21 datasets found
  1. Population of India

    • kaggle.com
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajarshi Datta (2023). Population of India [Dataset]. http://doi.org/10.34740/kaggle/dsv/6005222
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 23, 2023
    Dataset provided by
    Kaggle
    Authors
    Rajarshi Datta
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    India
    Description

    India is the most populous country in the world with one-sixth of the world's population. According to official estimates in 2022, India's population stood at over 1.42 billion.

    This dataset contains the population distribution by state, gender, sex & region.

    The file is in .csv format thus it is accessible everywhere.

  2. H

    India: Historical Population Density for 1975 - 2020 for 400m H3 Hexagons

    • data.humdata.org
    geopackage
    Updated Oct 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kontur (2023). India: Historical Population Density for 1975 - 2020 for 400m H3 Hexagons [Dataset]. https://data.humdata.org/dataset/india-historical-population-density-for-1975-2020-for-400m-h3-hexagons
    Explore at:
    geopackageAvailable download formats
    Dataset updated
    Oct 31, 2023
    Dataset provided by
    Kontur
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    India population density for 1975 - 2020 for 400m H3 hexagons.

    Fixed up fusion of GHSL and OpenStreetMap data.

    Visit India: Population Density for 400m H3 Hexagons for up-to-date data.

  3. India - Population Density

    • data.amerigeoss.org
    geotiff
    Updated Jun 7, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2022). India - Population Density [Dataset]. https://data.amerigeoss.org/gl/dataset/worldpop-population-density-for-india
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jun 7, 2022
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    India
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)

    -Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area. These are produced using the unconstrained top-down modelling method.
    -Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel, adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area. These are produced using the unconstrained top-down modelling method.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674

  4. W

    India - Population density (2015)

    • cloud.csiss.gmu.edu
    • data.wu.ac.at
    tiff
    Updated May 13, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open Africa (2019). India - Population density (2015) [Dataset]. http://cloud.csiss.gmu.edu/dataset/895349ca-836e-44c2-b036-2d38a41ecc0e
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 13, 2019
    Dataset provided by
    Open Africa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata.

    DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted.

    REGION: Africa

    SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator)

    PROJECTION: Geographic, WGS84

    UNITS: Estimated persons per grid square

    MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743.

    FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org)

    FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.

    India data available from WorldPop here.

  5. g

    Population Density Around the Globe

    • globalmidwiveshub.org
    • covid19.esriuk.com
    • +4more
    Updated May 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Direct Relief (2020). Population Density Around the Globe [Dataset]. https://www.globalmidwiveshub.org/maps/b71f7fd5dbc8486b8b37362726a11452
    Explore at:
    Dataset updated
    May 20, 2020
    Dataset authored and provided by
    Direct Relief
    Area covered
    Description

    Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics

  6. Population density in India as of 2022, by area and state

    • statista.com
    Updated Jul 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Population density in India as of 2022, by area and state [Dataset]. https://www.statista.com/statistics/1366870/india-population-density-by-area-and-state/
    Explore at:
    Dataset updated
    Jul 10, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    India
    Description

    In 2022, the union territory of Delhi had the highest urban population density of over 18 thousand persons per square kilometer. While the rural population density was highest in union territory of Puducherry, followed by the state of Bihar.

  7. f

    Population density (K2, Karnataka, India)

    • data.apps.fao.org
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Population density (K2, Karnataka, India) [Dataset]. https://data.apps.fao.org/map/catalog/srv/resources/datasets/39503fce-deec-4652-8edd-302a651e25c4
    Explore at:
    Dataset updated
    Jul 16, 2024
    Area covered
    Karnataka, India
    Description

    Population density in the Middle Krishna (K2) sub-basin area. The dataset, calculated as number of people per hectare, is derived from the WorldPop datasets (https://www.worldpop.org/)

  8. M

    India Population (1950-2025)

    • macrotrends.net
    csv
    Updated May 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). India Population (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/countries/ind/india/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description
    Total current population for India in 2025 is 1,454,606,724, a 0.89% increase from 2024.
    <ul style='margin-top:20px;'>
    
    <li>Total population for India in 2024 was <strong>1,441,719,852</strong>, a <strong>0.25% increase</strong> from 2023.</li>
    <li>Total population for India in 2023 was <strong>1,438,069,596</strong>, a <strong>0.89% increase</strong> from 2022.</li>
    <li>Total population for India in 2022 was <strong>1,425,423,212</strong>, a <strong>0.79% increase</strong> from 2021.</li>
    </ul>Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.
    
