Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.
By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.
Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.
The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!
While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.
The files contained here are a subset of the KernelVersions
in Meta Kaggle. The file names match the ids in the KernelVersions
csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.
The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.
The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads
. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays
We love feedback! Let us know in the Discussion tab.
Happy Kaggling!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
KGTorrent is a dataset of Python Jupyter notebooks from the Kaggle platform.
The dataset is accompanied by a MySQL database containing metadata about the notebooks and the activity of Kaggle users on the platform. The information to build the MySQL database has been derived from Meta Kaggle, a publicly available dataset containing Kaggle metadata.
In this package, we share the complete KGTorrent dataset (consisting of the dataset itself plus its companion database), as well as the specific version of Meta Kaggle used to build the database.
More specifically, the package comprises the following three compressed archives:
KGT_dataset.tar.bz2, the dataset of Jupyter notebooks;
KGTorrent_dump_10-2020.sql.tar.bz2, the dump of the MySQL companion database;
MetaKaggle27Oct2020.tar.bz2, a copy of the Meta Kaggle version used to build the database.
Moreover, we include KGTorrent_logical_schema.pdf, the logical schema of the KGTorrent MySQL database.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset contains human rater trajectories used in paper: "Preference Adaptive and Sequential Text-to-Image Generation".
We use human raters to gather sequential user preferences data for personalized T2I generation. Participants are tasked with interacting with an LMM agent for five turns. Throughout our rater study we use a Gemini 1.5 Flash Model as our base LMM, which acts as an agent. At each turn, the system presents 16 images, arranged in four columns, each representing a different prompt expansion derived from the user's initial prompt and prior interactions. Raters are shown only the generated images, not the prompt expansions themselves.
At session start, raters are instructed to provide an initial prompt of at most 12 words, encapsulating a specific visual concept. They are encouraged to provide descriptive prompts that avoid generic terms (e.g., "an ancient Egyptian temple with hieroglyphs" 'instead of "a temple"). At each turn, raters then select the column of images preferred most; they are instructed to select a column based on the quality of the best image in that column w.r.t. their original intent. Raters may optionally provide a free-text critique (up to 12 words) to guide subsequent prompt expansions, though most raters did not use this facility.
See our paper for a comprehensive description of the rater study.
Please cite our paper if you use it in your work.
https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
Version 4: Adding the data from "LLM-generated essay using PaLM from Google Gen-AI" kindly generated by Kingki19 / Muhammad Rizqi.
File: train_essays_RDizzl3_seven_v2.csv
Human texts: 14247
LLM texts: 3004
See also: a new dataset of an additional 4900 LLM generated texts: LLM: Mistral-7B Instruct texts
Version 3: "**The RDizzl3 Seven**"
File: train_essays_RDizzl3_seven_v1.csv
"Car-free cities
"
"Does the electoral college work?
"
"Exploring Venus
"
"The Face on Mars
"
"Facial action coding system
"
"A Cowboy Who Rode the Waves
"
"Driverless cars
"
How this dataset was made: see the notebook "LLM: Make 7 prompt train dataset"
train_essays_7_prompts_v2.csv
) This dataset is composed of 13,712 human texts and 1638 AI-LLM generated texts originating from 7 of the PERSUADE 2.0 corpus prompts. Namely:
Car-free cities
"Does the electoral college work?
"Exploring Venus
"The Face on Mars
"Facial action coding system
"Seeking multiple opinions
"Phones and driving
"This dataset is a derivative of the datasets
as well as the original competition training dataset
FSDKaggle2018 is an audio dataset containing 11,073 audio files annotated with 41 labels of the AudioSet Ontology. FSDKaggle2018 has been used for the DCASE Challenge 2018 Task 2, which was run as a Kaggle competition titled Freesound General-Purpose Audio Tagging Challenge.
Citation
If you use the FSDKaggle2018 dataset or part of it, please cite our DCASE 2018 paper:
Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel P. W. Ellis, Xavier Favory, Jordi Pons, Xavier Serra. "General-purpose Tagging of Freesound Audio with AudioSet Labels: Task Description, Dataset, and Baseline". Proceedings of the DCASE 2018 Workshop (2018)
You can also consider citing our ISMIR 2017 paper, which describes how we gathered the manual annotations included in FSDKaggle2018.
