100+ datasets found
  1. u

    Australian College of Optometry Public Eye Health Limited Dataset

    • figshare.unimelb.edu.au
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marianne Coleman; Cirous Dehghani; Neville Turner; ALLISON MCKENDRICK; Michael Ibbotson (2023). Australian College of Optometry Public Eye Health Limited Dataset [Dataset]. http://doi.org/10.26188/13003955.v1
    Explore at:
    Dataset updated
    May 30, 2023
    Dataset provided by
    The University of Melbourne
    Authors
    Marianne Coleman; Cirous Dehghani; Neville Turner; ALLISON MCKENDRICK; Michael Ibbotson
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Area covered
    Australia
    Description

    This dataset contains de-identified routinely collected eye examination results for over 3000 individuals seeking eye care from the Australian College of Optometry. This data was collected from 1st January to 31st December 2018.

  2. Medical Expenditure Panel Survey (MEPS) Restricted Data Files

    • catalog.data.gov
    • healthdata.gov
    • +1more
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agency for Healthcare Research and Quality, Department of Health & Human Services (2023). Medical Expenditure Panel Survey (MEPS) Restricted Data Files [Dataset]. https://catalog.data.gov/dataset/medical-expenditure-panel-survey-meps-restricted-data-files
    Explore at:
    Dataset updated
    Jul 26, 2023
    Description

    Restricted Data Files Available at the Data Centers Researchers and users with approved research projects can access restricted data files that have not been publicly released for reasons of confidentiality at the AHRQ Data Center in Rockville, Maryland. Qualified researchers can also access restricted data files through the U.S. Census Research Data Center (RDC) network (http://www.census.gov/ces/dataproducts/index.html -- Scroll down the page and click on the Agency for Health Care Research and Quality (AHRQ) link.) For information on the RDC research proposal process and the data sets available, read AHRQ-Census Bureau agreement on access to restricted MEPS data.

  3. COVID-19 Case Surveillance Restricted Access Detailed Data

    • healthdata.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Feb 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2021). COVID-19 Case Surveillance Restricted Access Detailed Data [Dataset]. https://healthdata.gov/dataset/COVID-19-Case-Surveillance-Restricted-Access-Detai/9s6e-z3ia
    Explore at:
    xml, json, csv, application/rdfxml, application/rssxml, tsvAvailable download formats
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    data.cdc.gov
    Description

    Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.

    Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This case surveillance publicly available dataset has 33 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors. This dataset requires a registration process and a data use agreement.

    CDC has three COVID-19 case surveillance datasets:

    Requesting Access to the COVID-19 Case Surveillance Restricted Access Detailed Data Please review the following documents to determine your interest in accessing the COVID-19 Case Surveillance Restricted Access Detailed Data file: 1) CDC COVID-19 Case Surveillance Restricted Access Detailed Data: Summary, Guidance, Limitations Information, and Restricted Access Data Use Agreement Information 2) Data Dictionary for the COVID-19 Case Surveillance Restricted Access Detailed Data The next step is to complete the Registration Information and Data Use Restrictions Agreement (RIDURA). Once complete, CDC will review your agreement. After access is granted, Ask SRRG (eocevent394@cdc.gov) will email you information about how to access the data through GitHub. If you have questions about obtaining access, email eocevent394@cdc.gov.