  9. Population distribution in India 2020, by gender and age group

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Population distribution in India 2020, by gender and age group [Dataset]. https://www.statista.com/statistics/1370009/india-population-distribution-by-gender-and-age-group/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    India
    Description

    The growth in India's overall population is driven by its young population. Nearly ** percent of the country's population was between the ages of 15 and 64 years old in 2020. With over *** million people between 18 and 35 years old, India had the largest number of millennials and Gen Zs globally.

  10. World Population Data

    • kaggle.com
    Updated Jan 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sazidul Islam (2024). World Population Data [Dataset]. https://www.kaggle.com/datasets/sazidthe1/world-population-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 1, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sazidul Islam
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Context

    The world's population has undergone remarkable growth, exceeding 7.5 billion by mid-2019 and continuing to surge beyond previous estimates. Notably, China and India stand as the two most populous countries, with China's population potentially facing a decline while India's trajectory hints at surpassing it by 2030. This significant demographic shift is just one facet of a global landscape where countries like the United States, Indonesia, Brazil, Nigeria, and others, each with populations surpassing 100 million, play pivotal roles.

    The steady decrease in growth rates, though, is reshaping projections. While the world's population is expected to exceed 8 billion by 2030, growth will notably decelerate compared to previous decades. Specific countries like India, Nigeria, and several African nations will notably contribute to this growth, potentially doubling their populations before rates plateau.

    Content

    This dataset provides comprehensive historical population data for countries and territories globally, offering insights into various parameters such as area size, continent, population growth rates, rankings, and world population percentages. Spanning from 1970 to 2023, it includes population figures for different years, enabling a detailed examination of demographic trends and changes over time.

    Dataset

    Structured with meticulous detail, this dataset offers a wide array of information in a format conducive to analysis and exploration. Featuring parameters like population by year, country rankings, geographical details, and growth rates, it serves as a valuable resource for researchers, policymakers, and analysts. Additionally, the inclusion of growth rates and world population percentages provides a nuanced understanding of how countries contribute to global demographic shifts.

    This dataset is invaluable for those interested in understanding historical population trends, predicting future demographic patterns, and conducting in-depth analyses to inform policies across various sectors such as economics, urban planning, public health, and more.

    Structure

    This dataset (world_population_data.csv) covering from 1970 up to 2023 includes the following columns:

    Column NameDescription
    RankRank by Population
    CCA33 Digit Country/Territories Code
    CountryName of the Country
    ContinentName of the Continent
    2023 PopulationPopulation of the Country in the year 2023
    2022 PopulationPopulation of the Country in the year 2022
    2020 PopulationPopulation of the Country in the year 2020
    2015 PopulationPopulation of the Country in the year 2015
    2010 PopulationPopulation of the Country in the year 2010
    2000 PopulationPopulation of the Country in the year 2000
    1990 PopulationPopulation of the Country in the year 1990
    1980 PopulationPopulation of the Country in the year 1980
    1970 PopulationPopulation of the Country in the year 1970
    Area (km²)Area size of the Country/Territories in square kilometer
    Density (km²)Population Density per square kilometer
    Growth RatePopulation Growth Rate by Country
    World Population PercentageThe population percentage by each Country

    Acknowledgment

    The primary dataset was retrieved from the World Population Review. I sincerely thank the team for providing the core data used in this dataset.

    © Image credit: Freepik

  11. d

    Density of Roads in India

    • dataful.in
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). Density of Roads in India [Dataset]. https://dataful.in/datasets/1181
    Explore at:
    xlsx, csv, application/x-parquetAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    India
    Variables measured
    Density of Roads
    Description

    The dataset contains the density of roads in India. The density is measured on two parameters in this data set. No.of Km of Road per 1000 sq. km and No.of KM of road per 1000 population. The dataset is categorised into density across India, density of Urban Roads and density of Rural roads. The information is as on 31st March of the respective years

  12. a

    PerCapita CO2 Footprint InDioceses FULL

    • hub.arcgis.com
    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Sep 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). PerCapita CO2 Footprint InDioceses FULL [Dataset]. https://hub.arcgis.com/content/95787df270264e6ea1c99ffa6ff844ff
    Explore at:
    Dataset updated
    Sep 23, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  13. f

    MOESM1 of Disease surveillance using online news: an extended study of...

