Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global Normalizing Service market is experiencing robust growth, driven by increasing demand for [insert specific drivers, e.g., improved data quality, enhanced data security, rising adoption of cloud-based solutions]. The market size in 2025 is estimated at $5 billion, projecting a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033. This expansion is fueled by several key trends, including the growing adoption of [insert specific trends, e.g., big data analytics, AI-powered normalization tools, increasing regulatory compliance requirements]. While challenges remain, such as [insert specific restraints, e.g., high implementation costs, data integration complexities, lack of skilled professionals], the market's positive trajectory is expected to continue. Segmentation reveals that the [insert dominant application segment, e.g., financial services] application segment holds the largest market share, with [insert dominant type segment, e.g., cloud-based] solutions demonstrating significant growth. Regional analysis shows a strong presence across North America and Europe, particularly in the United States, United Kingdom, and Germany, driven by early adoption of advanced technologies and robust digital infrastructure. However, emerging markets in Asia-Pacific, particularly in China and India, are exhibiting significant growth potential due to expanding digitalization and increasing data volumes. The competitive landscape is characterized by a mix of established players and emerging companies, leading to innovation and market consolidation. The forecast period (2025-2033) promises continued market expansion, underpinned by technological advancements, increased regulatory pressures, and evolving business needs across diverse industries. The long-term outlook is optimistic, indicating a substantial market opportunity for companies offering innovative and cost-effective Normalizing Services.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background
The Infinium EPIC array measures the methylation status of > 850,000 CpG sites. The EPIC BeadChip uses a two-array design: Infinium Type I and Type II probes. These probe types exhibit different technical characteristics which may confound analyses. Numerous normalization and pre-processing methods have been developed to reduce probe type bias as well as other issues such as background and dye bias.
Methods
This study evaluates the performance of various normalization methods using 16 replicated samples and three metrics: absolute beta-value difference, overlap of non-replicated CpGs between replicate pairs, and effect on beta-value distributions. Additionally, we carried out Pearson’s correlation and intraclass correlation coefficient (ICC) analyses using both raw and SeSAMe 2 normalized data.
Results
The method we define as SeSAMe 2, which consists of the application of the regular SeSAMe pipeline with an additional round of QC, pOOBAH masking, was found to be the best-performing normalization method, while quantile-based methods were found to be the worst performing methods. Whole-array Pearson’s correlations were found to be high. However, in agreement with previous studies, a substantial proportion of the probes on the EPIC array showed poor reproducibility (ICC < 0.50). The majority of poor-performing probes have beta values close to either 0 or 1, and relatively low standard deviations. These results suggest that probe reliability is largely the result of limited biological variation rather than technical measurement variation. Importantly, normalizing the data with SeSAMe 2 dramatically improved ICC estimates, with the proportion of probes with ICC values > 0.50 increasing from 45.18% (raw data) to 61.35% (SeSAMe 2).
Methods
Study Participants and Samples
The whole blood samples were obtained from the Health, Well-being and Aging (Saúde, Ben-estar e Envelhecimento, SABE) study cohort. SABE is a cohort of census-withdrawn elderly from the city of São Paulo, Brazil, followed up every five years since the year 2000, with DNA first collected in 2010. Samples from 24 elderly adults were collected at two time points for a total of 48 samples. The first time point is the 2010 collection wave, performed from 2010 to 2012, and the second time point was set in 2020 in a COVID-19 monitoring project (9±0.71 years apart). The 24 individuals were 67.41±5.52 years of age (mean ± standard deviation) at time point one; and 76.41±6.17 at time point two and comprised 13 men and 11 women.
All individuals enrolled in the SABE cohort provided written consent, and the ethic protocols were approved by local and national institutional review boards COEP/FSP/USP OF.COEP/23/10, CONEP 2044/2014, CEP HIAE 1263-10, University of Toronto RIS 39685.