    Overview

    The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affili

  4. o

    Public Health Portfolio dataset

    • nihr.aws-ec2-eu-central-1.opendatasoft.com
    • nihr.opendatasoft.com
    csv, excel, json
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Public Health Portfolio dataset [Dataset]. https://nihr.aws-ec2-eu-central-1.opendatasoft.com/explore/dataset/phof-datase/export/
    Explore at:
    excel, csv, jsonAvailable download formats
    Dataset updated
    May 29, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The NIHR is one of the main funders of public health research in the UK. Public health research falls within the remit of a range of NIHR Research Programmes, NIHR Centres of Excellence and Facilities, plus the NIHR Academy. NIHR awards from all NIHR Research Programmes and the NIHR Academy that were funded between January 2006 and the present extraction date are eligible for inclusion in this dataset. An agreed inclusion/exclusion criteria is used to categorise awards as public health awards (see below). Following inclusion in the dataset, public health awards are second level coded to one of the four Public Health Outcomes Framework domains. These domains are: (1) wider determinants (2) health improvement (3) health protection (4) healthcare and premature mortality.More information on the Public Health Outcomes Framework domains can be found here.This dataset is updated quarterly to include new NIHR awards categorised as public health awards. Please note that for those Public Health Research Programme projects showing an Award Budget of £0.00, the project is undertaken by an on-call team for example, PHIRST, Public Health Review Team, or Knowledge Mobilisation Team, as part of an ongoing programme of work.Inclusion criteriaThe NIHR Public Health Overview project team worked with colleagues across NIHR public health research to define the inclusion criteria for NIHR public health research awards. NIHR awards are categorised as public health awards if they are determined to be ‘investigations of interventions in, or studies of, populations that are anticipated to have an effect on health or on health inequity at a population level.’ This definition of public health is intentionally broad to capture the wide range of NIHR public health awards across prevention, health improvement, health protection, and healthcare services (both within and outside of NHS settings). This dataset does not reflect the NIHR’s total investment in public health research. The intention is to showcase a subset of the wider NIHR public health portfolio. This dataset includes NIHR awards categorised as public health awards from NIHR Research Programmes and the NIHR Academy. This dataset does not currently include public health awards or projects funded by any of the three NIHR Research Schools or any of the NIHR Centres of Excellence and Facilities. Therefore, awards from the NIHR Schools for Public Health, Primary Care and Social Care, NIHR Public Health Policy Research Unit and the NIHR Health Protection Research Units do not feature in this curated portfolio.DisclaimersUsers of this dataset should acknowledge the broad definition of public health that has been used to develop the inclusion criteria for this dataset. This caveat applies to all data within the dataset irrespective of the funding NIHR Research Programme or NIHR Academy award.Please note that this dataset is currently subject to a limited data quality review. We are working to improve our data collection methodologies. Please also note that some awards may also appear in other NIHR curated datasets. Further informationFurther information on the individual awards shown in the dataset can be found on the NIHR’s Funding & Awards website here. Further information on individual NIHR Research Programme’s decision making processes for funding health and social care research can be found here.Further information on NIHR’s investment in public health research can be found as follows: NIHR School for Public Health here. NIHR Public Health Policy Research Unit here. NIHR Health Protection Research Units here. NIHR Public Health Research Programme Health Determinants Research Collaborations (HDRC) here. NIHR Public Health Research Programme Public Health Intervention Responsive Studies Teams (PHIRST) here.

  5. Financial Statement Data Sets

    • kaggle.com
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vadim Vanak (2025). Financial Statement Data Sets [Dataset]. https://www.kaggle.com/datasets/vadimvanak/company-facts-2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Vadim Vanak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset offers a detailed collection of US-GAAP financial data extracted from the financial statements of exchange-listed U.S. companies, as submitted to the U.S. Securities and Exchange Commission (SEC) via the EDGAR database. Covering filings from January 2009 onwards, this dataset provides key financial figures reported by companies in accordance with U.S. Generally Accepted Accounting Principles (GAAP).

    Dataset Features:

    • Data Scope: The dataset is restricted to figures reported under US-GAAP standards, with the exception of EntityCommonStockSharesOutstanding and EntityPublicFloat.
    • Currency and Units: The dataset exclusively includes figures reported in USD or shares, ensuring uniformity and comparability. It excludes ratios and non-financial metrics to maintain focus on financial data.
    • Company Selection: The dataset is limited to companies with U.S. exchange tickers, providing a concentrated analysis of publicly traded firms within the United States.
    • Submission Types: The dataset only incorporates data from 10-Q, 10-K, 10-Q/A, and 10-K/A filings, ensuring consistency in the type of financial reports analyzed.

    Data Sources and Extraction:

    This dataset primarily relies on the SEC's Financial Statement Data Sets and EDGAR APIs: - SEC Financial Statement Data Sets - EDGAR Application Programming Interfaces

    In instances where specific figures were missing from these sources, data was directly extracted from the companies' financial statements to ensure completeness.

    Please note that the dataset presents financial figures exactly as reported by the companies, which may occasionally include errors. A common issue involves incorrect reporting of scaling factors in the XBRL format. XBRL supports two tag attributes related to scaling: 'decimals' and 'scale.' The 'decimals' attribute indicates the number of significant decimal places but does not affect the actual value of the figure, while the 'scale' attribute adjusts the value by a specific factor.