Eduardo Fonseca, Jordi Pons, Xavier Favory, Frederic Font, Dmitry Bogdanov, Andres Ferraro, Sergio Oramas, Alastair Porter, and Xavier Serra, "Freesound Datasets: A Platform for the Creation of Open Audio Datasets", In Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017
Contact
You are welcome to contact Eduardo Fonseca should you have any questions at eduardo.fonseca@upf.edu.
About this dataset
Freesound Dataset Kaggle 2018 (or FSDKaggle2018 for short) is an audio dataset containing 11,073 audio files annotated with 41 labels of the AudioSet Ontology [1]. FSDKaggle2018 has been used for the Task 2 of the Detection and Classification of Acoustic Scenes and Events (DCASE) Challenge 2018. Please visit the DCASE2018 Challenge Task 2 website for more information. This Task was hosted on the Kaggle platform as a competition titled Freesound General-Purpose Audio Tagging Challenge. It was organized by researchers from the Music Technology Group of Universitat Pompeu Fabra, and from Google Research’s Machine Perception Team.
The goal of this competition was to build an audio tagging system that can categorize an audio clip as belonging to one of a set of 41 diverse categories drawn from the AudioSet Ontology.
All audio samples in this dataset are gathered from Freesound [2] and are provided here as uncompressed PCM 16 bit, 44.1 kHz, mono audio files. Note that because Freesound content is collaboratively contributed, recording quality and techniques can vary widely.
The ground truth data provided in this dataset has been obtained after a data labeling process which is described below in the Data labeling process section. FSDKaggle2018 clips are unequally distributed in the following 41 categories of the AudioSet Ontology:
"Acoustic_guitar", "Applause", "Bark", "Bass_drum", "Burping_or_eructation", "Bus", "Cello", "Chime", "Clarinet", "Computer_keyboard", "Cough", "Cowbell", "Double_bass", "Drawer_open_or_close", "Electric_piano", "Fart", "Finger_snapping", "Fireworks", "Flute", "Glockenspiel", "Gong", "Gunshot_or_gunfire", "Harmonica", "Hi-hat", "Keys_jangling", "Knock", "Laughter", "Meow", "Microwave_oven", "Oboe", "Saxophone", "Scissors", "Shatter", "Snare_drum", "Squeak", "Tambourine", "Tearing", "Telephone", "Trumpet", "Violin_or_fiddle", "Writing".
Some other relevant characteristics of FSDKaggle2018:
The dataset is split into a train set and a test set.
The train set is meant to be for system development and includes ~9.5k samples unequally distributed among 41 categories. The minimum number of audio samples per category in the train set is 94, and the maximum 300. The duration of the audio samples ranges from 300ms to 30s due to the diversity of the sound categories and the preferences of Freesound users when recording sounds. The total duration of the train set is roughly 18h.
Out of the ~9.5k samples from the train set, ~3.7k have manually-verified ground truth annotations and ~5.8k have non-verified annotations. The non-verified annotations of the train set have a quality estimate of at least 65-70% in each category. Checkout the Data labeling process section below for more information about this aspect.
Non-verified annotations in the train set are properly flagged in train.csv
so that participants can opt to use this information during the development of their systems.
The test set is composed of 1.6k samples with manually-verified annotations and with a similar category distribution than that of the train set. The total duration of the test set is roughly 2h.
All audio samples in this dataset have a single label (i.e. are only annotated with one label). Checkout the Data labeling process section below for more information about this aspect. A single label should be predicted for each file in the test set.
Data labeling process
The data labeling process started from a manual mapping between Freesound tags and AudioSet Ontology categories (or labels), which was carried out by researchers at the Music Technology Group, Universitat Pompeu Fabra, Barcelona. Using this mapping, a number of Freesound audio samples were automatically annotated with labels from the AudioSet Ontology. These annotations can be understood as weak labels since they express the presence of a sound category in an audio sample.