Blood Collection and Processing
Genomic DNA was extracted from whole peripheral blood samples collected in EDTA tubes. DNA extraction and purification followed manufacturer’s recommended protocols, using Qiagen AutoPure LS kit with Gentra automated extraction (first time point) or manual extraction (second time point), due to discontinuation of the equipment but using the same commercial reagents. DNA was quantified using Nanodrop spectrometer and diluted to 50ng/uL. To assess the reproducibility of the EPIC array, we also obtained technical replicates for 16 out of the 48 samples, for a total of 64 samples submitted for further analyses. Whole Genome Sequencing data is also available for the samples described above.
Characterization of DNA Methylation using the EPIC array
Approximately 1,000ng of human genomic DNA was used for bisulphite conversion. Methylation status was evaluated using the MethylationEPIC array at The Centre for Applied Genomics (TCAG, Hospital for Sick Children, Toronto, Ontario, Canada), following protocols recommended by Illumina (San Diego, California, USA).
Processing and Analysis of DNA Methylation Data
The R/Bioconductor packages Meffil (version 1.1.0), RnBeads (version 2.6.0), minfi (version 1.34.0) and wateRmelon (version 1.32.0) were used to import, process and perform quality control (QC) analyses on the methylation data. Starting with the 64 samples, we first used Meffil to infer the sex of the 64 samples and compared the inferred sex to reported sex. Utilizing the 59 SNP probes that are available as part of the EPIC array, we calculated concordance between the methylation intensities of the samples and the corresponding genotype calls extracted from their WGS data. We then performed comprehensive sample-level and probe-level QC using the RnBeads QC pipeline. Specifically, we (1) removed probes if their target sequences overlap with a SNP at any base, (2) removed known cross-reactive probes (3) used the iterative Greedycut algorithm to filter out samples and probes, using a detection p-value threshold of 0.01 and (4) removed probes if more than 5% of the samples having a missing value. Since RnBeads does not have a function to perform probe filtering based on bead number, we used the wateRmelon package to extract bead numbers from the IDAT files and calculated the proportion of samples with bead number < 3. Probes with more than 5% of samples having low bead number (< 3) were removed. For the comparison of normalization methods, we also computed detection p-values using out-of-band probes empirical distribution with the pOOBAH() function in the SeSAMe (version 1.14.2) R package, with a p-value threshold of 0.05, and the combine.neg parameter set to TRUE. In the scenario where pOOBAH filtering was carried out, it was done in parallel with the previously mentioned QC steps, and the resulting probes flagged in both analyses were combined and removed from the data.
Normalization Methods Evaluated
The normalization methods compared in this study were implemented using different R/Bioconductor packages and are summarized in Figure 1. All data was read into R workspace as RG Channel Sets using minfi’s read.metharray.exp() function. One sample that was flagged during QC was removed, and further normalization steps were carried out in the remaining set of 63 samples. Prior to all normalizations with minfi, probes that did not pass QC were removed. Noob, SWAN, Quantile, Funnorm and Illumina normalizations were implemented using minfi. BMIQ normalization was implemented with ChAMP (version 2.26.0), using as input Raw data produced by minfi’s preprocessRaw() function. In the combination of Noob with BMIQ (Noob+BMIQ), BMIQ normalization was carried out using as input minfi’s Noob normalized data. Noob normalization was also implemented with SeSAMe, using a nonlinear dye bias correction. For SeSAMe normalization, two scenarios were tested. For both, the inputs were unmasked SigDF Sets converted from minfi’s RG Channel Sets. In the first, which we call “SeSAMe 1”, SeSAMe’s pOOBAH masking was not executed, and the only probes filtered out of the dataset prior to normalization were the ones that did not pass QC in the previous analyses. In the second scenario, which we call “SeSAMe 2”, pOOBAH masking was carried out in the unfiltered dataset, and masked probes were removed. This removal was followed by further removal of probes that did not pass previous QC, and that had not been removed by pOOBAH. Therefore, SeSAMe 2 has two rounds of probe removal. Noob normalization with nonlinear dye bias correction was then carried out in the filtered dataset. Methods were then compared by subsetting the 16 replicated samples and evaluating the effects that the different normalization methods had in the absolute difference of beta values (|β|) between replicated samples.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reverse transcription and real-time PCR (RT-qPCR) has been widely used for rapid quantification of relative gene expression. To offset technical confounding variations, stably-expressed internal reference genes are measured simultaneously along with target genes for data normalization. Statistic methods have been developed for reference validation; however normalization of RT-qPCR data still remains arbitrary due to pre-experimental determination of particular reference genes. To establish a method for determination of the most stable normalizing factor (NF) across samples for robust data normalization, we measured the expression of 20 candidate reference genes and 7 target genes in 15 Drosophila head cDNA samples using RT-qPCR. The 20 reference genes exhibit sample-specific variation in their expression stability. Unexpectedly the NF variation across samples does not exhibit a continuous decrease with pairwise inclusion of more reference genes, suggesting that either too few or too many reference genes may detriment the robustness of data normalization. The optimal number of reference genes predicted by the minimal and most stable NF variation differs greatly from 1 to more than 10 based on particular sample sets. We also found that GstD1, InR and Hsp70 expression exhibits an age-dependent increase in fly heads; however their relative expression levels are significantly affected by NF using different numbers of reference genes. Due to highly dependent on actual data, RT-qPCR reference genes thus have to be validated and selected at post-experimental data analysis stage rather than by pre-experimental determination.