    However, there are several instances, numbering in the thousands, where companies have incorrectly used the 'decimals' attribute (e.g., 'decimals="-6"') under the mistaken assumption that it controls scaling. This is not correct, and as a result, some figures may be inaccurately scaled. This dataset does not attempt to detect or correct such errors; it aims to reflect the data precisely as reported by the companies. A future version of the dataset may be introduced to address and correct these issues.

    The source code for data extraction is available here

  6. COVID-19 Case Surveillance Public Use Data

    • data.virginia.gov
    • paperswithcode.com
    • +5more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). COVID-19 Case Surveillance Public Use Data [Dataset]. https://data.virginia.gov/dataset/covid-19-case-surveillance-public-use-data
    Explore at:
    rdf, xsl, json, csvAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.

    Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.

    CDC has three COVID-19 case surveillance datasets:

    The following apply to all three datasets:

    Overview

    The COVID-19 case surveillance database includes individual-level data reported to U.S. states and aut

  7. w

    MEDPAR Limited Data Set (LDS) - Hospital (National)

    • data.wu.ac.at
    Updated Apr 5, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2016). MEDPAR Limited Data Set (LDS) - Hospital (National) [Dataset]. https://data.wu.ac.at/schema/data_gov/NjRmOWQxNDItYjk4NS00MDI4LThkMTgtM2I1OTc3NmY2MTli
    Explore at:
    Dataset updated
    Apr 5, 2016
    Dataset provided by
    U.S. Department of Health & Human Services
    Description

    No description provided

  8. Statutory Infrastructure Provider (SIP) - NBN Co Limited - Dataset

    • data.gov.au
    • researchdata.edu.au
    geojson, sld, wfs +3
    Updated Aug 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SIP Register - NBN Co Limited (2023). Statutory Infrastructure Provider (SIP) - NBN Co Limited - Dataset [Dataset]. https://data.gov.au/data/dataset/statutoryinfrastructureprovidernbncolimited
    Explore at:
    zipped mapinfo(115383211), sld(776), zipped mapinfo(115037619), wfs, geojson, zip mapinfo(116621871), wmsAvailable download formats
    Dataset updated
    Aug 9, 2023
    Dataset provided by
    NBN Cohttp://nbnco.com.au/
    Authors
    SIP Register - NBN Co Limited
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    This data set describes the service areas where NBN Co Limited is the Statutory Infrastructure Provider (SIP).

    This data set forms part of the SIP register which is managed by the ACMA. The SIP register is located on the ACMA’s website at https://www.acma.gov.au/sip-register.

    The data represented here is provided by NBN Co to the ACMA as required under Part 19 of the Telecommunications Act 1997. The ACMA also publishes NBN Co’s geospatial data to the National Map. The copyright in the data is owned by NBN Co, and users must comply with the terms of use for the data as set out on this website. The ACMA does not guarantee, and accepts no legal liability for any loss whatsoever arising from or in connection with the accuracy, reliability, currency, completeness or fitness for purpose of the data.

    The technology planned or delivered for premises or areas by NBN Co, and the availability of the NBN Co network at a premise, may be subject to change over time. More up to date information may be available on https://www.nbnco.com.au/.

  9. HCUP State Inpatient Databases (SID) - Restricted Access File

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agency for Healthcare Research and Quality, Department of Health & Human Services (2025). HCUP State Inpatient Databases (SID) - Restricted Access File [Dataset]. https://catalog.data.gov/dataset/hcup-state-inpatient-databases-sid-restricted-access-file
    Explore at:
    Dataset updated
    Feb 22, 2025
    Description

