family type and income source

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated May 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Income statistics by economic family type and income source [Dataset]. http://doi.org/10.25318/1110019101-eng
    Explore at:
    Dataset updated
    May 1, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Income statistics by economic family type and income source, annual.

  4. U

    United States US: Income Share Held by Highest 20%

    • ceicdata.com
    Updated Nov 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States US: Income Share Held by Highest 20% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-highest-20
    Explore at:
    Dataset updated
    Nov 27, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Income Share Held by Highest 20% data was reported at 46.900 % in 2016. This records an increase from the previous number of 46.400 % for 2013. United States US: Income Share Held by Highest 20% data is updated yearly, averaging 46.000 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 46.900 % in 2016 and a record low of 41.200 % in 1979. United States US: Income Share Held by Highest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  5. w

    Globalization and Income Distribution Dataset 1975-2002 - Aruba,...

    • microdata.worldbank.org
    • dev.ihsn.org
    • +2more
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Branko L. Milanovic (2023). Globalization and Income Distribution Dataset 1975-2002 - Aruba, Afghanistan, Angola...and 188 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/1786
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Branko L. Milanovic
    Time period covered
    1975 - 2002
    Area covered
    Angola
    Description

    Abstract

    Dataset used in World Bank Policy Research Working Paper #2876, published in World Bank Economic Review, No. 1, 2005, pp. 21-44.

    The effects of globalization on income distribution in rich and poor countries are a matter of controversy. While international trade theory in its most abstract formulation implies that increased trade and foreign investment should make income distribution more equal in poor countries and less equal in rich countries, finding these effects has proved elusive. The author presents another attempt to discern the effects of globalization by using data from household budget surveys and looking at the impact of openness and foreign direct investment on relative income shares of low and high deciles. The author finds some evidence that at very low average income levels, it is the rich who benefit from openness. As income levels rise to those of countries such as Chile, Colombia, or Czech Republic, for example, the situation changes, and it is the relative income of the poor and the middle class that rises compared with the rich. It seems that openness makes income distribution worse before making it better-or differently in that the effect of openness on a country's income distribution depends on the country's initial income level.

    Kind of data

    Aggregate data [agg]

  6. N

    Income Distribution by Quintile: Mean Household Income in Sands Point, NY //...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Sands Point, NY // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/sands-point-ny-median-household-income/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Sands Point, New York
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Sands Point, NY, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 62,342, while the mean income for the highest quintile (20% of households with the highest income) is 1,206,232. This indicates that the top earners earn 19 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 1,779,703, which is 147.54% higher compared to the highest quintile, and 2854.74% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Sands Point median household income. You can refer the same here

  7. Income Limits by County

    • data.ca.gov
    • catalog.data.gov
    csv, docx
    Updated Feb 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Housing and Community Development (2024). Income Limits by County [Dataset]. https://data.ca.gov/dataset/income-limits-by-county
    Explore at:
    docx(31186), csv(15447), csv(15546)Available download formats
    Dataset updated
    Feb 7, 2024
    Dataset provided by
    California Department of Housing & Community Developmenthttps://hcd.ca.gov/
    Authors
    California Department of Housing and Community Development
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    California State Income Limits reflect updated median income and household income levels for acutely low-, extremely low-, very low-, low- and moderate-income households for California’s 58 counties (required by Health and Safety Code Section 50093). These income limits apply to State and local affordable housing programs statutorily linked to HUD income limits and differ from income limits applicable to other specific federal, State, or local programs.

  8. U

    United States US: Income Share Held by Highest 10%

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Income Share Held by Highest 10% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-highest-10
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Income Share Held by Highest 10% data was reported at 30.600 % in 2016. This records an increase from the previous number of 30.100 % for 2013. United States US: Income Share Held by Highest 10% data is updated yearly, averaging 30.100 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 30.600 % in 2016 and a record low of 25.300 % in 1979. United States US: Income Share Held by Highest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  9. Income of individuals by age group, sex and income source, Canada, provinces...

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +2more
    Updated May 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas [Dataset]. http://doi.org/10.25318/1110023901-eng
    Explore at:
    Dataset updated
    May 1, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.

  10. f

    Additional file 1 of Rewealthization in twenty-first century Western...

    • springernature.figshare.com
    • figshare.com
    txt
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Louis Chauvel; Eyal Bar Haim; Anne Hartung; Emily Murphy (2023). Additional file 1 of Rewealthization in twenty-first century Western countries: the defining trend of the socioeconomic squeeze of the middle class [Dataset]. http://doi.org/10.6084/m9.figshare.13551858.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Louis Chauvel; Eyal Bar Haim; Anne Hartung; Emily Murphy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 1: Stata do-file to generate WIR and TWIR figures.