Then, a data validation process was carried out in which a number of participants did listen to the annotated sounds and manually assessed the presence/absence of an automatically assigned sound category, according to the AudioSet category description.
Audio samples in FSDKaggle2018 are only annotated with a single ground truth label (see train.csv
). A total of 3,710 annotations included in the train set of FSDKaggle2018 are annotations that have been manually validated as present and predominant (some with inter-annotator agreement but not all of them). This means that in most cases there is no additional acoustic material other than the labeled category. In few cases there may be some additional sound events, but these additional events won't belong to any of the 41 categories of FSDKaggle2018.
The rest of the annotations have not been manually validated and therefore some of them could be inaccurate. Nonetheless, we have estimated that at least 65-70% of the non-verified annotations per category in the train set are indeed correct. It can happen that some of these non-verified audio samples present several sound sources even though only one label is provided as ground truth. These additional sources are typically out of the set of the 41 categories, but in a few cases they could be within.
More details about the data labeling process can be found in [3].
License
FSDKaggle2018 has licenses at two different levels, as explained next.
All sounds in Freesound are released under Creative Commons (CC) licenses, and each audio clip has its own license as defined by the audio clip uploader in Freesound. For attribution purposes and to facilitate attribution of these files to third parties, we include a relation of the audio clips included in FSDKaggle2018 and their corresponding license. The licenses are specified in the files train_post_competition.csv
and test_post_competition_scoring_clips.csv
.
In addition, FSDKaggle2018 as a whole is the result of a curation process and it has an additional license. FSDKaggle2018 is released under CC-BY. This license is specified in the LICENSE-DATASET
file downloaded with the FSDKaggle2018.doc
zip file.
Files
FSDKaggle2018 can be downloaded as a series of zip files with the following directory structure:
root │
└───FSDKaggle2018.audio_train/ Audio clips in the train set │
└───FSDKaggle2018.audio_test/ Audio clips in the test set │
└───FSDKaggle2018.meta/ Files for evaluation setup │ │
│ └───train_post_competition.csv Data split and ground truth for the train set │ │
│ └───test_post_competition_scoring_clips.csv Ground truth for the test set
│
└───FSDKaggle2018.doc/ │
└───README.md The dataset description file you are reading │
└───LICENSE-DATASET
If you are interested in joining Kaggle University Club, please e-mail Jessica Li at lijessica@google.com
This Hackathon is open to all undergraduate, master, and PhD students who are part of the Kaggle University Club program. The Hackathon provides students with a chance to build capacity via hands-on ML, learn from one another, and engage in a self-defined project that is meaningful to their careers.
Teams must register via Google Form to be eligible for the Hackathon. The Hackathon starts on Monday, November 12, 2018 and ends on Monday, December 10, 2018. Teams have one month to work on a team submission. Teams must do all work within the Kernel editor and set Kernel(s) to public at all times.
The freestyle format of hackathons has time and again stimulated groundbreaking and innovative data insights and technologies. The Kaggle University Club Hackathon recreates this environment virtually on our platform. We challenge you to build a meaningful project around the UCI Machine Learning - Drug Review Dataset. Teams are free to let their creativity run and propose methods to analyze this dataset and form interesting machine learning models.
Machine learning has permeated nearly all fields and disciplines of study. One hot topic is using natural language processing and sentiment analysis to identify, extract, and make use of subjective information. The UCI ML Drug Review dataset provides patient reviews on specific drugs along with related conditions and a 10-star patient rating system reflecting overall patient satisfaction. The data was obtained by crawling online pharmaceutical review sites. This data was published in a study on sentiment analysis of drug experience over multiple facets, ex. sentiments learned on specific aspects such as effectiveness and side effects (see the acknowledgments section to learn more).
The sky's the limit here in terms of what your team can do! Teams are free to add supplementary datasets in conjunction with the drug review dataset in their Kernel. Discussion is highly encouraged within the forum and Slack so everyone can learn from their peers.