    The Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases (SID) are a set of hospital databases that contain the universe of hospital inpatient discharge abstracts from data organizations in participating States. The data are translated into a uniform format to facilitate multi-State comparisons and analyses. The SID are based on data from short term, acute care, nonfederal hospitals. Some States include discharges from specialty facilities, such as acute psychiatric hospitals. The SID include all patients, regardless of payer and contain clinical and resource use information included in a typical discharge abstract, with safeguards to protect the privacy of individual patients, physicians, and hospitals (as required by data sources). Developed through a Federal-State-Industry partnership sponsored by the Agency for Healthcare Research and Quality (AHRQ), HCUP data inform decision making at the national, State, and community levels. The SID contain clinical and resource-use information that is included in a typical discharge abstract, with safeguards to protect the privacy of individual patients, physicians, and hospitals (as required by data sources). Data elements include but are not limited to: diagnoses, procedures, admission and discharge status, patient demographics (e.g., sex, age), total charges, length of stay, and expected payment source, including but not limited to Medicare, Medicaid, private insurance, self-pay, or those billed as ‘no charge’. In addition to the core set of uniform data elements common to all SID, some include State-specific data elements. The SID exclude data elements that could directly or indirectly identify individuals. For some States, hospital and county identifiers are included that permit linkage to the American Hospital Association Annual Survey File and county-level data from the Bureau of Health Professions' Area Resource File except in States that do not allow the release of hospital identifiers. Restricted access data files are available with a data use agreement and brief online security training.

  10. w

    Denominator File - Limited Data Set

    • data.wu.ac.at
    Updated Apr 5, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2016). Denominator File - Limited Data Set [Dataset]. https://data.wu.ac.at/odso/data_gov/MDdhNjYxOGMtZWIwYi00N2FkLWFiNTUtY2M1Yjc0YWZjNDc5
    Explore at:
    Dataset updated
    Apr 5, 2016
    Dataset provided by
    U.S. Department of Health & Human Services
    Description

    The Denominator File combines Medicare beneficiary entitlement status information from administrative enrollment records with third-party payer information and GHP enrollment information. The Denominator File contains data on all Medicare beneficiaries enrolled and or entitled in a given year. It is an abbreviated version of the Enrollment Data Base (EDB) (selected data elements). It does not contain data on all beneficiaries ever entitled to Medicare. The file contains data only for beneficiaries who were entitled during the year of the data. These data are available annually in May of the current year for the prior year.

  11. R

    Coco Limited (person Only) Dataset

    • universe.roboflow.com
    zip
    Updated May 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    shreks swamp (2022). Coco Limited (person Only) Dataset [Dataset]. https://universe.roboflow.com/shreks-swamp/coco-dataset-limited--person-only
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2022
    Dataset authored and provided by
    shreks swamp
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    People Bounding Boxes
    Description

    COCO Dataset Limited (Person Only)

    ## Overview
    
    COCO Dataset Limited (Person Only) is a dataset for object detection tasks - it contains People annotations for 5,438 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  12. Helsinki Tomography Challenge 2022 open tomographic dataset (HTC 2022)

    • zenodo.org
    bin, png
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Meaney; Alexander Meaney; Fernando Silva de Moura; Fernando Silva de Moura; Samuli Siltanen; Samuli Siltanen (2024). Helsinki Tomography Challenge 2022 open tomographic dataset (HTC 2022) [Dataset]. http://doi.org/10.5281/zenodo.6967128
    Explore at:
    bin, pngAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexander Meaney; Alexander Meaney; Fernando Silva de Moura; Fernando Silva de Moura; Samuli Siltanen; Samuli Siltanen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Helsinki
    Description

    This dataset is primarily designed for the Helsinki Tomography Challenge 2022 (HTC 2022), but it can be used for generic algorithm research and development in 2D CT reconstruction.

    The dataset contains 2D tomographic measurements, i.e., sinograms and the affiliated metadata containing measurement geometry and other specifications. The sinograms have already been pre-processed with background and flat-field corrections, and compensated for a slightly misaligned center of rotation in the cone-beam computed tomography scanner. The log-transforms from intensity measurements to attenuation data have also been already computed. The data has been stored as MATLAB structs and saved in .mat file format.

    The purpose of HTC 2022 is to develop algorithms for limited angle tomography. The challenge data consists of tomographic measurements of a set of plastic phantoms with a diameter of 7 cm and with holes of differing shapes cut into them.

    The currently available dataset contains five training phantoms with full angular data. These are designed to facilitate algorithm development and benchmarking for the challenge itself. Four of the training phantoms contain holes. These are labeled ta, tb, tc, and td. A fifth training phantom is a solid disc with no holes. We encourage subsampling these datasets to create limited data sinograms and comparing the reconstruction results to the ground truth obtainable from the full-data sinograms. Note that the phantoms are not all identically centered.

