Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Recent baseball scholarship has drawn attention to U.S. professional baseball’s complex twentieth century labor dynamics and expanding global presence. From debates around desegregation to discussions about the sport’s increasingly multicultural identity and global presence, the cultural politics of U.S. professional baseball is connected to the problem of baseball labor. However, most scholars address these topics by focusing on Major League Baseball (MLB), ignoring other teams and leagues—Minor League Baseball (MiLB)—that develop players for Major League teams. Considering Minor League Baseball is critical to understanding the professional game in the United States, since players who populate Major League rosters constitute a fraction of U.S. professional baseball’s entire labor force. As a digital humanities dissertation on baseball labor and globalization, this project uses digital humanities approaches and tools to analyze and visualize a quantitative data set, exploring how Minor League Baseball relates to and complicates MLB-dominated narratives around globalization and diversity in U.S. professional baseball labor. This project addresses how MiLB demographics and global dimensions shifted over time, as well as how the timeline and movement of foreign-born players through the Minor Leagues differs from their U.S.-born counterparts. This project emphasizes the centrality and necessity of including MiLB data in studies of baseball’s labor and ideological significance or cultural meaning, making that argument by drawing on data analysis, visualization, and mapping to address how MiLB labor complicates or supplements existing understandings of the relationship between U.S. professional baseball’s global reach and “national pastime” claims.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.
Facebook
TwitterThis data was developed to represent city of cape coral citizen action center issues and their associated attributes for the purpose of mapping, analysis, and planning. The accuracy of this data varies and should not be used for precise measurements or calculations.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper provides an abstract analysis of parallel processing strategies for spatial and spatio-temporal data. It isolates aspects such as data locality and computational locality as well as redundancy and locally sequential access as central elements of parallel algorithm design for spatial data. Furthermore, the paper gives some examples from simple and advanced GIS and spatial data analysis highlighting both that big data systems have been around long before the current hype of big data and that they follow some design principles which are inevitable for spatial data including distributed data structures and messaging, which are, however, incompatible with the popular MapReduce paradigm. Throughout this discussion, the need for a replacement or extension of the MapReduce paradigm for spatial data is derived. This paradigm should be able to deal with the imperfect data locality inherent to spatial data hindering full independence of non-trivial computational tasks. We conclude that more research is needed and that spatial big data systems should pick up more concepts like graphs, shortest paths, raster data, events, and streams at the same time instead of solving exactly the set of spatially separable problems such as line simplifications or range queries in manydifferent ways.
Facebook
TwitterWithin the U.S. Geological Survey (USGS), three-dimensional (3D) geologic models are created as part of geologic framework studies, to support energy, minerals, or water resource assessments, and to inform geologic hazard assessments. Such models are often used within the organization as digital input into process and predictive models. 3D geological modeling typically supports research and project work within a specific part of the USGS – called Mission Areas – and as a result, 3D modeling activities are decentralized and model results are released on a project-by-project basis. This digital data release inventories and catalogs, for the first time, 3D geological models constructed by the USGS across all Mission Areas. This inventory assembles in catalog form the spatial locations and salient characteristics of previously published USGS 3D geological models. This inventory covers the time period from 2004, the date of the earliest published model through 2022. This digital dataset contains spatial extents of the 3D geologic models as polygon features that are attributed with unique identifiers that link the spatial data to nonspatial tables that define the data sources used and describe various aspects of each published model. The nonspatial DataSources table includes full citation and URL address for both published model reports and any digital model data released as a separate publication. The nonspatial ModelAttributes table classifies the type of model, using several classification schemes, identifies the model purpose and originating agency, and describes the spatial extent, depth, and number of layers included in each model. A tabular glossary defines terms used in the dataset. A tabular data dictionary describes the entity and attribute information for all attributes of the geospatial data and the accompanying nonspatial tables.