    • figshare.com
    zip
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yiding Zhang; Motomu Ibaraki; Franklin Schwartz (2023). MOESM1 of Disease surveillance using online news: an extended study of dengue fever in India [Dataset]. http://doi.org/10.6084/m9.figshare.11357951.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Authors
    Yiding Zhang; Motomu Ibaraki; Franklin Schwartz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Additional file 1: Basic Information of India. Table S1. List of Indian States and Union Territories. Figure S1. Map of Indian States and Union Territories. Figure S2. Map of Indian population density. Figure S3. Averaged annual rainfall map of India (2013-2016). The red arrows are monsoon move directions during summer.

  14. M

    Delhi, India Metro Area Population (1950-2025)

    • macrotrends.net
    csv
    Updated May 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Delhi, India Metro Area Population (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/cities/21228/delhi/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1950 - Jun 24, 2025
    Area covered
    India
    Description

    Chart and table of population level and growth rate for the Delhi, India metro area from 1950 to 2025.

  15. m

    Green Ratings Dataset - District Level Measurement

    • data.mendeley.com
    Updated Aug 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deepak Dhayanithy (2024). Green Ratings Dataset - District Level Measurement [Dataset]. http://doi.org/10.17632/vts7v7344g.2
    Explore at:
    Dataset updated
    Aug 30, 2024
    Authors
    Deepak Dhayanithy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data interconnecting environmental disciplines of land, air, water, nighttime light intensity and socio-economics are useful for academicians, leaders and policy-makers. The land parameters are remote sensing indices and metrics used to examine vegetation health, productivity and economic system dynamics. It includes NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), GPP (Gross Primary Productivity) and NPP (Net Primary Productivity). Nighttime light intensity analyzes the brightness of artificial lights and the radiance emitted during the night. It is used as a proxy for human activity (land use), urbanization (population density), and economic development. The water parameter includes NDWI (Normalized Difference Water Index), a remote sensing index that identifies open water bodies and monitors changes in water content. The air parameters, including CO, NO2, SO2, O3, CH4 and HCHO, are examined following CPCB guidelines to ensure their concentrations align with permissible limits, prioritizing public health and welfare and adhering to international standards. The data directs the researchers to study climate change related to socio-economics and environmental parameters. The dataset analyzes the environmental and socio-economic dimensions of all the districts of India.

  16. Data from: Predicting disease risk areas through co-production of spatial...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Mar 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bethan Purse; Naryan Darshan; Charles George; Abhiskek Samrat; Stefanie Schäfer; Juliette Young; Manoj Murhekar; France Gerard; Mudassar Chanda; Peter Henrys; Meera Oommen; Subhash Hoti; Gudadappa Kasabi; Vijay Sandhya; Abi Vanak; Sarah Burthe; Prashanth Srinivas; Rahman Mujeeb; Shivani Kiran (2020). Predicting disease risk areas through co-production of spatial models: the example of Kyasanur Forest Disease in India’s forest landscapes [Dataset]. http://doi.org/10.5061/dryad.tb2rbnzx5
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 17, 2020
    Dataset provided by
    National Institute of Epidemiologyhttp://www.nie.gov.in/
    Department of Health & Family Welfare
    Indian Council of Medical Research
    UK Centre for Ecology & Hydrology
    Ashoka Trust for Research in Ecology and the Environment
    National Institute Of Veterinary Epidemiology And Disease Informatics
    Institute of Public Health Bengaluru
    Authors
    Bethan Purse; Naryan Darshan; Charles George; Abhiskek Samrat; Stefanie Schäfer; Juliette Young; Manoj Murhekar; France Gerard; Mudassar Chanda; Peter Henrys; Meera Oommen; Subhash Hoti; Gudadappa Kasabi; Vijay Sandhya; Abi Vanak; Sarah Burthe; Prashanth Srinivas; Rahman Mujeeb; Shivani Kiran
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    India
    Description