    The actual challenge data will be arranged into seven different difficulty levels, labeled 1-7, with each level containing three different phantoms, labeled A-C. As the difficulty level increases, the number of holes increases and their shapes become increasingly complex. Furthermore, the view angle is reduced as the difficulty level increases, starting with a 90 degree field of view at level 1, and reducing by 10 degrees at each increasing level of difficulty. The view-angles in the challenge data will not all begin from 0 degrees.

    As the orientation of CT reconstructions can depend on the tools used, we have included example reconstructions for each of the phantoms to demonstrate how the reconstructions obtained from the sinograms and the specified geometry should be oriented. The reconstructions have been computed using the filtered back-projection algorithm provided by the ASTRA Toolbox.

    We have also included segmentation examples of the reconstructions to demonstrate the desired format for the final competition entries. The segmentation images for obtained by the following steps:
    1) Set all negative pixel values in the reconstruction to zero.
    2) Determine a threshold level using Otsu's method.
    3) Globally threshold the image using the threshold level.
    4) Perform a morphological closing on the image using a disc with a radius of 3 pixels.

    The competitors do not need to follow the above procedure, and are encouraged to explore various segmentation techniques for the limited angle reconstructions.


    Also included in this dataset is a MATLAB example script for how to work with the CT data.

    For getting started, we recommend the following MATLAB toolboxes:

    HelTomo - Helsinki Tomography Toolbox
    https://github.com/Diagonalizable/HelTomo/

    The ASTRA Toolbox
    https://www.astra-toolbox.com/

    Spot – A Linear-Operator Toolbox
    https://www.cs.ubc.ca/labs/scl/spot/

    Note that using the above toolboxes for the Challenge is by no means compulsory: the metadata for each dataset contains a full specification of the measurement geometry, and the competitors are free to use any and all computational tools they want to in computing the reconstructions and segmentations.

    The full data for all the test phantoms will be released after the Helsinki Tomography Challenge 2022 has ended.

    All measurements were conducted at the Industrial Mathematics Computed Tomography Laboratory at the University of Helsinki.

  13. Data from: Population Assessment of Tobacco and Health (PATH) Study [United...

    • icpsr.umich.edu
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2025). Population Assessment of Tobacco and Health (PATH) Study [United States] Restricted-Use Files [Dataset]. http://doi.org/10.3886/ICPSR36231.v42
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36231/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36231/terms

    Area covered
    United States
    Description

    The PATH Study was launched in 2011 to inform the Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who use or do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave, Wave 1, of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population (CNP) at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Unit (PSU)s and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the CNP at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the CNP at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This "second replenishment sample" was combined for estimation and analysis purposes with the Wave 7 adult and youth respondents from the Wave 4 Cohorts who were at least age 15 and in the CNP at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Restricted-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts. Dataset 0002 (DS0002) contains the data from the State Design Data. This file contains 7 variables and 82,139 cases. The state identifier in the State Design file reflects the participant's state of residence at the time of selection and recruitment for the PATH Study. Dataset 1011 (DS1011) contains the data from the Wave 1 Adult Questionnaire. This data file contains 2,021 variables and 32,320 cases. Each of the cases represents a single, completed interview. Dataset 1012 (DS1012) contains the data from the Wave 1 Youth and Parent Questionnaire. This file contains 1,431 variables and 13,651 cases. Dataset 1411 (DS1411) contains the Wave 1 State Identifier data for Adults and has 5 variables and 32,320 cases. Dataset 1412 (DS1412) contains the Wave 1 State Identifier data for Youth (and Parents) and has 5 variables and 13,651 cases. The same 5 variables are in each State Identifier dataset, including PERSONID for linking the State Identifier to the questionnaire and biomarker data and 3 variables designating the state (state Federal Information Processing System (FIPS), state abbreviation, and full name of the state). The State Identifier values in these datasets represent participants' state of residence at the time of Wave 1, which is also their state of residence at the time of recruitment. Dataset 1611 (DS1611) contains the Tobacco Universal Product Code (UPC) data from Wave 1. This data file contains 32 variables and 8,601 cases. This file contains UPC values on the packages of tobacco products used or in the possession of adult respondents at the time of Wave 1. The UPC values can be used to identify and validate the specific products used by respondents and augment the analyses of the characteristics of tobacco products used

  14. N

    Little Valley, NY Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Little Valley, NY Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6ecc5012-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York, Little Valley
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Little Valley population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Little Valley across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Little Valley was 1,090, a 0.28% increase year-by-year from 2021. Previously, in 2021, Little Valley population was 1,087, a decline of 0.46% compared to a population of 1,092 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Little Valley decreased by 31. In this period, the peak population was 1,140 in the year 2010. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Little Valley is shown in this column.
    • Year on Year Change: This column displays the change in Little Valley population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Little Valley Population by Year. You can refer the same here

  15. d

    Medicare Current Beneficiary Survey - Limited Data Set.