Facebook
TwitterUnder the direction and funding of the National Cooperative Mapping Program with guidance and encouragement from the United States Geological Survey (USGS), a digital database of three-dimensional (3D) vector data, displayed as two-dimensional (2D) data-extent bounding polygons. This geodatabase is to act as a virtual and digital inventory of 3D structure contour and isopach vector data for the USGS National Geologic Synthesis (NGS) team. This data will be available visually through a USGS web application and can be queried using complimentary nonspatial tables associated with each data harboring polygon. This initial publication contains 60 datasets collected directly from USGS specific publications and federal repositories. Further publications of dataset collections in versioned releases will be annotated in additional appendices, respectfully. These datasets can be identified from their specific version through their nonspatial tables. This digital dataset contains spatial extents of the 2D geologic vector data as polygon features that are attributed with unique identifiers that link the spatial data to nonspatial tables that define the data sources used and describe various aspects of each published model. The nonspatial DataSources table includes full citation and URL address for both published model reports, any digital model data released as a separate publication, and input type of vector data, using several classification schemes. A tabular glossary defines terms used in the dataset. A tabular data dictionary describes the entity and attribute information for all attributes of the geospatial data and the accompanying nonspatial tables.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Geospatial ETL Platform market size reached USD 1.68 billion in 2024, demonstrating robust momentum driven by the increasing demand for spatial data integration and advanced analytics across industries. The market is set to expand at a CAGR of 13.7% from 2025 to 2033, with the forecasted market size projected to reach USD 5.23 billion by 2033. This growth trajectory is primarily attributed to the proliferation of location-based services, advancements in geospatial data infrastructure, and the rising importance of real-time decision-making in sectors such as government, utilities, and transportation.
One of the most significant growth factors fueling the Geospatial ETL Platform market is the exponential rise in the volume and variety of geospatial data generated from multiple sources, including satellites, IoT devices, drones, and mobile applications. Organizations are increasingly seeking sophisticated tools to extract, transform, and load (ETL) this data efficiently to derive actionable insights. The need for seamless integration of spatial and non-spatial data has become critical for enterprises aiming to enhance operational efficiency, optimize resource allocation, and improve situational awareness. As businesses realize the value of spatial analytics, investments in geospatial ETL solutions are accelerating, especially for applications such as urban planning, disaster management, and infrastructure monitoring.
Another key driver is the rapid adoption of cloud-based geospatial ETL platforms, which offer scalability, flexibility, and cost-effectiveness compared to traditional on-premises solutions. Cloud deployment enables organizations to process large datasets in real time, collaborate across geographies, and leverage advanced analytics powered by artificial intelligence and machine learning. This shift to the cloud not only reduces infrastructure costs but also empowers organizations to respond quickly to changing business needs. Furthermore, the integration of geospatial ETL platforms with emerging technologies such as 5G, edge computing, and real-time data streaming is unlocking new opportunities for innovation in sectors like smart cities, autonomous vehicles, and precision agriculture.
The increasing focus on regulatory compliance and data governance is also propelling the adoption of geospatial ETL platforms. Governments and regulatory bodies are mandating stringent data management practices, especially for critical infrastructure and public safety applications. Geospatial ETL solutions play a pivotal role in ensuring data quality, lineage, and security, thereby supporting organizations in meeting compliance requirements. Additionally, the growing awareness of the strategic value of location intelligence is encouraging enterprises to invest in advanced ETL solutions that can handle complex spatial data transformations and deliver high-quality, actionable insights for decision-making.
From a regional perspective, North America continues to dominate the Geospatial ETL Platform market, accounting for the largest revenue share in 2024, followed closely by Europe and the Asia Pacific. The presence of leading technology providers, strong government initiatives for smart infrastructure, and the high adoption rate of digital transformation strategies are contributing to the region's leadership. Asia Pacific, on the other hand, is witnessing the fastest growth, driven by rapid urbanization, expanding digital infrastructure, and increasing investments in geospatial technologies by governments and private enterprises. Latin America and the Middle East & Africa are also emerging as promising markets, supported by initiatives to modernize infrastructure and enhance public services through spatial data integration.