Facebook
TwitterMetagenomic time-course studies provide valuable insights into the dynamics of microbial systems and have become increasingly popular alongside the reduction in costs of next-generation sequencing technologies. Normalization is a common but critical preprocessing step before proceeding with downstream analysis. To the best of our knowledge, currently there is no reported method to appropriately normalize microbial time-series data. We propose TimeNorm, a novel normalization method that considers the compositional property and time dependency in time-course microbiome data. It is the first method designed for normalizing time-series data within the same time point (intra-time normalization) and across time points (bridge normalization), separately. Intra-time normalization normalizes microbial samples under the same condition based on common dominant features. Bridge normalization detects and utilizes a group of most stable features across two adjacent time points for normalization. Through comprehensive simulation studies and application to a real study, we demonstrate that TimeNorm outperforms existing normalization methods and boosts the power of downstream differential abundance analysis.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming Normalizing Service market! Explore a detailed analysis revealing a $5 billion market in 2025 projected to reach $15 billion by 2033, driven by big data, cloud computing, and regulatory compliance. Learn about key trends, regional breakdowns, and leading companies.
Facebook
TwitterBackground Affymetrix oligonucleotide arrays simultaneously measure the abundances of thousands of mRNAs in biological samples. Comparability of array results is necessary for the creation of large-scale gene expression databases. The standard strategy for normalizing oligonucleotide array readouts has practical drawbacks. We describe alternative normalization procedures for oligonucleotide arrays based on a common pool of known biotin-labeled cRNAs spiked into each hybridization. Results We first explore the conditions for validity of the 'constant mean assumption', the key assumption underlying current normalization methods. We introduce 'frequency normalization', a 'spike-in'-based normalization method which estimates array sensitivity, reduces background noise and allows comparison between array designs. This approach does not rely on the constant mean assumption and so can be effective in conditions where standard procedures fail. We also define 'scaled frequency', a hybrid normalization method relying on both spiked transcripts and the constant mean assumption while maintaining all other advantages of frequency normalization. We compare these two procedures to a standard global normalization method using experimental data. We also use simulated data to estimate accuracy and investigate the effects of noise. We find that scaled frequency is as reproducible and accurate as global normalization while offering several practical advantages. Conclusions Scaled frequency quantitation is a convenient, reproducible technique that performs as well as global normalization on serial experiments with the same array design, while offering several additional features. Specifically, the scaled-frequency method enables the comparison of expression measurements across different array designs, yields estimates of absolute message abundance in cRNA and determines the sensitivity of individual arrays.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reference genes used in normalizing qRT-PCR data are critical for the accuracy of gene expression analysis. However, many traditional reference genes used in zebrafish early development are not appropriate because of their variable expression levels during embryogenesis. In the present study, we used our previous RNA-Seq dataset to identify novel reference genes suitable for gene expression analysis during zebrafish early developmental stages. We first selected 197 most stably expressed genes from an RNA-Seq dataset (29,291 genes in total), according to the ratio of their maximum to minimum RPKM values. Among the 197 genes, 4 genes with moderate expression levels and the least variation throughout 9 developmental stages were identified as candidate reference genes. Using four independent statistical algorithms (delta-CT, geNorm, BestKeeper and NormFinder), the stability of qRT-PCR expression of these candidates was then evaluated and compared to that of actb1 and actb2, two commonly used zebrafish reference genes. Stability rankings showed that two genes, namely mobk13 (mob4) and lsm12b, were more stable than actb1 and actb2 in most cases. To further test the suitability of mobk13 and lsm12b as novel reference genes, they were used to normalize three well-studied target genes. The results showed that mobk13 and lsm12b were more suitable than actb1 and actb2 with respect to zebrafish early development. We recommend mobk13 and lsm12b as new optimal reference genes for zebrafish qRT-PCR analysis during embryogenesis and early larval stages.