    • datadiscoverystudio.org
    Updated Jul 14, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Medicare Current Beneficiary Survey - Limited Data Set. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/c54397d0b5034afc82ecd1021ae49757/html
    Explore at:
    Dataset updated
    Jul 14, 2017
    Description

    description:

    The Medicare Current Beneficiary Survey (MCBS) is a continuous, multipurpose survey of a representative national sample of the Medicare population.
    There are two data files from the Medicare Current Beneficiary Survey (MCBS) that are released in annual Access to Care and Cost and Use files, which can be purchased directly from CMS.

    ; abstract:

    The Medicare Current Beneficiary Survey (MCBS) is a continuous, multipurpose survey of a representative national sample of the Medicare population.
    There are two data files from the Medicare Current Beneficiary Survey (MCBS) that are released in annual Access to Care and Cost and Use files, which can be purchased directly from CMS.

  16. N

    National COVID Cohort Collaborative Data Enclave

    • datacatalog.med.nyu.edu
    Updated Jun 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States - National Center for Advancing Translational Sciences (NCATS) (2024). National COVID Cohort Collaborative Data Enclave [Dataset]. https://datacatalog.med.nyu.edu/dataset/10384
    Explore at:
    Dataset updated
    Jun 7, 2024
    Dataset authored and provided by
    United States - National Center for Advancing Translational Sciences (NCATS)
    Time period covered
    Jan 1, 2020 - Present
    Area covered
    United States
    Description

    The National Center for Advancing Translational Sciences (NCATS) has systematically compiled clinical, laboratory and diagnostic data from electronic health records to support COVID-19 research efforts via the National COVID Cohort Collaborative (N3C) Data Enclave. As of August 2, 2022, the repository contains information from over 15 million patients (including 5.8 million COVID-19 positive patients) across the United States.

    The N3C Data Enclave is organized into 3 levels of data with varying access restrictions:

    • Synthetic dataset: Contains no protected health information (PHI). This is a statistically-comparable artificial dataset derived from the original dataset.
      • Can be requested by: Researchers from US-based or foreign institutions, and citizen scientists
    • De-identified dataset: Contains no PHI. This dataset consists of real patient data with shifted dates of service and truncated ZIP codes of patients residing in areas with populations above 20,000.
      • Can be requested by: Researchers from US-based or foreign institutions
    • Limited Data Set (LDS): Contains 2 PHI elements (dates of service and patient ZIP code). This dataset consists of real patient data.
      • Can be requested by: Researchers from US-based institutions only

  17. d

    A Dataset for Machine Learning Algorithm Development

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated May 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2024). A Dataset for Machine Learning Algorithm Development [Dataset]. https://catalog.data.gov/dataset/a-dataset-for-machine-learning-algorithm-development2
    Explore at:
    Dataset updated
    May 1, 2024
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    This dataset consists of imagery, imagery footprints, associated ice seal detections and homography files associated with the KAMERA Test Flights conducted in 2019. This dataset was subset to include relevant data for detection algorithm development. This dataset is limited to data collected during flights 4, 5, 6 and 7 from our 2019 surveys.