The Geospatial ETL Platform market by component is segmented into software and services, each playing a distinct yet complementary role in enabling organizations to harness the power of spatial data. The software segment encompasses a wide array of ETL solutions designed to automate the extraction, transformation, and loading of geospatial data from diverse sources into target systems. These solutions are equipped with advanced features such as data cleansing, schema mapping, spatial data enrichment, and workflow automation, making them indispensable for enterprises seeking to streamline data integration pro
Facebook
TwitterThis digital dataset was created as part of a U.S. Geological Survey study, done in cooperation with the Monterey County Water Resource Agency, to conduct a hydrologic resource assessment and develop an integrated numerical hydrologic model of the hydrologic system of Salinas Valley, CA. As part of this larger study, the USGS developed this digital dataset of geologic data and three-dimensional hydrogeologic framework models, referred to here as the Salinas Valley Geological Framework (SVGF), that define the elevation, thickness, extent, and lithology-based texture variations of nine hydrogeologic units in Salinas Valley, CA. The digital dataset includes a geospatial database that contains two main elements as GIS feature datasets: (1) input data to the 3D framework and textural models, within a feature dataset called “ModelInput”; and (2) interpolated elevation, thicknesses, and textural variability of the hydrogeologic units stored as arrays of polygonal cells, within a feature dataset called “ModelGrids”. The model input data in this data release include stratigraphic and lithologic information from water, monitoring, and oil and gas wells, as well as data from selected published cross sections, point data derived from geologic maps and geophysical data, and data sampled from parts of previous framework models. Input surface and subsurface data have been reduced to points that define the elevation of the top of each hydrogeologic units at x,y locations; these point data, stored in a GIS feature class named “ModelInputData”, serve as digital input to the framework models. The location of wells used a sources of subsurface stratigraphic and lithologic information are stored within the GIS feature class “ModelInputData”, but are also provided as separate point feature classes in the geospatial database. Faults that offset hydrogeologic units are provided as a separate line feature class. Borehole data are also released as a set of tables, each of which may be joined or related to well location through a unique well identifier present in each table. Tables are in Excel and ascii comma-separated value (CSV) format and include separate but related tables for well location, stratigraphic information of the depths to top and base of hydrogeologic units intercepted downhole, downhole lithologic information reported at 10-foot intervals, and information on how lithologic descriptors were classed as sediment texture. Two types of geologic frameworks were constructed and released within a GIS feature dataset called “ModelGrids”: a hydrostratigraphic framework where the elevation, thickness, and spatial extent of the nine hydrogeologic units were defined based on interpolation of the input data, and (2) a textural model for each hydrogeologic unit based on interpolation of classed downhole lithologic data. Each framework is stored as an array of polygonal cells: essentially a “flattened”, two-dimensional representation of a digital 3D geologic framework. The elevation and thickness of the hydrogeologic units are contained within a single polygon feature class SVGF_3DHFM, which contains a mesh of polygons that represent model cells that have multiple attributes including XY location, elevation and thickness of each hydrogeologic unit. Textural information for each hydrogeologic unit are stored in a second array of polygonal cells called SVGF_TextureModel. The spatial data are accompanied by non-spatial tables that describe the sources of geologic information, a glossary of terms, a description of model units that describes the nine hydrogeologic units modeled in this study. A data dictionary defines the structure of the dataset, defines all fields in all spatial data attributer tables and all columns in all nonspatial tables, and duplicates the Entity and Attribute information contained in the metadata file. Spatial data are also presented as shapefiles. Downhole data from boreholes are released as a set of tables related by a unique well identifier, tables are in Excel and ascii comma-separated value (CSV) format.
Facebook
Twitter
According to our latest research, the global market size for the Retail Geospatial Analytics Platform Market reached USD 6.2 billion in 2024. Driven by the increasing adoption of location-based intelligence and advanced spatial data analytics in retail, the market is expected to grow at a robust CAGR of 14.2% from 2025 to 2033. By 2033, the market is forecasted to reach USD 18.5 billion. This growth is primarily fueled by the rising demand for real-time insights, the proliferation of IoT and smart devices, and the need for retailers to optimize operations and enhance customer experiences through actionable geospatial data.
The growth of the Retail Geospatial Analytics Platform Market is underpinned by the increasing emphasis on data-driven decision-making across the retail sector. Retailers are leveraging geospatial analytics to gain deeper insights into customer behavior, identify optimal store locations, and streamline supply chain operations. The integration of artificial intelligence and machine learning with geospatial analytics platforms enables more accurate predictions and personalized marketing strategies. As a result, businesses are able to enhance operational efficiency, reduce costs, and improve customer engagement, contributing significantly to the expansion of the market.