Facebook
TwitterAs economic conditions in the United States continue to improve, the FOMC may consider normalizing monetary policy. Whether the FOMC reduces the balance sheet before raising the federal funds rate (or vice versa) may affect the shape of the yield curve, with consequences for financial institutions. Drawing lessons from the previous normalization in 2015–19, we conclude that normalizing the balance sheet before raising the funds rate might forestall yield curve inversion and, in turn, support economic stability.
Facebook
Twitter
According to our latest research, the global Security Data Normalization Platform market size reached USD 1.87 billion in 2024, driven by the rapid escalation of cyber threats and the growing complexity of enterprise security infrastructures. The market is expected to grow at a robust CAGR of 12.5% during the forecast period, reaching an estimated USD 5.42 billion by 2033. Growth is primarily fueled by the increasing adoption of advanced threat intelligence solutions, regulatory compliance demands, and the proliferation of connected devices across various industries.
The primary growth factor for the Security Data Normalization Platform market is the exponential rise in cyberattacks and security breaches across all sectors. Organizations are increasingly realizing the importance of normalizing diverse security data sources to enable efficient threat detection, incident response, and compliance management. As security environments become more complex with the integration of cloud, IoT, and hybrid infrastructures, the need for platforms that can aggregate, standardize, and correlate data from disparate sources has become paramount. This trend is particularly pronounced in sectors such as BFSI, healthcare, and government, where data sensitivity and regulatory requirements are highest. The growing sophistication of cyber threats has compelled organizations to invest in robust security data normalization platforms to ensure comprehensive visibility and proactive risk mitigation.
Another significant driver is the evolving regulatory landscape, which mandates stringent data protection and reporting standards. Regulations such as the General Data Protection Regulation (GDPR), Health Insurance Portability and Accountability Act (HIPAA), and various national cybersecurity frameworks have compelled organizations to enhance their security postures. Security data normalization platforms play a crucial role in facilitating compliance by providing unified and actionable insights from heterogeneous data sources. These platforms enable organizations to automate compliance reporting, streamline audit processes, and reduce the risk of penalties associated with non-compliance. The increasing focus on regulatory alignment is pushing both large enterprises and SMEs to adopt advanced normalization solutions as part of their broader security strategies.
The proliferation of digital transformation initiatives and the accelerated adoption of cloud-based solutions are further propelling market growth. As organizations migrate critical workloads to the cloud and embrace remote work models, the volume and variety of security data have surged dramatically. This shift has created new challenges in terms of data integration, normalization, and real-time analysis. Security data normalization platforms equipped with advanced analytics and machine learning capabilities are becoming indispensable for managing the scale and complexity of modern security environments. Vendors are responding to this demand by offering scalable, cloud-native solutions that can seamlessly integrate with existing security information and event management (SIEM) systems, threat intelligence platforms, and incident response tools.