    This data package includes spatial environmental and social layers for Shivamogga District, Karnataka, India that were considered as potential predictors of patterns in human cases of Kyasanur Forest Disease (KFD). KFD is a fatal tick-borne viral haemorrhagic disease of humans, that is spreading across degraded forest ecosystems in India. The layers encompass a range of fifteen metrics of topography, land use and land use change, livestock and human population density and public health resources for Shivamogga District across 1km and 2km study grids. These spatial proxies for risk factors for KFD that had been jointly identified between cross-sectoral stakeholders and researchers through a co-production approach. Shivamogga District is the District longest affected by KFD in south India. The layers are distributed as 1km and 2km GeoTiffs in Albers equal area conic projection. For KFD, spatial models incorporating these layers identified characteristics of forest-plantation landscapes at higher risk for human KFD. These layers will be useful for modelling spatial patterns in other environmentally sensitive infectious diseases and biodiversity within the district.

    Methods Processing of environmental predictors of Kyasanur Forest Disease distribution

    This file details the sources and processing of environmental predictors offered to the statistical analysis in the paper. All processing was performed in the raster package [1] of the R program [2] unless otherwise specified, with function names as specified below.

    Topography predictors

    Elevation data was extracted in tiles from Shuttle Radar Topography Mission data version 4 [3] an original resolution of 0.000833 degrees Latitude and Longitude resolution (approximately 90m by 90m grid cells). Tiles were mosaicked across the study region using the merge function. A slope value for each pixel was calculated (in degrees) using the terrain function of the raster package, and a focal window of 3 by 3 cells. Both the resulting elevation and slope rasters were cropped to the administrative boundaries of the Shivamogga District (raster package: crop function) and re-projected to an equal area projection (Albers equal area conic projection) using the projectRaster function (method=”bilinear”). Mean elevation and slope values were then calculated across the study 1km and 2km grid cells, using the aggregate function to average values across the appropriate number of ~90m grid cells and then the resample function to align the resulting grid to the study grids.

    Landscape predictors

    Metrics of the current availability (and fragmentation) of forest, agricultural and built-up land use types as well as that of water-bodies were extracted from the MonkeyFeverRisk Land Use Land Cover map of Shimoga. The latter was produced from classification of earth observation data from 2016 to 2018 using the methods described in the Supplementary information S3 file of the paper linked to this dataset. The LULC map had an original grid square resolution of 0.000269 degrees Latitude and Longitude resolution (or 30m x 28m grid cells) and nine different LULC classes. It was cropped to the administrative boundaries of the Shimoga District (raster package: crop function) and re-projected to the equal area projection (Albers equal area conic projection) using the projectRaster function (method=”ngb” for categorical data). The agriculture and fallow land classes were combined before landscape analysis (due to the difficulty of separating them accurately in the classification process).

    An algorithm was developed in R to identify which of the pixels in the LULC map coincided with each 1km and 2km grid cell of the study area. The ClassStat function of the SDM Tools package [4] was used to calculate the proportional area of each 1km or 2km grid cell landscape that was made up of a particular land class, as well patch density and edge density metrics for the forest classes as indicators of fragmentation and forest-agriculture interface habitat respectively (Fig. S2B). The proportional area values (pi) of the n different forest classes (wet evergreen forest, moist deciduous forest, dry deciduous forest and plantation) were used to calculate an index of forest type diversity per grid cell as follows, after Shannon & Weaver (1949) [5]:

    H'= -1npi(lognpi)