Another critical growth factor is the rapid digital transformation occurring within the retail industry. The shift towards omnichannel retailing, combined with the surge in e-commerce activities, necessitates advanced analytics platforms capable of handling vast amounts of spatial and non-spatial data. Retailers are increasingly investing in geospatial analytics to monitor foot traffic, analyze market trends, and assess competitive landscapes. The ability to visualize and interpret complex geographic data in real-time is empowering retailers to make informed, location-specific decisions, thereby driving the adoption of retail geospatial analytics platforms globally.
Furthermore, the proliferation of connected devices and the advent of smart cities are creating new opportunities for the Retail Geospatial Analytics Platform Market. The integration of geospatial data with IoT sensors, mobile applications, and cloud-based services allows retailers to capture granular insights into consumer movements and preferences. This, in turn, facilitates targeted marketing campaigns, efficient inventory management, and optimized supply chain networks. As urbanization accelerates and consumer expectations evolve, the role of geospatial analytics in shaping the future of retail is becoming increasingly prominent, ensuring sustained market growth over the forecast period.
The Geospatial Data Catalog Platform plays a crucial role in the retail sector by providing a centralized repository for managing and accessing diverse geospatial datasets. This platform enables retailers to efficiently organize and retrieve spatial data, facilitating enhanced decision-making processes. By leveraging a geospatial data catalog, businesses can streamline data integration from various sources, ensuring that the most accurate and up-to-date information is available for analysis. This capability is particularly valuable in the context of retail geospatial analytics, where timely insights can drive competitive advantage. As retailers continue to adopt advanced analytics solutions, the importance of a robust geospatial data catalog platform becomes increasingly evident, supporting the seamless integration of spatial data into business operations.
From a regional perspective, North America continues to dominate the Retail Geospatial Analytics Platform Market due to the presence of major technology providers, high adoption rates of advanced analytics, and a mature retail ecosystem. However, Asia Pacific is emerging as the fastest-growing market, driven by rapid urbanization, expanding retail infrastructure, and increasing investments in digital technologies. Europe also holds a significant share, supported by stringent regulations around data privacy and growing awareness of the benefits of geospatial analytics. Latin America and the Middle East & Africa are witnessing gradual adoption, fueled by digital transformation initiatives and the expansion of organized retail.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global GIS Data Management market size is projected to grow from USD 12.5 billion in 2023 to USD 25.6 billion by 2032, exhibiting a CAGR of 8.4% during the forecast period. This impressive growth is driven by the increasing adoption of geographic information systems (GIS) across various sectors such as urban planning, disaster management, and agriculture. The rising need for effective data management systems to handle the vast amounts of spatial data generated daily also significantly contributes to the market's expansion.
One of the primary growth factors for the GIS Data Management market is the burgeoning demand for spatial data analytics. Businesses and governments are increasingly leveraging GIS data to make informed decisions and strategize operational efficiencies. With the rapid urbanization and industrialization worldwide, there's an unprecedented need to manage and analyze geographic data to plan infrastructure, monitor environmental changes, and optimize resource allocation. Consequently, the integration of GIS with advanced technologies like artificial intelligence and machine learning is becoming more prominent, further fueling market growth.
Another significant factor propelling the market is the advancement in GIS technology itself. The development of sophisticated software and hardware solutions for GIS data management is making it easier for organizations to capture, store, analyze, and visualize geographic data. Innovations such as 3D GIS, real-time data processing, and cloud-based GIS solutions are transforming the landscape of geographic data management. These advancements are not only enhancing the capabilities of GIS systems but also making them more accessible to a broader range of users, from small enterprises to large governmental agencies.
The growing implementation of GIS in disaster management and emergency response activities is also a critical factor driving market growth. GIS systems play a crucial role in disaster preparedness, response, and recovery by providing accurate and timely geographic data. This data helps in assessing risks, coordinating response activities, and planning resource deployment. With the increasing frequency and intensity of natural disasters, the reliance on GIS data management systems is expected to grow, resulting in higher demand for GIS solutions across the globe.
Geospatial Solutions are becoming increasingly integral to the GIS Data Management landscape, offering enhanced capabilities for spatial data analysis and visualization. These solutions provide a comprehensive framework for integrating various data sources, enabling users to gain deeper insights into geographic patterns and trends. As organizations strive to optimize their operations and decision-making processes, the demand for robust geospatial solutions is on the rise. These solutions not only facilitate the efficient management of spatial data but also support advanced analytics and real-time data processing. By leveraging geospatial solutions, businesses and governments can improve their strategic planning, resource allocation, and environmental monitoring efforts, thereby driving the overall growth of the GIS Data Management market.