From a regional perspective, North America continues to dominate the Security Data Normalization Platform market, accounting for the largest revenue share in 2024. The region’s leadership is attributed to the high concentration of technology-driven enterprises, robust cybersecurity regulations, and significant investments in advanced security infrastructure. Europe and Asia Pacific are also witnessing strong growth, driven by increasing digitalization, rising threat landscapes, and the adoption of stringent data protection laws. Emerging markets in Latin America and the Middle East & Africa are gradually catching up, supported by growing awareness of cybersecurity challenges and the need for standardized security data management solutions.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Simple normalization of the data provided by the CSSE daily reports on github. Preparations I made: - Normalizing the Timestamp (since they provide four different formats) - Pruning the column labels (Region/Country => Region_Country, etc) - Adding a country code column
Photo by CDC on Unsplash
Facebook
Twitter
According to our latest research, the global Building Telemetry Normalization market size reached USD 2.59 billion in 2024, reflecting the growing adoption of intelligent building management solutions worldwide. The market is experiencing robust expansion with a recorded CAGR of 13.2% from 2025 through 2033, and is forecasted to reach an impressive USD 7.93 billion by 2033. This strong growth trajectory is driven by increasing demand for energy-efficient infrastructure, the proliferation of smart city initiatives, and the need for seamless integration of building systems to enhance operational efficiency and sustainability.
One of the primary growth factors for the Building Telemetry Normalization market is the accelerating shift towards smart building ecosystems. As commercial, industrial, and residential structures become more interconnected, the volume and diversity of telemetry data generated by various building systems—such as HVAC, lighting, security, and energy management—have surged. Organizations are recognizing the value of normalizing this data to enable unified analytics, real-time monitoring, and automated decision-making. The need for interoperability among heterogeneous devices and platforms is compelling property owners and facility managers to invest in advanced telemetry normalization solutions, which streamline data collection, enhance system compatibility, and support predictive maintenance strategies.
Another significant driver is the increasing emphasis on sustainability and regulatory compliance. Governments and industry bodies worldwide are introducing stringent mandates for energy efficiency, carbon emission reduction, and occupant safety in built environments. Building telemetry normalization plays a crucial role in helping stakeholders aggregate, standardize, and analyze data from disparate sources, thereby enabling them to monitor compliance, optimize resource consumption, and generate actionable insights for green building certifications. The trend towards net-zero energy buildings and the integration of renewable energy sources is further propelling the adoption of telemetry normalization platforms, as they facilitate seamless data exchange and holistic performance benchmarking.
The rapid advancement of digital technologies, including IoT, edge computing, and artificial intelligence, is also transforming the landscape of the Building Telemetry Normalization market. Modern buildings are increasingly equipped with a multitude of connected sensors, controllers, and actuators, generating vast amounts of telemetry data. The normalization of this data is essential for unlocking its full potential, enabling advanced analytics, anomaly detection, and automated system optimization. The proliferation of cloud-based solutions and scalable architectures is making telemetry normalization more accessible and cost-effective, even for small and medium-sized enterprises. As a result, the market is witnessing heightened competition and innovation, with vendors focusing on user-friendly interfaces, robust security features, and seamless integration capabilities.
From a regional perspective, North America currently leads the Building Telemetry Normalization market, driven by widespread adoption of smart building technologies, substantial investments in infrastructure modernization, and a strong focus on sustainability. Europe follows closely, benefiting from progressive energy efficiency regulations and a mature building automation ecosystem. The Asia Pacific region is emerging as the fastest-growing market, fueled by rapid urbanization, government-led smart city projects, and increasing awareness of the benefits of intelligent building management. Latin America and the Middle East & Africa are also witnessing steady growth, supported by ongoing infrastructure development and rising demand for efficient facility operations.
The Component segment of the Building Telemetry Normalization market is categorized into software, hard
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States MCT Inflation: Normalized data was reported at 1.190 % in Mar 2025. This records an increase from the previous number of 1.080 % for Feb 2025. United States MCT Inflation: Normalized data is updated monthly, averaging 0.600 % from Jan 1960 (Median) to Mar 2025, with 783 observations. The data reached an all-time high of 9.310 % in Jul 1974 and a record low of -1.050 % in Aug 1962. United States MCT Inflation: Normalized data remains active status in CEIC and is reported by Federal Reserve Bank of New York. The data is categorized under Global Database’s United States – Table US.I027: Multivariate Core Trend Inflation.