    Metrics of longer term forest changes in Shimoga since 2000 were derived from a global product by Hansen et al. (2013) [6] available at a spatial resolution of 1 arc-second per pixel, (~ 30 meters per pixel at equator). Forest loss during the period 2000–2014, is defined as a stand-replacement disturbance, or a change from a forest to non-forest state, encoded as either 1 (loss) or 0 (no loss). Forest gain during the period 2000–2012, is defined as a non-forest to forest change entirely within the study period, encoded as either 1 (gain) or 0 (no gain).These layers were again cropped to the administrative boundaries of the Shimoga District (raster package: crop function) and re-projected to an equal area projection (Albers equal area conic projection) using the projectRaster function (method=”ngb”) in R. An algorithm was developed in R to identify which of the pixels in the loss and gain rasters coincided with each 1km and 2km grid cell of the study area. The ClassStat function of the SDM Tools package [4] was used to calculate the proportional area of each 1km or 2km grid cell that was made up of loss pixels or gain pixels. Forest gain and loss are very highly correlated (r=0.986) and occur in similar places in the landscape (Fig. S2C). Forest loss was a much more common transition than a forest gain affecting 1.2% of land pixels rather than 0.16% of land pixels for forest gain.

    To assess how forest loss or gain from a global product like Hansen et al. (2013) should be interpreted locally in south India, we analysed how the loss and gain pixels from Hansen et al. 2013 coincided with classes in the MonkeyFeverRisk LULC map (by extracting the value of the LULC map for the centroids of loss or gain pixels).

    The distribution of loss and gain pixels across forest classes from the MonkeyFeverRisk LULC map is shown in Table 1. Locations categorised as a loss by Hansen et al. were most commonly classified currently as plantation, followed by moist evergreen forest, followed by

    moist or dry deciduous forest by the MonkeyFeverRisk LULC map. The pattern was similar for the gain pixels. Since not all forest loss pixels were non-forest in the current day and not all forest gain pixels were forest in the current day, the precise meaning of the Hansen et al. (2013) forest loss layer was unclear for south India, though we expect that it is at least indicative of areas where the forest has undergone a larger degree of change since 2000.

    Table 1: Percentage of loss (n= 108398) and gain (n= 14646) land pixels from the global Hansen et al. (2013) product that fall into different forest classes according to the MonkeyFeverRisk LULC map

        Land use class
    
    
        Gain
    
    
        Loss
    
    
    
    
        moist evergreen
    
    
        30.4
    
    
        26.1
    
    
    
    
        moist deciduous
    
    
        6.5
    
    
        16.2
    
    
    
    
        dry deciduous
    
    
        3.0
    
    
        9.7
    
    
    
    
        plantation
    
    
        46.2
    
    
        37.2
    
    
    
    
        Non-forest classes
    
    
        14.0
    
    
        10.9
    

    Host and public health predictors

    Livestock host density data, namely buffalo and indigenous cattle densities in units of total head per village were obtained from Department of Animal Husbandry, Dairying and Fisheries, Government of India Census from 2011 at village level. These were linked to village boundaries from the Survey of India using the village census codes in R. The village areas were calculated from the spatial polygons dataframe of villages using the rgeos package in R, so that the total head per village metrics could be convert into an areal density of buffalo and indigenous cattle per km and then rasterized at 1km and 2km using the rasterize function of the raster package.

    The human population size and public health metrics were obtained from the Government of India Population Census 2011. The human population size (census field TOT_P) was again linked to the spatial polygon village boundaries using the census village code (census field VCT_2011) and converted to an areal metric of population density per km and rasterized at 1km and 2km as above. The number of medics per head of population was derived by summing all doctors and para-medicals “in position” across all types of health centres, clinics and dispensaries per village and dividing by the total population of the village (TOT_P) and then linked to village boundaries and rasterized as above. The proximity to health centres was a categorical variable derived from the “Primary.Health.Centre..Numbers” field, where 1 = Primary Health Centre (PHC) within village boundary, 2 = PHC within 5km of village, 3=PHC within 5-10km of village, 4= PHC further than 10km from village. It was linked to village boundaries and rasterized as above.

    The resulting raster layers for all predictors were saved in GeoTiff format.

