Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CONSUMER PRICE INDEX WITH FIXED INTEREST RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
In May 29, 2019, FHFA published its final Monthly Interest Rate Survey (MIRS), due to dwindling participation by financial institutions. MIRS had provided information on a monthly basis on interest rates, loan terms, and house prices by property type (all, new, previously occupied); by loan type (fixed- or adjustable-rate), and by lender type (savings associations, mortgage companies, commercial banks and savings banks); as well as information on 15-year and 30-year, fixed-rate loans. Additionally, MIRS provided quarterly information on conventional loans by major metropolitan area and by Federal Home Loan Bank district, and was used to compile FHFA’s monthly adjustable-rate mortgage index entitled the “National Average Contract Mortgage Rate for the Purchase of Previously Occupied Homes by Combined Lenders,” also known as the ARM Index.
https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
This dataset was created by Michael Nowell
Released under Community Data License Agreement - Sharing - Version 1.0
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Year: The year of the observation.
Month: The month of the observation.
Interest Rate: The prevailing interest rate for the given month.
Unemployment Rate: The unemployment rate in percentage terms for that time period.
Index Price: A synthetic stock market index price representing overall market trends.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Consumer Price Index with fixed interest rate in Sweden increased to 269.77 points in July from 269.01 points in June of 2025. This dataset includes a chart with historical data for Sweden Consumer Price Index With Fixed Interest Rate (CPIF).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset captures historical financial market data and macroeconomic indicators spanning over three decades, from 1990 onwards. It is designed for financial analysis, time series forecasting, and exploring relationships between market volatility, stock indices, and macroeconomic factors. This dataset is particularly relevant for researchers, data scientists, and enthusiasts interested in studying: - Volatility forecasting (VIX) - Stock market trends (S&P 500, DJIA, HSI) - Macroeconomic influences on markets (joblessness, interest rates, etc.) - The effect of geopolitical and economic uncertainty (EPU, GPRD)
The data has been aggregated from a mix of historical financial records and publicly available macroeconomic datasets: - VIX (Volatility Index): Chicago Board Options Exchange (CBOE). - Stock Indices (S&P 500, DJIA, HSI): Yahoo Finance and historical financial databases. - Volume Data: Extracted from official exchange reports. - Macroeconomic Indicators: Bureau of Economic Analysis (BEA), Federal Reserve, and other public records. - Uncertainty Metrics (EPU, GPRD): Economic Policy Uncertainty Index and Global Policy Uncertainty Database.
dt
: Date of observation in YYYY-MM-DD format.vix
: VIX (Volatility Index), a measure of expected market volatility.sp500
: S&P 500 index value, a benchmark of the U.S. stock market.sp500_volume
: Daily trading volume for the S&P 500.djia
: Dow Jones Industrial Average (DJIA), another key U.S. market index.djia_volume
: Daily trading volume for the DJIA.hsi
: Hang Seng Index, representing the Hong Kong stock market.ads
: Aruoba-Diebold-Scotti (ADS) Business Conditions Index, reflecting U.S. economic activity.us3m
: U.S. Treasury 3-month bond yield, a short-term interest rate proxy.joblessness
: U.S. unemployment rate, reported as quartiles (1 represents lowest quartile and so on).epu
: Economic Policy Uncertainty Index, quantifying policy-related economic uncertainty.GPRD
: Geopolitical Risk Index (Daily), measuring geopolitical risk levels.prev_day
: Previous day’s S&P 500 closing value, added for lag-based time series analysis.Feel free to use this dataset for academic, research, or personal projects.
The Survey on Interest Rate Controls 2020 was conducted as a World Bank Group study on interest rate controls (IRCs) in lending and deposit markets around the world. The study aims to identify the different types of formal (or de jure) controls, the countries that apply then, how they implement them, and the reasons for doing so. The objective of the study is to advance knowledge on this topic by providing an evidence base for investigating the impact of IRCs on economic outcomes.
The survey investigates present IRCs in each surveyed country, the reasons why they have been applied, the framework and resources associated with their application and the details as to their level and functioning. The focus is on legal forms of control (i.e. codified into law) as opposed to de facto controls. The new database on interest rate controls, a popular form of financial repression is based on a survey of 108 countries, representing 88 percent of global gross domestic product. The interest rate controls presented in this dataset were in effect in 2019.