Facebook
TwitterVideo on normalizing microbiome data from the Research Experiences in Microbiomes Network
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Equipment Runtime Normalization Analytics market size reached USD 2.31 billion in 2024, demonstrating robust momentum across diverse industrial sectors. The market is expected to grow at a CAGR of 12.8% from 2025 to 2033, reaching a forecasted value of USD 6.88 billion by 2033. This remarkable growth is primarily driven by the increasing adoption of industrial automation, the proliferation of IoT-enabled equipment, and the rising need for predictive maintenance and operational efficiency across manufacturing, energy, and other critical industries.
A key growth factor for the Equipment Runtime Normalization Analytics market is the accelerating pace of digital transformation within asset-intensive industries. As organizations strive to maximize the productivity and lifespan of their machinery, there is a growing emphasis on leveraging advanced analytics to normalize equipment runtime data across heterogeneous fleets and varying operational contexts. The integration of AI and machine learning algorithms enables enterprises to standardize runtime metrics, providing a unified view of equipment performance regardless of manufacturer, model, or deployment environment. This normalization is crucial for benchmarking, identifying inefficiencies, and implementing data-driven maintenance strategies that reduce unplanned downtime and optimize resource allocation.
Another significant driver is the rise of Industry 4.0 and the increasing connectivity of industrial assets through IoT sensors and cloud-based platforms. These technological advancements have generated an unprecedented volume of equipment performance data, necessitating sophisticated analytics solutions capable of normalizing and interpreting runtime information at scale. Equipment Runtime Normalization Analytics platforms facilitate seamless data aggregation from disparate sources, allowing organizations to derive actionable insights that enhance operational agility and competitiveness. Additionally, the shift towards outcome-based service models in sectors such as manufacturing, energy, and transportation is fueling demand for analytics that can accurately measure and compare equipment utilization, efficiency, and reliability across diverse operational scenarios.
The growing focus on sustainability and regulatory compliance is also propelling the adoption of Equipment Runtime Normalization Analytics. As governments and industry bodies impose stricter standards on energy consumption, emissions, and equipment maintenance, enterprises are increasingly turning to analytics tools that can provide standardized, auditable reports on equipment runtime and performance. These solutions not only help organizations meet compliance requirements but also support sustainability initiatives by identifying opportunities to reduce energy consumption, minimize waste, and extend equipment lifecycles. The convergence of these market forces is expected to sustain strong demand for Equipment Runtime Normalization Analytics solutions in the years ahead.
Regionally, North America currently leads the market, accounting for the largest share in 2024, followed closely by Europe and Asia Pacific. The dominance of North America can be attributed to the early adoption of industrial IoT, advanced analytics, and a mature manufacturing base. Europe’s strong emphasis on sustainability and regulatory compliance further drives adoption, while Asia Pacific is emerging as a high-growth region due to rapid industrialization, government initiatives to modernize manufacturing, and increasing investments in smart factory technologies. Latin America and the Middle East & Africa are also witnessing steady growth, supported by expanding industrial infrastructure and the increasing penetration of digital technologies.