Regionally, North America holds a significant share of the GIS Data Management market, driven by high technology adoption rates and substantial investments in GIS technologies by government and private sectors. However, Asia Pacific is anticipated to witness the highest growth rate during the forecast period. The rapid urbanization, economic development, and increasing adoption of advanced technologies in countries like China and India are major contributors to this growth. Governments in this region are also focusing on smart city projects and infrastructure development, which further boosts the demand for GIS data management solutions.
The GIS Data Management market is segmented by component into software, hardware, and services. The software segment is the largest and fastest-growing segment, driven by the continuous advancements in GIS software capabilities. GIS software applications enable users to analyze spatial data, create maps, and manage geographic information efficiently. The integration of GIS software with other enterprise systems and the development of user-friendly interfaces are key factors propelling the growth of this segment. Furthermore, the rise of mobile GIS applications, which allow field data collectio
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Excel spreadsheet which only contains numeric data from a set of confusion matrices (one sheet per matrix).It is the same quantitative data stored in a field of a table in the database. Only is provided as a complement to the database in order to access to the quantitative data in a more convenient format.
Facebook
TwitterThe Referrals Spatial Database - Public records locations of referrals submitted to the Department under the Environment Protection and Biodiversity Conservation (EPBC Act) 1999. A proponent (those who are proposing a development) must supply the maximum extent (location) of any proposed activities that need to be assessed under the EPBC Act through an application process.Referral boundaries should not be misinterpreted as development footprints but where referrals have been received by the Department. It should be noted that not all referrals captured within the Referrals Spatial Database, are assessed and approved by the Minister for the Environment, as some are withdrawn before assessment can take place. For more detailed information on a referral a URL is provided to the EPBC Act Public notices pages. Status and detailed planning documentation is available on the EPBC Act Public notices (http://epbcnotices.environment.gov.au/referralslist/).Post September 2019, this dataset is updated using a spatial data capture tool embedded within the Referral form on the department’s website. Users are able to supply spatial data in multiple formats, review spatial data online and submitted with the completed referral form automatically. Nightly processes update this dataset that are then available for internal staff to use (usually within 24 hours). Prior to September 2019, a manual process was employed to update this dataset. In the first instance where a proponent provides GIS data, this is loaded as the polygons for a referral. Where this doesn't exist other means to digitize boundaries are employed to provide a relatively accurate reflection of the maximum extent for which the referral may impact (it is not a development footprint). This sometimes takes the form of heads up digitizing planning documents, sourcing from other state databases (such as PSMA Australia) features and coordinates supplied through the application forms.Any variations to boundaries after the initial referral (i.e. during the assessment, approval or post-approval stages) are processed on an ad hoc basis through a manual update to the dataset. The REFERRALS_PUBLIC_MV layer is a materialized view that joins the spatial polygon data with the business data (e.g. name, case id, type etc.) about a referral. This layer is available for use by the public and is available via a web service and spatial data download. The data for the web service is updated weekly, while the data download is updated quarterly.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The Geo-Referenced Infrastructure and Demographic Data for Development (GRID3) programme is part of a bigger global initiative which aims to improve access to data for decision making in all participating countries.
The GRID3 Nigeria project works across all states in Nigeria to collect accurate, complete, and geospatially referenced data relevant to a variety of sectors.
This datasets contains both spatial and non-spatial data on various important locations in the city of Lagos.
Facebook
Twitter
According to our latest research, the global Utility GIS Data Quality Services market size reached USD 1.29 billion in 2024, with a robust growth trajectory marked by a CAGR of 10.7% from 2025 to 2033. By the end of the forecast period, the market is projected to attain a value of USD 3.13 billion by 2033. This growth is primarily driven by the increasing need for accurate spatial data, the expansion of smart grid initiatives, and the rising complexity of utility network infrastructures worldwide.
The primary growth factor propelling the Utility GIS Data Quality Services market is the surging adoption of Geographic Information Systems (GIS) for utility asset management and network optimization. Utilities are increasingly relying on GIS platforms to ensure seamless operations, improved decision-making, and regulatory compliance. However, the effectiveness of these platforms is directly linked to the quality and integrity of the underlying data. With the proliferation of IoT devices and the integration of real-time data sources, the risk of data inconsistencies and inaccuracies has risen, making robust data quality services indispensable. Utilities are investing heavily in data cleansing, validation, and enrichment to mitigate operational risks, reduce outages, and enhance customer satisfaction. This trend is expected to continue, as utilities recognize the strategic importance of data-driven operations in an increasingly digital landscape.