  11. d

    Replication Data for: The Fading American Dream: Trends in Absolute Income...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy (2023). Replication Data for: The Fading American Dream: Trends in Absolute Income Mobility Since 1940 [Dataset]. http://doi.org/10.7910/DVN/B9TEWM
    Explore at:
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy
    Description

    This dataset contains replication files for "The Fading American Dream: Trends in Absolute Income Mobility Since 1940" by Raj Chetty, David Grusky, Maximilian Hell, Nathaniel Hendren, Robert Manduca, and Jimmy Narang. For more information, see https://opportunityinsights.org/paper/the-fading-american-dream/. A summary of the related publication follows. One of the defining features of the “American Dream” is the ideal that children have a higher standard of living than their parents. We assess whether the U.S. is living up to this ideal by estimating rates of “absolute income mobility” – the fraction of children who earn more than their parents – since 1940. We measure absolute mobility by comparing children’s household incomes at age 30 (adjusted for inflation using the Consumer Price Index) with their parents’ household incomes at age 30. We find that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Absolute income mobility has fallen across the entire income distribution, with the largest declines for families in the middle class. These findings are unaffected by using alternative price indices to adjust for inflation, accounting for taxes and transfers, measuring income at later ages, and adjusting for changes in household size. Absolute mobility fell in all 50 states, although the rate of decline varied, with the largest declines concentrated in states in the industrial Midwest, such as Michigan and Illinois. The decline in absolute mobility is especially steep – from 95% for children born in 1940 to 41% for children born in 1984 – when we compare the sons’ earnings to their fathers’ earnings. Why have rates of upward income mobility fallen so sharply over the past half-century? There have been two important trends that have affected the incomes of children born in the 1980s relative to those born in the 1940s and 1950s: lower Gross Domestic Product (GDP) growth rates and greater inequality in the distribution of growth. We find that most of the decline in absolute mobility is driven by the more unequal distribution of economic growth rather than the slowdown in aggregate growth rates. When we simulate an economy that restores GDP growth to the levels experienced in the 1940s and 1950s but distributes that growth across income groups as it is distributed today, absolute mobility only increases to 62%. In contrast, maintaining GDP at its current level but distributing it more broadly across income groups – at it was distributed for children born in the 1940s – would increase absolute mobility to 80%, thereby reversing more than two-thirds of the decline in absolute mobility. These findings show that higher growth rates alone are insufficient to restore absolute mobility to the levels experienced in mid-century America. Under the current distribution of GDP, we would need real GDP growth rates above 6% per year to return to rates of absolute mobility in the 1940s. Intuitively, because a large fraction of GDP goes to a small fraction of high-income households today, higher GDP growth does not substantially increase the number of children who earn more than their parents. Of course, this does not mean that GDP growth does not matter: changing the distribution of growth naturally has smaller effects on absolute mobility when there is very little growth to be distributed. The key point is that increasing absolute mobility substantially would require more broad-based economic growth. We conclude that absolute mobility has declined sharply in America over the past half-century primarily because of the growth in inequality. If one wants to revive the “American Dream” of high rates of absolute mobility, one must have an interest in growth that is shared more broadly across the income distribution.

  12. Kenya Survey Mean Consumption or Income per Capita: Bottom 40% of...

    • ceicdata.com
    Updated Apr 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Kenya Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate [Dataset]. https://www.ceicdata.com/en/kenya/social-poverty-and-inequality/survey-mean-consumption-or-income-per-capita-bottom-40-of-population-annualized-average-growth-rate
    Explore at:
    Dataset updated
    Apr 15, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2021
    Area covered
    Kenya
    Description

    Kenya Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data was reported at -1.180 % in 2021. Kenya Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data is updated yearly, averaging -1.180 % from Dec 2021 (Median) to 2021, with 1 observations. The data reached an all-time high of -1.180 % in 2021 and a record low of -1.180 % in 2021. Kenya Survey Mean Consumption or Income per Capita: Bottom 40% of Population: Annualized Average Growth Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kenya – Table KE.World Bank.WDI: Social: Poverty and Inequality. The growth rate in the welfare aggregate of the bottom 40% is computed as the annualized average growth rate in per capita real consumption or income of the bottom 40% of the population in the income distribution in a country from household surveys over a roughly 5-year period. Mean per capita real consumption or income is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries means are not reported due to grouped and/or confidential data. The annualized growth rate is computed as (Mean in final year/Mean in initial year)^(1/(Final year - Initial year)) - 1. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported. The initial year refers to the nearest survey collected 5 years before the most recent survey available, only surveys collected between 3 and 7 years before the most recent survey are considered. The coverage and quality of the 2017 PPP price data for Iraq and most other North African and Middle Eastern countries were hindered by the exceptional period of instability they faced at the time of the 2017 exercise of the International Comparison Program. See the Poverty and Inequality Platform for detailed explanations.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The comparability of welfare aggregates (consumption or income) for the chosen years T0 and T1 is assessed for every country. If comparability across the two surveys is a major concern for a country, the selection criteria are re-applied to select the next best survey year(s). Annualized growth rates are calculated between the survey years, using a compound growth formula. The survey years defining the period for which growth rates are calculated and the type of welfare aggregate used to calculate the growth rates are noted in the footnotes.