Global Survey, covering 108 countries, representing 88 percent of global GDP.
Regulation at the national level.
Banking supervisors and Local Banking Associations.
Sample survey data [ssd]
Mail Questionnaire [mail]
Bank supervisors and banking associations were provided with a standard excel file with five parts. The survey was structured in five parts, each placed in a different excel sheet. Part A: Introduction. Countries with no IRCs in place were asked to only answer this sheet and leave the rest blank. Part B: Presented the definitions of controls, institutions, products and additional aspects that will be covered in the survey. Part C: Introduced a set of qualitative questions to describe the IRCs in place. Part D: Displayed a set of tables to quantitatively describe the IRCs in place. Part E: Laid out the final set of questions, covering sanctions and control mechanisms that support the IRCs' enforcement. The questionnaire is provided in the Documentation section in pdf and excel.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 58 series, with data for years 1971 - 1992 (not all combinations necessarily have data for all years), and was last released on 2000-02-18. This table contains data described by the following dimensions (Not all combinations are available): Geography (13 items: Canada; Atlantic Region; Prince Edward Island; Eastern Canada ...), Price index (3 items: Interest; Non-mortgage; Mortgage ...), Index year (2 items: 1981=100; 1986=100 ...).
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Annual Market Information Indices’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/https-data-usmart-io-org-ae1d5c14-c392-4c3f-9705-537427eeb413-dataset-viewdiscovery-datasetguid-c410c7a0-14c3-442b-b75f-4c230ec59406 on 13 January 2022.
--- Dataset description provided by original source is as follows ---
House price index is based on average new house price value at loan approval stage and therefore has not been adjusted for changes in the mix of houses and apartments sold.
Interest rates is based on building societies mortgage loans, published by Central Statistics Office up to 2007.
From 2008 interest rates is average rate of all 'mortgage lenders' reporting to the Central Bank.
From 2014 it is based on the floating rate for new customers as published by the Central Bank (Retail interest rates - Table B2.1). The reason for the drop between 2013 and
2014 is due to the difference in methodology - the 2014 data is the weighted average rate on new loan agreements. Further information can be found here:
http://www.centralbank.ie/polstats/stats/cmab/Documents/Retail_Interest_Rate_Statistics_Explanatory_Notes.pdf
Earnings is based on the average weekly earnings of adult workers in manufacturing industries, published by the Central Statistics Office. This series has been updated since 1996 using a new methodology and therefore it is not directly comparable with those for earlier years.
House Construction Cost Index is based on the 1st day of the third month of each quarter.
Consumer Price index is based on the Consumer Price Index, published by the Central Statistics Office.
The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
VTT_FOI_INDEX_EXTENT is part of the Vicmap Topographic Themes (VTT) prooduct. This dataset is a superset of FOI_INDEX_EXTENT and includes the current and retired states of each feature instance. It supports feature versioning (RETIRE_DATE_UFI) and enables feature edit chaining (UFI_OLD). Part of the VTT Features of Interest dataset Polygon extent of ALL features of interest records within Victoria. It holds ALL features ONCE regardless of whether they were derived from a point, line or polygon feature.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House price index is based on average new house price value at loan approval stage and therefore has not been adjusted for changes in the mix of houses and apartments sold.
Interest rates is based on building societies mortgage loans, published by Central Statistics Office up to 2007.
From 2008 interest rates is average rate of all 'mortgage lenders' reporting to the Central Bank.
From 2014 it is based on the floating rate for new customers as published by the Central Bank (Retail interest rates - Table B2.1). The reason for the drop between 2013 and
2014 is due to the difference in methodology - the 2014 data is the weighted average rate on new loan agreements. Further information can be found here:
http://www.centralbank.ie/polstats/stats/cmab/Documents/Retail_Interest_Rate_Statistics_Explanatory_Notes.pdf
Earnings is based on the average weekly earnings of adult workers in manufacturing industries, published by the Central Statistics Office. This series has been updated since 1996 using a new methodology and therefore it is not directly comparable with those for earlier years.
House Construction Cost Index is based on the 1st day of the third month of each quarter.