    References

    Robert J. Hijmans (2017). raster: Geographic Data Analysis and Modeling. R package version 2.6-7. https://CRAN.R-project.org/package=raster
    R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.URL https://www.R-project.org/ 
    Jarvis, A., Reuter, I., Nelson, A., Guevara, E. Hole-filled SRTM for the globe Version 4. 2008.
    VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L., & Storlie, C. (2014). SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises. R
    
  17. Data on riots, state electoral politics and socioeconomic indicators in...

    • figshare.com
    xlsx
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daipayan Dhar (2023). Data on riots, state electoral politics and socioeconomic indicators in India [Dataset]. http://doi.org/10.6084/m9.figshare.21688502.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Daipayan Dhar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    The dataset contains district level data on riots, the results of state assembly elections, measures of political competetion (calculated at district level), census controls such as literacy rate, proportion of minorities, urbanization, population density etc, Gini Coeffecients and Unemployment rates; and State level per capita income, state development expenditure, police strength and population per police for the period 2008 to 2015 in India.

  18. f

    Table_1_Population Estimate, Habitat-Use and Activity Patterns of the Honey...

    • frontiersin.figshare.com
    docx
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nilanjan Chatterjee; Parag Nigam; Bilal Habib (2023). Table_1_Population Estimate, Habitat-Use and Activity Patterns of the Honey Badger in a Dry-Deciduous Forest of Central India.DOCX [Dataset]. http://doi.org/10.3389/fevo.2020.585256.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    Frontiers
    Authors
    Nilanjan Chatterjee; Parag Nigam; Bilal Habib
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Studies on carnivores are skewed toward larger species in India, limiting ecological information of the smaller ones. Basic ecological understanding like population density, distribution, habitat-use patterns of small carnivores is lacking. This inadequate knowledge has led to disagreement between conservation approaches in different landscapes. Honey badgers (Mellivora capensis) are cryptic carnivores distributed across large areas of Africa and Asia; however, fundamental ecological knowledge is scarce. The species is thought to exist at low population densities throughout its range. We used a large camera trap dataset from a tiger reserve in Maharashtra State, India to understand the population density, habitat preference, and diel activity pattern of the species. We applied an extension of the spatial count model for the estimation of population. Habitat preference analyses were carried out using generalized linear models and activity patterns were analyzed using kernel-density functions. The population density was estimated as 14.09 (95% CI 10–22.25) individuals per 100 km2. Habitat use revealed a positive association with forest cover and negative association with elevation. This may expose the species to other large carnivores in the habitat but honey badger activity pattern peaked at midnight retaining minimum temporal overlap with other large carnivores (e.g., tiger Panthera tigris, leopard Panthera pardus, and dhole Cuon alpinus) and moderate overlap with small carnivores (e.g., jungle cat Felis chaus, rusty-spotted cat Prionailurus rubiginosus). These behaviors, in turn, may facilitate the coexistence of species at such high density even with high carnivore density. We hope the findings of this study will fill the existing knowledge gap of this species and aid in guiding the conservation of the species in other landscapes and reserves.

  19. f

    Table_1_Spatial epidemiology of acute respiratory infections in children...

    • figshare.com
    docx
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karuppusamy Balasubramani; Kumar Arun Prasad; Naveen Kumar Kodali; Nishadh Kalladath Abdul Rasheed; Savitha Chellappan; Devojit Kumar Sarma; Manoj Kumar; Rashi Dixit; Meenu Mariya James; Sujit Kumar Behera; Sulochana Shekhar; Praveen Balabaskaran Nina (2023). Table_1_Spatial epidemiology of acute respiratory infections in children under 5 years and associated risk factors in India: District-level analysis of health, household, and environmental datasets.docx [Dataset]. http://doi.org/10.3389/fpubh.2022.906248.s002
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    Frontiers
    Authors
    Karuppusamy Balasubramani; Kumar Arun Prasad; Naveen Kumar Kodali; Nishadh Kalladath Abdul Rasheed; Savitha Chellappan; Devojit Kumar Sarma; Manoj Kumar; Rashi Dixit; Meenu Mariya James; Sujit Kumar Behera; Sulochana Shekhar; Praveen Balabaskaran Nina
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    BackgroundIn India, acute respiratory infections (ARIs) are a leading cause of mortality in children under 5 years. Mapping the hotspots of ARIs and the associated risk factors can help understand their association at the district level across India.MethodsData on ARIs in children under 5 years and household variables (unclean fuel, improved sanitation, mean maternal BMI, mean household size, mean number of children, median months of breastfeeding the children, percentage of poor households, diarrhea in children, low birth weight, tobacco use, and immunization status of children) were obtained from the National Family Health Survey-4. Surface and ground-monitored PM2.5 and PM10 datasets were collected from the Global Estimates and National Ambient Air Quality Monitoring Programme. Population density and illiteracy data were extracted from the Census of India. The geographic information system was used for mapping, and ARI hotspots were identified using the Getis-Ord Gi* spatial statistic. The quasi-Poisson regression model was used to estimate the association between ARI and household, children, maternal, environmental, and demographic factors.ResultsAcute respiratory infections hotspots were predominantly seen in the north Indian states/UTs of Uttar Pradesh, Bihar, Delhi, Haryana, Punjab, and Chandigarh, and also in the border districts of Uttarakhand, Himachal Pradesh, and Jammu and Kashmir. There is a substantial overlap among PM2.5, PM10, population density, tobacco smoking, and unclean fuel use with hotspots of ARI. The quasi-Poisson regression analysis showed that PM2.5, illiteracy levels, diarrhea in children, and maternal body mass index were associated with ARI.ConclusionTo decrease ARI in children, urgent interventions are required to reduce the levels of PM2.5 and PM10 (major environmental pollutants) in the hotspot districts. Furthermore, improving sanitation, literacy levels, using clean cooking fuel, and curbing indoor smoking may minimize the risk of ARI in children.