  13. V

    Vietnam VN: Imports: Low- and Middle-Income Economies: % of Total Goods...

    • ceicdata.com
    Updated Dec 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). Vietnam VN: Imports: Low- and Middle-Income Economies: % of Total Goods Imports: East Asia & Pacific [Dataset]. https://www.ceicdata.com/en/vietnam/imports/vn-imports-low-and-middleincome-economies--of-total-goods-imports-east-asia--pacific
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Vietnam
    Variables measured
    Merchandise Trade
    Description

    Vietnam VN: Imports: Low- and Middle-Income Economies: % of Total Goods Imports: East Asia & Pacific data was reported at 35.344 % in 2016. This records a decrease from the previous number of 38.222 % for 2015. Vietnam VN: Imports: Low- and Middle-Income Economies: % of Total Goods Imports: East Asia & Pacific data is updated yearly, averaging 14.210 % from Dec 1960 (Median) to 2016, with 40 observations. The data reached an all-time high of 41.390 % in 2014 and a record low of 0.364 % in 1985. Vietnam VN: Imports: Low- and Middle-Income Economies: % of Total Goods Imports: East Asia & Pacific data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Vietnam – Table VN.World Bank.WDI: Imports. Merchandise imports from low- and middle-income economies in East Asia and Pacific are the sum of merchandise imports by the reporting economy from low- and middle-income economies in the East Asia and Pacific region according to the World Bank classification of economies. Data are expressed as a percentage of total merchandise imports by the economy. Data are computed only if at least half of the economies in the partner country group had non-missing data.; ; World Bank staff estimates based data from International Monetary Fund's Direction of Trade database.; Weighted average;

  14. South Korea KR: Imports: Low- and Middle-Income Economies: % of Total Goods...

    • ceicdata.com
    Updated Mar 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). South Korea KR: Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Latin America & The Caribbean [Dataset]. https://www.ceicdata.com/en/korea/imports/kr-imports-low-and-middleincome-economies--of-total-goods-imports-latin-america--the-caribbean
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    South Korea
    Variables measured
    Merchandise Trade
    Description

    Korea Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Latin America & The Caribbean data was reported at 2.673 % in 2016. This records an increase from the previous number of 2.543 % for 2015. Korea Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Latin America & The Caribbean data is updated yearly, averaging 1.896 % from Dec 1961 (Median) to 2016, with 56 observations. The data reached an all-time high of 5.491 % in 1985 and a record low of 0.012 % in 1972. Korea Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Latin America & The Caribbean data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Korea – Table KR.World Bank: Imports. Merchandise imports from low- and middle-income economies in Latin America and the Caribbean are the sum of merchandise imports by the reporting economy from low- and middle-income economies in the Latin America and the Caribbean region according to the World Bank classification of economies. Data are expressed as a percentage of total merchandise imports by the economy. Data are computed only if at least half of the economies in the partner country group had non-missing data.; ; World Bank staff estimates based data from International Monetary Fund's Direction of Trade database.; Weighted average;

  15. India Proportion of People Living Below 50 Percent Of Median Income: %

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India Proportion of People Living Below 50 Percent Of Median Income: % [Dataset]. https://www.ceicdata.com/en/india/social-poverty-and-inequality/proportion-of-people-living-below-50-percent-of-median-income-
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1987 - Dec 1, 2021
    Area covered
    India
    Description

    India Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 9.800 % in 2021. This records a decrease from the previous number of 10.000 % for 2020. India Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 6.200 % from Dec 1977 (Median) to 2021, with 14 observations. The data reached an all-time high of 10.300 % in 2019 and a record low of 5.100 % in 2004. India Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  16. m

    Demographics of Upper-Middle Class Citizens in Gachibowli, Hyderabad, India

    • data.mendeley.com
    Updated Dec 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Praagna Shrikrishna Sriram (2019). Demographics of Upper-Middle Class Citizens in Gachibowli, Hyderabad, India [Dataset]. http://doi.org/10.17632/k55rb6zk3v.1
    Explore at:
    Dataset updated
    Dec 15, 2019
    Authors
    Praagna Shrikrishna Sriram
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Gachibowli, Hyderabad, India
    Description

    This dataset is one which highlights the demographics of Upper-Middle Class people living in Gachibowli, Hyderabad, India and attempts to, through various methods of statistical analysis, establish a relationship between several of these demographic details.