The Component segment of the Equipment Runtime Normalization Analytics market is categorized into Software, Hardware, and Services. Software solutions form the backbone of this market, comprising advanced analytics platforms, AI-driven data processing engines, and visualization tools that enable users to normalize and interpret equipment runtime data. These software offerings are designed to aggregate data from multiple sources, apply normalization algorithms, and generate actionable insights for operational decision-making. The demand for robust
Facebook
TwitterAnalysis of bulk RNA sequencing (RNA-Seq) data is a valuable tool to understand transcription at the genome scale. Targeted sequencing of RNA has emerged as a practical means of assessing the majority of the transcriptomic space with less reliance on large resources for consumables and bioinformatics. TempO-Seq is a templated, multiplexed RNA-Seq platform that interrogates a panel of sentinel genes representative of genome-wide transcription. Nuances of the technology require proper preprocessing of the data. Various methods have been proposed and compared for normalizing bulk RNA-Seq data, but there has been little to no investigation of how the methods perform on TempO-Seq data. We simulated count data into two groups (treated vs. untreated) at seven-fold change (FC) levels (including no change) using control samples from human HepaRG cells run on TempO-Seq and normalized the data using seven normalization methods. Upper Quartile (UQ) performed the best with regard to maintaining FC levels as detected by a limma contrast between treated vs. untreated groups. For all FC levels, specificity of the UQ normalization was greater than 0.84 and sensitivity greater than 0.90 except for the no change and +1.5 levels. Furthermore, K-means clustering of the simulated genes normalized by UQ agreed the most with the FC assignments [adjusted Rand index (ARI) = 0.67]. Despite having an assumption of the majority of genes being unchanged, the DESeq2 scaling factors normalization method performed reasonably well as did simple normalization procedures counts per million (CPM) and total counts (TCs). These results suggest that for two class comparisons of TempO-Seq data, UQ, CPM, TC, or DESeq2 normalization should provide reasonably reliable results at absolute FC levels ≥2.0. These findings will help guide researchers to normalize TempO-Seq gene expression data for more reliable results.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global ECU Log Normalization Pipelines market size reached USD 1.16 billion in 2024, reflecting robust demand for advanced automotive data management solutions. The market is set to expand at a CAGR of 10.7% from 2025 to 2033, positioning the industry to achieve a value of USD 2.75 billion by 2033. This growth is primarily driven by the rising complexity of vehicle electronics, the proliferation of connected vehicles, and the urgent need for standardized data processing to support diagnostics, predictive maintenance, and cybersecurity across the automotive value chain.
The rapid evolution of automotive technologies has significantly amplified the complexity and volume of data generated by Electronic Control Units (ECUs) in modern vehicles. As automotive manufacturers integrate more sophisticated systems, including advanced driver-assistance systems (ADAS) and infotainment platforms, the need for robust log normalization pipelines has become paramount. These pipelines ensure that data from diverse ECUs is collected, processed, and standardized effectively, enabling seamless analytics and actionable insights. The increasing adoption of connected vehicles and the push towards autonomous driving further fuel the demand for advanced log normalization solutions, as these technologies rely heavily on the continuous flow and accurate interpretation of ECU data to function safely and efficiently.
Another key growth driver is the automotive industry’s heightened focus on predictive maintenance and real-time diagnostics. Fleet operators and OEMs are increasingly leveraging ECU log data to anticipate component failures, optimize maintenance schedules, and minimize vehicle downtime. By normalizing and analyzing ECU logs, stakeholders can detect anomalies early, improve vehicle reliability, and reduce operational costs. This proactive approach is gaining traction in both passenger and commercial vehicle segments, particularly as fleets become larger and more geographically dispersed. The ability to harness normalized ECU data for predictive analytics not only enhances operational efficiency but also supports compliance with evolving safety and emission regulations worldwide.
Cybersecurity concerns are also propelling the growth of the ECU Log Normalization Pipelines market. As vehicles become more connected, they are exposed to a broader array of cyber threats targeting their electronic systems. Normalizing ECU logs is crucial for identifying suspicious patterns, detecting intrusions, and implementing timely countermeasures. Automotive OEMs and fleet operators are investing heavily in log normalization infrastructure to safeguard vehicle integrity and protect sensitive data. The integration of cybersecurity features within these pipelines is becoming a standard requirement, especially in regions with stringent data protection and vehicle safety regulations. This trend is expected to intensify as cyber threats evolve and regulatory bodies mandate stricter compliance.
From a regional perspective, Asia Pacific is emerging as the dominant market for ECU Log Normalization Pipelines, driven by the rapid expansion of the automotive sector in countries like China, Japan, and India. The region’s large-scale vehicle production, increasing adoption of connected and electric vehicles, and government initiatives promoting automotive innovation are fueling demand for advanced data management solutions. North America and Europe also represent significant markets, characterized by high levels of technological adoption, established automotive infrastructure, and a strong focus on vehicle safety and cybersecurity. Meanwhile, Latin America and the Middle East & Africa are witnessing steady growth, supported by ongoing investments in automotive modernization and digital transformation.