Here are just a couple ideas as to what you could do with the data:
There is no one correct answer to this Hackathon, and teams are free to define the direction of their own project. That being said, there are certain core elements generally found across all outstanding Kernels on the Kaggle platform. The best Kernels are:
Teams with top submissions have a chance to receive exclusive Kaggle University Club swag and be featured on our official blog and across social media.
IMPORTANT: Teams must set all Kernels to public at all times. This is so we can track each team's progression, but more importantly it encourages collaboration, productive discussion, and healthy inspiration to all teams. It is not so that teams can simply copycat good ideas. If a team's Kernel isn't their own organic work, it will not be considered a top submission. Teams must come up with a project on their own.
The final Kernel submission for the Hackathon must contain the following information:
FSDKaggle2019 is an audio dataset containing 29,266 audio files annotated with 80 labels of the AudioSet Ontology. FSDKaggle2019 has been used for the DCASE Challenge 2019 Task 2, which was run as a Kaggle competition titled Freesound Audio Tagging 2019.
Citation
If you use the FSDKaggle2019 dataset or part of it, please cite our DCASE 2019 paper:
Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel P. W. Ellis, Xavier Serra. "Audio tagging with noisy labels and minimal supervision". Proceedings of the DCASE 2019 Workshop, NYC, US (2019)
You can also consider citing our ISMIR 2017 paper, which describes how we gathered the manual annotations included in FSDKaggle2019.
Eduardo Fonseca, Jordi Pons, Xavier Favory, Frederic Font, Dmitry Bogdanov, Andres Ferraro, Sergio Oramas, Alastair Porter, and Xavier Serra, "Freesound Datasets: A Platform for the Creation of Open Audio Datasets", In Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017
Data curators
Eduardo Fonseca, Manoj Plakal, Xavier Favory, Jordi Pons
Contact
You are welcome to contact Eduardo Fonseca should you have any questions at eduardo.fonseca@upf.edu.
ABOUT FSDKaggle2019
Freesound Dataset Kaggle 2019 (or FSDKaggle2019 for short) is an audio dataset containing 29,266 audio files annotated with 80 labels of the AudioSet Ontology [1]. FSDKaggle2019 has been used for the Task 2 of the Detection and Classification of Acoustic Scenes and Events (DCASE) Challenge 2019. Please visit the DCASE2019 Challenge Task 2 website for more information. This Task was hosted on the Kaggle platform as a competition titled Freesound Audio Tagging 2019. It was organized by researchers from the Music Technology Group (MTG) of Universitat Pompeu Fabra (UPF), and from Sound Understanding team at Google AI Perception. The competition intended to provide insight towards the development of broadly-applicable sound event classifiers able to cope with label noise and minimal supervision conditions.
FSDKaggle2019 employs audio clips from the following sources:
The audio data is labeled using a vocabulary of 80 labels from Google’s AudioSet Ontology [1], covering diverse topics: Guitar and other Musical Instruments, Percussion, Water, Digestive, Respiratory sounds, Human voice, Human locomotion, Hands, Human group actions, Insect, Domestic animals, Glass, Liquid, Motor vehicle (road), Mechanisms, Doors, and a variety of Domestic sounds. The full list of categories can be inspected in vocabulary.csv
(see Files & Download below). The goal of the task was to build a multi-label audio tagging system that can predict appropriate label(s) for each audio clip in a test set.
What follows is a summary of some of the most relevant characteristics of FSDKaggle2019. Nevertheless, it is highly recommended to read our DCASE 2019 paper for a more in-depth description of the dataset and how it was built.
Ground Truth Labels
The ground truth labels are provided at the clip-level, and express the presence of a sound category in the audio clip, hence can be considered weak labels or tags. Audio clips have variable lengths (roughly from 0.3 to 30s).
The audio content from FSD has been manually labeled by humans following a data labeling process using the Freesound Annotator platform. Most labels have inter-annotator agreement but not all of them. More details about the data labeling process and the Freesound Annotator can be found in [2].
The YFCC soundtracks were labeled using automated heuristics applied to the audio content and metadata of the original Flickr clips. Hence, a substantial amount of label noise can be expected. The label noise can vary widely in amount and type depending on the category, including in- and out-of-vocabulary noises. More information about some of the types of label noise that can be encountered is available in [3].