  17. N

    New Haven County, CT Median Household Income Trends (2010-2021, in 2022...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). New Haven County, CT Median Household Income Trends (2010-2021, in 2022 inflation-adjusted dollars) [Dataset]. https://www.neilsberg.com/insights/new-haven-county-ct-median-household-income/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Haven County, Connecticut
    Variables measured
    Median Household Income, Median Household Income Year on Year Change, Median Household Income Year on Year Percent Change
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It presents the median household income from the years 2010 to 2021 following an initial analysis and categorization of the census data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset illustrates the median household income in New Haven County, spanning the years from 2010 to 2021, with all figures adjusted to 2022 inflation-adjusted dollars. Based on the latest 2017-2021 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.

    Key observations:

    From 2010 to 2021, the median household income for New Haven County decreased by $1,345 (1.63%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $4,559 (6.51%) between 2010 and 2021.

    Analyzing the trend in median household income between the years 2010 and 2021, spanning 11 annual cycles, we observed that median household income, when adjusted for 2022 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 6 years and declined for 5 years.

    https://i.neilsberg.com/ch/new-haven-county-ct-median-household-income-trend.jpeg" alt="New Haven County, CT median household income trend (2010-2021, in 2022 inflation-adjusted dollars)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.

    Years for which data is available:

    • 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021

    Variables / Data Columns

    • Year: This column presents the data year from 2010 to 2021
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific year
    • YOY Change($): Change in median household income between the current and the previous year, in 2022 inflation-adjusted dollars
    • YOY Change(%): Percent change in median household income between current and the previous year

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for New Haven County median household income. You can refer the same here

  18. Rent increase dwellings; income class

    • cbs.nl
    • data.overheid.nl
    • +1more
    xml
    Updated May 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (2025). Rent increase dwellings; income class [Dataset]. https://www.cbs.nl/en-gb/figures/detail/84825ENG
    Explore at:
    xmlAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset provided by
    Statistics Netherlands
    Authors
    Centraal Bureau voor de Statistiek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2015 - 2024
    Area covered
    The Netherlands
    Description

    This table includes figures on the average increase of rent broken down by income class. A distinction is made here between rental of regulated dwellings by social and other landlords and liberalised rental.

    Data available from: 2015.

    Status of the figures: The figures in this table are definitive.

    Changes as of 20 May 2025: The figures broken down by income class have been removed from this table for the categories of liberalised rents and total. These figures are not applicable and were previously published in error. Landlords can only request income data for regulated rents, which form the basis for this table.

    Changes as of 4 September 2024: The figures of 2024 have been published.

    Changes as of 8 September 2023: The category 'middle income' has been added to the table.

    When will new figures be published? New figures of 2025 will become available in September 2025.

  19. High income tax filers in Canada

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Oct 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). High income tax filers in Canada [Dataset]. http://doi.org/10.25318/1110005501-eng
    Explore at:
    Dataset updated
    Oct 28, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.

  20. T

    India Total Disposable Personal Income

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). India Total Disposable Personal Income [Dataset]. https://tradingeconomics.com/india/disposable-personal-income
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1950 - Dec 31, 2023
    Area covered
    India
    Description

    Disposable Personal Income in India increased to 296383300 INR Million in 2023 from 273364818.90 INR Million in 2022. This dataset provides - India Total Disposable Personal Income - actual values, historical data, forecast, chart, statistics, economic calendar and news.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.austintexas.gov (2025). Strategic Measure_EOA.B.2 Distribution of Household Income [Dataset]. https://catalog.data.gov/dataset/strategic-measure-eoa-b-2-distribution-of-household-income

Strategic Measure_EOA.B.2 Distribution of Household Income

Explore at:
Dataset updated
Apr 25, 2025
Dataset provided by
data.austintexas.gov
Description

This is a historical measure for Strategic Direction 2023. For more data on Austin demographics please visit austintexas.gov/demographics. The purpose of this dataset is to track the distribution of aggregate city income between the 5 quintile of population segments. The dataset comes from the 2019 U.S. Census Bureau, American Communities Survey (5yr) Table B19082. The row levels contain total percentage of income shares by the middle 3 quintiles (20-80%) of population. This data can be used to provide insights into growth/decline of middle class. Distribution of household income (Note: This indicator can provide insights into growth/decline of middle class) View more details and insights related to this measure on the story page: https://data.austintexas.gov/stories/s/Distribution-of-Household-Income/i3a3-vjnc/

Search
Clear search
Close search
Google apps
Main menu