Consumer Price index is based on the Consumer Price Index, published by the Central Statistics Office.
The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper models the dynamics of Chinese yuan–denominated long-term interest rate swap yields. It shows that the short-term interest rate exerts a decisive influence on the long-term swap yield after controlling for various macrofinancial variables, such as core inflation, the growth of industrial production, the percent change in the equity price index, and the percentage change in the Chinese yuan exchange rate. The autoregressive distributed lag approach is applied to model the dynamics of the long-term swap yield. The findings reinforce and extend John Maynard Keynes’s conjecture that in advanced countries, as well as emerging market economies such as China, the central bank’s actions have a decisive role in setting the long-term interest rate on government bonds and over-the-counter financial instruments, such as swaps.
This dataset contains the monthly estimates of the natural interest rate based on the industrial production index or real gross domestic product for the euro area and the United States. The dataset is the set of the estimates resulted from the related publication.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The index relates to costs ruling on the first day of each month. NATIONAL HOUSE CONSTRUCTION COST INDEX; Up until October 2006 it was known as the National House Building Index Oct 2000 data; The index since October, 2000, includes the first phase of an agreement following a review of rates of pay and grading structures for the Construction Industry and the first phase increase under the PPF. April, May and June 2001; Figures revised in July 2001due to 2% PPF Revised Terms. March 2002; The drop in the March 2002 figure is due to a decrease in the rate of PRSI from 12% to 10¾% with effect from 1 March 2002. The index from April 2002 excludes the one-off lump sum payment equal to 1% of basic pay on 1 April 2002 under the PPF. April, May, June 2003; Figures revised in August'03 due to the backdated increase of 3% from 1April 2003 under the National Partnership Agreement 'Sustaining Progress'. The increases in April and October 2006 index are due to Social Partnership Agreement "Towards 2016". March 2011; The drop in the March 2011 figure is due to a 7.5% decrease in labour costs. Methodology in producing the Index Prior to October 2006: The index relates solely to labour and material costs which should normally not exceed 65% of the total price of a house. It does not include items such as overheads, profit, interest charges, land development etc. The House Building Cost Index monitors labour costs in the construction industry and the cost of building materials. It does not include items such as overheads, profit, interest charges or land development. The labour costs include insurance cover and the building material costs include V.A.T. Coverage: The type of construction covered is a typical 3 bed-roomed, 2 level local authority house and the index is applied on a national basis. Data Collection: The labour costs are based on agreed labour rates, allowances etc. The building material prices are collected at the beginning of each month from the same suppliers for the same representative basket. Calculation: Labour and material costs for the construction of a typical 3 bed-roomed house are weighted together to produce the index. Post October 2006: The name change from the House Building Cost Index to the House Construction Cost Index was introduced in October 2006 when the method of assessing the materials sub-index was changed from pricing a basket of materials (representative of a typical 2 storey 3 bedroomed local authority house) to the CSO Table 3 Wholesale Price Index. The new Index does maintains continuity with the old HBCI. The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change. Oct 2008 data; Decrease due to a fall in the Oct Wholesale Price Index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset, released by Baidu Inc. in response to the COVID-19 pandemic, is similar to the Baidu Index and is referred to as the "Epidemic Index." It includes data from November 26, 2022, to January 25, 2023, and from May 6, 2023, to July 4, 2023, covering 31 provincial-level administrative regions in China, excluding Hong Kong, Macau, and Taiwan, along with aggregated national data. The Baidu Epidemic Search Index (BESI) is generated based on the online medical search behavior of internet users. It reflects the degree of interest and ongoing changes in searches related to COVID-19 symptoms, preventive measures, and medical supplies by local internet users on the Baidu search engine. The Baidu Health Inquiry Index (BHII) is derived from online medical consultation behavior, modeled on the scale of local internet users' inquiries on Baidu Health regarding pandemic prevention and COVID-19 treatment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Part of the Vicmap Features of Interest dataset Point/centroid location of ALL features of interest records within Victoria. It holds ALL features ONCE regardless of whether they were derived from a point, line or polygon feature.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
🇸🇪 스웨덴
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CONSUMER PRICE INDEX WITH FIXED INTEREST RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.