Another significant driver is the global movement towards smart grids and digital transformation across the utility sector. As utilities modernize their infrastructure, they are deploying advanced metering infrastructure (AMI) and integrating distributed energy resources (DERs), which generate vast volumes of spatial and non-spatial data. Ensuring the accuracy, consistency, and completeness of this data is crucial for optimizing grid performance, minimizing losses, and enabling predictive maintenance. The need for real-time analytics and advanced network management further amplifies the demand for high-quality GIS data. Additionally, regulatory mandates for accurate reporting and asset traceability are compelling utilities to prioritize data quality initiatives. These factors collectively create a fertile environment for the growth of Utility GIS Data Quality Services, as utilities strive to achieve operational excellence and regulatory compliance.
Technological advancements and the rise of cloud-based GIS solutions are also fueling market expansion. Cloud deployment offers utilities the flexibility to scale data quality services, access advanced analytics, and collaborate across geographies. This has democratized access to sophisticated GIS data quality tools, particularly for mid-sized and smaller utilities that previously faced budgetary constraints. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) in data quality solutions is enabling automated data cleansing, anomaly detection, and predictive analytics. These innovations are not only reducing manual intervention but also enhancing the accuracy and reliability of utility GIS data. As utilities continue to embrace digital transformation, the demand for cutting-edge data quality services is expected to surge, driving sustained market growth throughout the forecast period.
Utility GIS plays a pivotal role in supporting the digital transformation of the utility sector. By leveraging Geographic Information Systems, utilities can achieve a comprehensive understanding of their network infrastructures, enabling more efficient asset management and network optimization. The integration of Utility GIS with advanced data quality services ensures that utilities can maintain high standards of data accuracy and integrity, which are essential for effective decision-making and regulatory compliance. As utilities continue to modernize their operations and embrace digital technologies, the role of Utility GIS in facilitating seamless data integration and real-time analytics becomes increasingly critical. This not only enhances operational efficiency but also supports the strategic goals of sustainability and resilience in utility management.
Regionally, North America leads the Utility GIS Data Quality Services market, accounting for the largest share in 2024, followed closely by
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Cloud GIS Market size was valued at USD 890.81 Million in 2024 and is projected to reach USD 2298.38 Million by 2032, growing at a CAGR of 14.5% from 2026 to 2032.
Key Market Drivers
• Increased Adoption of Cloud Computing: Cloud computing provides scalable resources that can be adjusted based on demand, making it easier for organizations to manage and process large GIS datasets. The pay-as-you-go pricing models of cloud services reduce the need for significant upfront investments in hardware and software, making GIS more accessible to small and medium-sized enterprises.
• Growing Need for Spatial Data Integration: The ability to integrate and analyze large volumes of spatial and non-spatial data helps organizations make more informed decisions. The proliferation of Internet of Things (IoT) devices generates massive amounts of spatial data that can be processed and analyzed using Cloud GIS.
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Using the National Vegetation Classification System (NVCS) developed by Natureserve, with additional classes and modifiers, overstory vegetation communities for each park were interpreted from stereo color infrared aerial photographs using manual interpretation methods. Using a minimum mapping unit of 0.5 hectares (MMU = 0.5 ha), polygons representing areas of relatively uniform vegetation were delineated and annotated on clear plastic overlays registered to the aerial photographs. Polygons were labeled according to the dominant vegetation community. Where the polygons were not uniform, second and third vegetation classes were added. Further, a number of modifier codes were employed to indicate important aspects of the polygon that could be interpreted from the photograph (for example, burn condition). The polygons on the plastic overlays were then corrected using photogrammetric procedures and converted to vector format for use in creating a geographic information system (GIS) database for each park. In addition, high resolution color orthophotographs were created from the original aerial photographs for use in the GIS. Upon completion of the GIS database (including vegetation, orthophotos and updated roads and hydrology layers), both hardcopy and softcopy maps were produced for delivery. Metadata for each database includes a description of the vegetation classification system used for each park, summary statistics and documentation of the sources, procedures and spatial accuracies of the data. At the time of this writing, an accuracy assessment of the vegetation mapping has not been performed for most of these parks.