Specifically, FSDKaggle2019 features three types of label quality, one for each set in the dataset:
Further details can be found below in the sections for each set.
Format
All audio clips are provided as uncompressed PCM 16 bit, 44.1 kHz, mono audio files.
DATA SPLIT
FSDKaggle2019 consists of two train sets and one test set. The idea is to limit the supervision provided for training (i.e., the manually-labeled, hence reliable, data), thus promoting approaches to deal with label noise.
Curated train set
The curated train set consists of manually-labeled data from FSD.
The duration of the audio clips ranges from 0.3 to 30s due to the diversity of the sound categories and the preferences of Freesound users when recording/uploading sounds. Labels are correct but potentially incomplete. It can happen that a few of these audio clips present additional acoustic material beyond the provided ground truth label(s).
Noisy train set
The noisy train set is a larger set of noisy web audio data from Flickr videos taken from the YFCC dataset [5].
The duration of the audio clips ranges from 1s to 15s, with the vast majority lasting 15s. Labels are automatically generated and purposefully noisy. No human validation is involved. The label noise can vary widely in amount and type depending on the category, including in- and out-of-vocabulary noises.
Considering the numbers above, the per-class data distribution available for training is, for most of the classes, 300 clips from the noisy train set and 75 clips from the curated train set. This means 80% noisy / 20% curated at the clip level, while at the duration level the proportion is more extreme considering the variable-length clips.
Test set
The test set is used for system evaluation and consists of manually-labeled data from FSD.
The acoustic material present in the test set clips is labeled exhaustively using the aforementioned vocabulary of 80 classes. Most labels have inter-annotator agreement but not all of them. Except human error, the label(s) are correct and complete considering the target vocabulary; nonetheless, a few clips could still present additional (unlabeled) acoustic content out of the vocabulary.
During the DCASE2019 Challenge Task 2, the test set was split into two subsets, for the public and private leaderboards, and only the data corresponding to the public leaderboard was provided. In this current package you will find the full test set with all the test labels. To allow comparison with previous work, the file test_post_competition.csv
includes a flag to determine the corresponding leaderboard (public
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘ Predicting Student Performance’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/student-performance on 28 January 2022.
--- Dataset description provided by original source is as follows ---
- This data approach student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and school related features) and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance in two distinct subjects: Mathematics (mat) and Portuguese language (por). In [Cortez and Silva, 2008], the two datasets were modeled under binary/five-level classification and regression tasks. Important note: the target attribute G3 has a strong correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued at the 3rd period), while G1 and G2 correspond to the 1st and 2nd period grades. It is more difficult to predict G3 without G2 and G1, but such prediction is much more useful (see paper source for more details).
- Predict Student's future performance
- Understand the root causes for low performance
- More datasets
If you use this dataset in your research, please credit ewenme
--- Original source retains full ownership of the source dataset ---
GitHub Issues & Kaggle Notebooks
Description
GitHub Issues & Kaggle Notebooks is a collection of two code datasets intended for language models training, they are sourced from GitHub issues and notebooks in Kaggle platform. These datasets are a modified part of the StarCoder2 model training corpus, precisely the bigcode/StarCoder2-Extras dataset. We reformat the samples to remove StarCoder2's special tokens and use natural text to delimit comments in issues and display… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceTB/issues-kaggle-notebooks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present Code4ML: a Large-scale Dataset of annotated Machine Learning Code, a corpus of Python code snippets, competition summaries, and data descriptions from Kaggle.
The data is organized in a table structure. Code4ML includes several main objects: competitions information, raw code blocks collected form Kaggle and manually marked up snippets. Each table has a .csv format.
Each competition has the text description and metadata, reflecting competition and used dataset characteristics as well as evaluation metrics (competitions.csv). The corresponding datasets can be loaded using Kaggle API and data sources.