  18. NHANES National Youth Fitness Survey (NNYFS) Restricted Data

    • healthdata.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). NHANES National Youth Fitness Survey (NNYFS) Restricted Data [Dataset]. https://healthdata.gov/dataset/NHANES-National-Youth-Fitness-Survey-NNYFS-Restric/dhmz-tmjr
    Explore at:
    csv, application/rssxml, json, application/rdfxml, tsv, xmlAvailable download formats
    Dataset updated
    Jan 12, 2023
    Dataset provided by
    data.cdc.gov
    Description

    The National Health and Nutrition Examination Survey’s (NHANES) National Youth Fitness Survey (NNYFS) was conducted in 2012 to collect nationally representative data on physical activity and fitness levels for U.S. children and adolescents aged 3-15 years, through household interviews and fitness tests conducted in mobile examination centers.
    The NNYFS interview includes demographic, socioeconomic, dietary, and health-related questions. The fitness tests included standardized measurements of core, upper, and lower body muscle strength, and gross motor skills, as well as a measurement of cardiovascular fitness by walking and running on a treadmill. A total of 1,640 children and adolescents aged 3-15 were interviewed and 1,576 were examined.
    This set of restricted data files contains indirect identifying and/or sensitive information collected in NNYFS. For NNYFS public use files, please visit NNYFS 2012 at: https://wwwn.cdc.gov/nchs/nhanes/search/nnyfs12.aspx. For more information on the survey design, implementation, and data analysis, see the NNYFS Analytic Guidelines at: https://www.cdc.gov/nchs/nnyfs/analytic_guidelines.htm. For more information on NHANES, visit the NHANES - National Health and Nutrition Examination Survey Homepage at: https://www.cdc.gov/nchs/nhanes/index.htm.

  19. National Health and Nutrition Examination Survey (NHANES) Restricted Data:...

    • healthdata.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jan 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). National Health and Nutrition Examination Survey (NHANES) Restricted Data: 1999 to Present [Dataset]. https://healthdata.gov/dataset/National-Health-and-Nutrition-Examination-Survey-N/4ij7-4y8w
    Explore at:
    csv, application/rdfxml, xml, tsv, json, application/rssxmlAvailable download formats
    Dataset updated
    Jan 12, 2023
    Dataset provided by
    data.cdc.gov
    Description

    The National Health and Nutrition Examination Survey (NHANES) is designed to assess the health and nutritional status of adults and children in the United States. The survey is unique in that it combines interviews with standardized physical examinations and laboratory tests.
    NHANES was conducted on a periodic basis from 1971 to 1994. In 1999 NHANES became continuous. Every year, approximately 5,000 people of all ages are interviewed in their homes and complete the health examination conducted in a mobile examination center.
    The NHANES interview includes demographic, socioeconomic, dietary, and health-related questions. The examination component consists of medical, dental, and physiological measurements, as well as the collection of biospecimens, such as blood and urine for laboratory testing.

    This set of restricted data contains indirect identifying and/or sensitive information collected in continuous NHANES since 1999. Please refer to the links below for additional data available from NHANES:

    Please refer to the NHANES Analytic Guidelines at: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx and the on-line NHANES Tutorial at: https://wwwn.cdc.gov/nchs/nhanes/tutorials/default.aspx for further details on the survey design, implementation, and data analysis.

  20. f

    Summary of logistic regression (for the complete dataset refer to data in S1...

    • plos.figshare.com
    xls
    Updated Nov 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Richard J. Varhol; Richard Norman; Sean Randall; Crystal Man Ying Lee; Luke Trevenen; James H. Boyd; Suzanne Robinson (2023). Summary of logistic regression (for the complete dataset refer to data in S1 Appendix). [Dataset]. http://doi.org/10.1371/journal.pone.0290528.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Nov 16, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Richard J. Varhol; Richard Norman; Sean Randall; Crystal Man Ying Lee; Luke Trevenen; James H. Boyd; Suzanne Robinson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary of logistic regression (for the complete dataset refer to data in S1 Appendix).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Marianne Coleman; Cirous Dehghani; Neville Turner; ALLISON MCKENDRICK; Michael Ibbotson (2023). Australian College of Optometry Public Eye Health Limited Dataset [Dataset]. http://doi.org/10.26188/13003955.v1

Australian College of Optometry Public Eye Health Limited Dataset

Related Article
Explore at:
Dataset updated
May 30, 2023
Dataset provided by
The University of Melbourne
Authors
Marianne Coleman; Cirous Dehghani; Neville Turner; ALLISON MCKENDRICK; Michael Ibbotson
License

Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically

Area covered
Australia
Description

This dataset contains de-identified routinely collected eye examination results for over 3000 individuals seeking eye care from the Australian College of Optometry. This data was collected from 1st January to 31st December 2018.

Search
Clear search
Close search
Google apps
Main menu