Facebook
Twitterhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
Spatial data for Bishket urban pollution project data on groundwater pollution
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This is a GIS of Gede, Coast, Kenya. GIS (Geographic Information System) is a digital toolset used to map, analyze, and visualize spatial data related to a site, enabling the documentation, preservation, and interpretation of archaeological features and historical environments.The information in this site description is provided for contextual purposes only and should not be regarded as a primary source.Gede is a Swahili archaeological site comprising coral stone structures, including mosques, houses, and tombs arranged within a walled town layout. Architectural features such as mihrabs, water cisterns, and decorative niches reflect Islamic influence and urban planning. Excavations have revealed trade goods and domestic artifacts, indicating participation in Indian Ocean commerce. Gede provides insights into Swahili cultural identity, religious practice, and economic networks.Gede is listed as the UNESCO World Heritage Site, 'The Historic Town and Archaeological Site of Gedi'.The Zamani Project seeks to increase awareness and knowledge of tangible cultural heritage in Africa and internationally by creating metrically accurate digital representations of historical sites. Digital spatial data of cultural heritage sites can be used for research and education, for restoration and conservation, and as a record for future generations. The Zamani Project operates as a non-profit organisation within the University of Cape Town.Special thanks to the Saville Foundation, and the Andrew W. Mellon Foundation, among others, for their contributions to the digital documentation of this heritage site.If you believe any information in this description is incorrect, please contact the repository administrators.
Facebook
TwitterThe California State Water Resources Control Board is currently in the process of improving the functionality and accessibility of information residing in their Water Quality Control Plans (aka Basin Plans). In order to achieve this, the data (i.e. statewide water quality objectives, beneficial uses, applicable TMDLs, etc.), are being transferred to a standardized digital format and linked to applicable surface water features. This dataset is limited to the beneficial uses data, while the water quality objectives, applicable TMDLs, etc. will be released at a later date. Data formats will include GIS data layers and numerous nonspatial data tables. The GIS layers contain hydrography features derived from a 2012 snapshot of the high-resolution (1:24000 scale) National Hydrography Dataset with added attribution. Nonspatial tables will contain various textual and numeric data from the Regional Basin and State Plans. The extent of the dataset covers the state of California and the non-spatial tables reflect the information and elements from the various plans used up to 2020. The GIS layers and associated attribution will enable the future integration of the various elements of the Basin Plans to ensure that all applicable Basin Plan requirements for a particular waterbody can be determined in a quick and precise manner across different modern mediums. The data are being managed and the project implemented by State and Regional Water Board staff using ESRI's ArcGIS Server and ArcSDE technology.The statewide layer is only provided as a map image layer service. The data is available as feature layer services by Regional Board extract. To view all regional board feature layer extracts go to the Basin Plan GIS Data Library Group here.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Recent baseball scholarship has drawn attention to U.S. professional baseball’s complex twentieth century labor dynamics and expanding global presence. From debates around desegregation to discussions about the sport’s increasingly multicultural identity and global presence, the cultural politics of U.S. professional baseball is connected to the problem of baseball labor. However, most scholars address these topics by focusing on Major League Baseball (MLB), ignoring other teams and leagues—Minor League Baseball (MiLB)—that develop players for Major League teams. Considering Minor League Baseball is critical to understanding the professional game in the United States, since players who populate Major League rosters constitute a fraction of U.S. professional baseball’s entire labor force. As a digital humanities dissertation on baseball labor and globalization, this project uses digital humanities approaches and tools to analyze and visualize a quantitative data set, exploring how Minor League Baseball relates to and complicates MLB-dominated narratives around globalization and diversity in U.S. professional baseball labor. This project addresses how MiLB demographics and global dimensions shifted over time, as well as how the timeline and movement of foreign-born players through the Minor Leagues differs from their U.S.-born counterparts. This project emphasizes the centrality and necessity of including MiLB data in studies of baseball’s labor and ideological significance or cultural meaning, making that argument by drawing on data analysis, visualization, and mapping to address how MiLB labor complicates or supplements existing understandings of the relationship between U.S. professional baseball’s global reach and “national pastime” claims.