The code blocks themselves and their metadata are collected to the data frames concerning the publishing year of the initial kernels. The current version of the corpus includes two code blocks files: snippets from kernels up to the 2020 year (сode_blocks_upto_20.csv) and those from the 2021 year (сode_blocks_21.csv) with corresponding metadata. The corpus consists of 2 743 615 ML code blocks collected from 107 524 Jupyter notebooks.
Marked up code blocks have the following metadata: anonymized id, the format of the used data (for example, table or audio), the id of the semantic type, a flag for the code errors, the estimated relevance to the semantic class (from 1 to 5), the id of the parent notebook, and the name of the competition. The current version of the corpus has ~12 000 labeled snippets (markup_data_20220415.csv).
As marked up code blocks data contains the numeric id of the code block semantic type, we also provide a mapping from this number to semantic type and subclass (actual_graph_2022-06-01.csv).
The dataset can help solve various problems, including code synthesis from a prompt in natural language, code autocompletion, and semantic code classification.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Do You Know Where America Stands On Guns?’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/poll-quiz-gunse on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This folder contains the data behind the quiz Do You Know Where America Stands On Guns?
guns-polls.csv
contains the list of polls about guns that we used in our quiz. All polls have been taken after February 14, 2018, the date of the school shooting in Parkland, Florida.The data is available under the Creative Commons Attribution 4.0 International License and the code is available under the MIT License. If you do find it useful, please let us know.
Source: https://github.com/fivethirtyeight/data
This dataset was created by FiveThirtyEight and contains around 100 samples along with End, Republican Support, technical information and other features such as: - Start - Support - and more.
- Analyze Question in relation to Url
- Study the influence of Population on Pollster
- More datasets
If you use this dataset in your research, please credit FiveThirtyEight
--- Original source retains full ownership of the source dataset ---
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The diamond is 58 times harder than any other mineral in the world, and its elegance as a jewel has long been appreciated. Forecasting diamond prices is challenging due to nonlinearity in important features such as carat, cut, clarity, table, and depth. Against this backdrop, the study conducted a comparative analysis of the performance of multiple supervised machine learning models (regressors and classifiers) in predicting diamond prices. Eight supervised machine learning algorithms were evaluated in this work including Multiple Linear Regression, Linear Discriminant Analysis, eXtreme Gradient Boosting, Random Forest, k-Nearest Neighbors, Support Vector Machines, Boosted Regression and Classification Trees, and Multi-Layer Perceptron. The analysis is based on data preprocessing, exploratory data analysis (EDA), training the aforementioned models, assessing their accuracy, and interpreting their results. Based on the performance metrics values and analysis, it was discovered that eXtreme Gradient Boosting was the most optimal algorithm in both classification and regression, with a R2 score of 97.45% and an Accuracy value of 74.28%. As a result, eXtreme Gradient Boosting was recommended as the optimal regressor and classifier for forecasting the price of a diamond specimen. Methods Kaggle, a data repository with thousands of datasets, was used in the investigation. It is an online community for machine learning practitioners and data scientists, as well as a robust, well-researched, and sufficient resource for analyzing various data sources. On Kaggle, users can search for and publish various datasets. In a web-based data-science environment, they can study datasets and construct models.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
About the NUDA Dataset
Media bias is a multifaceted problem, leading to one-sided views and impacting decision-making. A way to address bias in news articles is to automatically detect and indicate it through machine-learning methods. However, such detection is limited due to the difficulty of obtaining reliable training data. To facilitate the data-gathering process, we introduce NewsUnravel, a news-reading web application leveraging an initially tested feedback mechanism to collect reader feedback on machine-generated bias highlights within news articles. Our approach augments dataset quality by significantly increasing inter-annotator agreement by 26.31% and improving classifier performance by 2.49%. As the first human-in-the-loop application for media bias, NewsUnravel shows that a user-centric approach to media bias data collection can return reliable data while being scalable and evaluated as easy to use. NewsUnravel demonstrates that feedback mechanisms are a promising strategy to reduce data collection expenses, fluidly adapt to changes in language, and enhance evaluators' diversity.