  20. f

    Table_1_Crime against women in India: district-level risk estimation using...

    • frontiersin.figshare.com
    docx
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    B. S. Pooja; Vasudeva Guddattu; K. Aruna Rao (2024). Table_1_Crime against women in India: district-level risk estimation using the small area estimation approach.DOCX [Dataset]. http://doi.org/10.3389/fpubh.2024.1362406.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Frontiers
    Authors
    B. S. Pooja; Vasudeva Guddattu; K. Aruna Rao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    BackgroundThe global prevalence of crimes against women has made it an enduring public health challenge that has persisted over time. The achievement of the 2030 Sustainable Development Goal (SDG) is intricately tied to the actions taken to prevent these crimes as their repercussions directly affect progress across various SDGs. This study aimed to provide a comprehensive examination of the prevalence of crimes against women across districts and states in India, analyzing changes from 2020 to 2022, and subsequently identifying associated factors.MethodsThe study is an ecological analysis conducted across all districts of India using the data on crimes against women for the period 2020 and 2022 obtained from the National Crime Records Bureau (NCRB) of India. A small area estimation method was used to obtain district-level relative risks of crime against women for both periods. Hotspot analysis was carried out to identify the current hotspots and coldspots. Further spatial regression was used to identify the factors associated with crimes against women in the year 2022.ResultsThe results indicated a rise in the reported crime against women cases between 2020 and 2022. The rate of crimes against women at the national level was found to be 57 in the year 2020, whereas, in 2022, it increased to 67. The highest crime rate in the year 2022 was found to be 145 in Delhi, while Nagaland had the lowest crime rate of 5. The relative risk of crime against women varied from 0.046 to 4.68 in 2020, while in 2022, it spanned from 0.02 to 6.10. Significant hotspots were found in parts of Rajasthan, Madhya Pradesh, Haryana, Telangana, and Odisha. The results of the spatial error regression model showed that the sex ratio and the population density of the district have significant associations with the occurrence of crimes against women.ConclusionThe rise in the incidence of crime against women emphasizes the importance of tackling the spatial inequality in relative risk across Indian districts. By thoughtfully addressing this variation and conducting targeted studies in high-risk areas, we can enhance our understanding of the obstacles to implementing effective measures against violence targeting women.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rajarshi Datta (2023). Population of India [Dataset]. http://doi.org/10.34740/kaggle/dsv/6005222
Organization logo

Population of India

The dataset consists of India's Population by gender, sex & region.

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jun 23, 2023
Dataset provided by
Kaggle
Authors
Rajarshi Datta
License

Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically

Area covered
India
Description

India is the most populous country in the world with one-sixth of the world's population. According to official estimates in 2022, India's population stood at over 1.42 billion.

This dataset contains the population distribution by state, gender, sex & region.

The file is in .csv format thus it is accessible everywhere.

Search
Clear search
Close search
Google apps
Main menu