General
This dataset was created through user feedback on automatically generated bias highlights on news articles on the website NewsUnravel made by ANON. Its goal is to improve the detection of linguistic media bias for analysis and to indicate it to the public. Support came from ANON. None of the funders played any role in the dataset creation process or publication-related decisions.
The dataset consists of text, namely biased sentences with binary bias labels (processed, biased or not biased) as well as metadata about the article. It includes all feedback that was given. The single ratings (unprocessed) used to create the labels with correlating User IDs are included.
For training, this dataset was combined with the BABE dataset. All data is completely anonymous. Some sentences might be offensive or triggering as they were taken from biased or more extreme news sources. The dataset does not identify sub-populations or can be considered sensitive to them, nor is it possible to identify individuals.
Description of the Data Files
This repository contains the datasets for the anonymous NewsUnravel submission. The tables contain the following data:
NUDAdataset.csv: the NUDA dataset with 310 new sentences with bias labels
Statistics.png: contains all Umami statistics for NewsUnravel's usage data
Feedback.csv: holds the participantID of a single feedback with the sentence ID (contentId), the bias rating, and provided reasons
Content.csv: holds the participant ID of a rating with the sentence ID (contentId) of a rated sentence and the bias rating, and reason, if given
Article.csv: holds the article ID, title, source, article metadata, article topic, and bias amount in %
Participant.csv: holds the participant IDs and data processing consent
Collection Process
Data was collected through interactions with the Feedback Mechanism on NewsUnravel. A news article was displayed with automatically generated bias highlights. Each highlight could be selected, and readers were able to agree or disagree with the automatic label. Through a majority vote, labels were generated from those feedback interactions. Spammers were excluded through a spam detection approach.
Readers came to our website voluntarily through posts on LinkedIn and social media as well as posts on university boards. The data collection period lasted for one week, from March 4th to March 11th (2023). The landing page informed them about the goal and the data processing. After being informed, they could proceed to the article overview.
So far, the dataset has been used on top of BABE to train a linguistic bias classifier, adopting hyperparameter configurations from BABE with a pre-trained model from Hugging Face.
The dataset will be open source. On acceptance, a link with all details and contact information will be provided. No third parties are involved.
The dataset will not be maintained as it captures the first test of NewsUnravel at a specific point in time. However, new datasets will arise from further iterations. Those will be linked in the repository. Please cite the NewsUnravel paper if you use the dataset and contact us if you're interested in more information or joining the project.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
IntelligentMonitor: Empowering DevOps Environments With Advanced Monitoring and Observability aims to improve monitoring and observability in complex, distributed DevOps environments by leveraging machine learning and data analytics. This repository contains a sample implementation of the IntelligentMonitor system proposed in the research paper, presented and published as part of the 11th International Conference on Information Technology (ICIT 2023).
If you use this dataset and code or any herein modified part of it in any publication, please cite these papers:
P. Thantharate, "IntelligentMonitor: Empowering DevOps Environments with Advanced Monitoring and Observability," 2023 International Conference on Information Technology (ICIT), Amman, Jordan, 2023, pp. 800-805, doi: 10.1109/ICIT58056.2023.10226123.
For any questions and research queries - please reach out via Email.
Abstract - In the dynamic field of software development, DevOps has become a critical tool for enhancing collaboration, streamlining processes, and accelerating delivery. However, monitoring and observability within DevOps environments pose significant challenges, often leading to delayed issue detection, inefficient troubleshooting, and compromised service quality. These issues stem from DevOps environments' complex and ever-changing nature, where traditional monitoring tools often fall short, creating blind spots that can conceal performance issues or system failures. This research addresses these challenges by proposing an innovative approach to improve monitoring and observability in DevOps environments. Our solution, Intelligent-Monitor, leverages realtime data collection, intelligent analytics, and automated anomaly detection powered by advanced technologies such as machine learning and artificial intelligence. The experimental results demonstrate that IntelligentMonitor effectively manages data overload, reduces alert fatigue, and improves system visibility, thereby enhancing performance and reliability. For instance, the average CPU usage across all components showed a decrease of 9.10%, indicating improved CPU efficiency. Similarly, memory utilization and network traffic showed an average increase of 7.33% and 0.49%, respectively, suggesting more efficient use of resources. By providing deep insights into system performance and facilitating rapid issue resolution, this research contributes to the DevOps community by offering a comprehensive solution to one of its most pressing challenges. This fosters more efficient, reliable, and resilient software development and delivery processes.
Components The key components that would need to be implemented are:
Implementation Details The core of the implementation would involve the following: - Setting up the data collection pipelines. - Building and training anomaly detection ML models on historical data. - Developing a real-time data processing pipeline. - Creating an alerting framework that ties into the ML models. - Building visualizations and dashboards.
The code would need to handle scaled-out, distributed execution for production environments.
Proper code documentation, logging, and testing would be added throughout the implementation.
Usage Examples Usage examples could include:
References The implementation would follow the details provided in the original research paper: P. Thantharate, "IntelligentMonitor: Empowering DevOps Environments with Advanced Monitoring and Observability," 2023 International Conference on Information Technology (ICIT), Amman, Jordan, 2023, pp. 800-805, doi: 10.1109/ICIT58056.2023.10226123.
Any additional external libraries or sources used would be properly cited.
Tags - DevOps, Software Development, Collaboration, Streamlini...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Used Car Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/sanjeetsinghnaik/used-car-information on 28 January 2022.
--- Dataset description provided by original source is as follows ---
I have scraped the data of used cars which are out for sale. It is important to know the price and kms driven on the car as well as the brand to know if the car is a good purchase for second hand owner or not. This data can help many people reach to that conclusion.
--- Original source retains full ownership of the source dataset ---
Conventionally, the kinematic structure of a robot is assumed to be known and data from external measuring devices are used mainly for calibration. We take an agent-centric perspective to explore whether a robot could learn its body structure by relying on scarce knowledge and depending only on unorganized proprioceptive signals. To achieve this, we analyze a mutual-information-based representation of the relationships between the proprioceptive signals, which we call proprioceptive information graphs (pi-graph), and use it to look for connections that reflect the underlying mechanical topology of the robot. We then use the inferred topology to guide the search for the morphology of the robot; i.e. the location and orientation of its joints. Results from different robots show that the correct topology and morphology can be effectively inferred from their pi-graph, regardless of the number of links and body configuration., The datasets contain the proprioceptive signals for a robot arm, a hexapod, and a humanoid, including joint position, velocity, torque, body angular and linear velocities, and body angular and linear accelerations. The robot manipulator experiment used simulated robot joint trajectories to generate the proprioceptive signals. These signals were computed using the robot's Denavit-Hartenberg parameters and the Newton-Euler method with artificially added noise. In the physical experiment, joint trajectories were optimized for joint velocity signal entropy, and measurements were obtained directly from encoders, torque sensors, and inertial measurement units (IMU). In the hexapod and humanoid robot experiments, sensor data was collected from a physics simulator (Gazebo 11) using virtual IMU sensors. Filters were applied to handle measurement noise, including low-pass filters for offline estimation and moving average filters for online estimation, emphasizing noise reduction for angular veloc..., , # Machine Learning Driven Self-Discovery of the Robot Body Morphology
The repository contains:
NOTE: MATLAB 2021b was used.
All datasets are also publicly available at Kaggle; these are the corresponding links:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was used in the Kaggle Wikipedia Web Traffic forecasting competition. It contains 145063 daily time series representing the number of hits or web traffic for a set of Wikipedia pages from 2015-07-01 to 2017-09-10.
The original dataset contains missing values. They have been simply replaced by zeros.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Ppe Kaggle is a dataset for object detection tasks - it contains Ppe annotations for 1,416 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Resistors Kaggle is a dataset for object detection tasks - it contains Resistor annotations for 1,000 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Gun Kaggle is a dataset for object detection tasks - it contains Gun Danger annotations for 2,988 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.
By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.
Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.
The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!
While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.
The files contained here are a subset of the KernelVersions
in Meta Kaggle. The file names match the ids in the KernelVersions
csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.
The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.
The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads
. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays
We love feedback! Let us know in the Discussion tab.
Happy Kaggling!