The ECU Log Normalization Pipelines market by component is segmented into software, hardware, and services, each playing a critical role in enabling seamless data normalization and analytics. Software solutions form the backbone of this market, encompassing log collection, parsing, transformation, and integration tools that standardize data from disparate ECUs. As vehicles become more technologically advanced, the demand for sophisticated software capable of handling diverse data formats and supporting real-time analytics continues to rise. Vendors are investing in t
Facebook
Twitter
According to our latest research, the global EV Charging Data Normalization Middleware market size reached USD 1.12 billion in 2024, reflecting a strong surge in adoption across the electric vehicle ecosystem. The market is projected to expand at a robust CAGR of 18.7% from 2025 to 2033, reaching a forecasted size of USD 5.88 billion by 2033. This remarkable growth is primarily driven by the exponential increase in electric vehicle (EV) adoption, the proliferation of charging infrastructure, and the need for seamless interoperability and data integration across disparate charging networks and platforms.
One of the primary growth factors fueling the EV Charging Data Normalization Middleware market is the rapid expansion of EV charging networks, both public and private, on a global scale. As governments and private entities accelerate investments in EV infrastructure to meet ambitious decarbonization and electrification goals, the resulting diversity of hardware, software, and communication protocols creates a fragmented ecosystem. Middleware solutions play a crucial role in standardizing and normalizing data from these heterogeneous sources, enabling unified management, real-time analytics, and efficient billing processes. The demand for robust data normalization is further amplified by the increasing complexity of charging scenarios, such as dynamic pricing, vehicle-to-grid (V2G) integration, and multi-operator roaming, all of which require seamless data interoperability.
Another significant driver is the rising emphasis on data-driven decision-making and predictive analytics within the EV charging sector. Stakeholders, including automotive OEMs, charging network operators, and energy providers, are leveraging normalized data to optimize charging station utilization, forecast energy demand, and enhance customer experiences. With the proliferation of IoT-enabled charging stations and smart grid initiatives, the volume and variety of data generated have grown exponentially. Middleware platforms equipped with advanced data normalization capabilities are essential for aggregating, cleansing, and harmonizing this data, thereby unlocking actionable insights and supporting the development of innovative value-added services. This trend is expected to further intensify as the industry moves towards integrated energy management and smart city initiatives.
The regulatory landscape is also playing a pivotal role in shaping the EV Charging Data Normalization Middleware market. Governments across regions are introducing mandates for open data standards, interoperability, and secure data exchange to foster competition, enhance consumer choice, and ensure grid stability. These regulatory requirements are compelling market participants to adopt middleware solutions that facilitate compliance and enable seamless integration with national and regional charging infrastructure registries. Furthermore, the emergence of industry consortia and standardization bodies is accelerating the development and adoption of common data models and APIs, further boosting the demand for middleware platforms that can adapt to evolving standards and regulatory frameworks.
Regionally, Europe and North America are at the forefront of market adoption, driven by mature EV markets, supportive policy frameworks, and advanced digital infrastructure. However, Asia Pacific is emerging as the fastest-growing region, propelled by aggressive electrification targets, large-scale urbanization, and significant investments in smart mobility solutions. Latin America and the Middle East & Africa, while currently at a nascent stage, are expected to witness accelerated growth as governments and private players ramp up efforts to expand EV charging networks and embrace digital transformation. The interplay of these regional dynamics is shaping a highly competitive and innovation-driven global market landscape.
The Component segment of the EV C
Facebook
TwitterSichkar V. N. Effect of various dimension convolutional layer filters on traffic sign classification accuracy. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 3, pp. DOI: 10.17586/2226-1494-2019-19-3-546-552 (Full-text available here ResearchGate.net/profile/Valentyn_Sichkar)
Test online with custom Traffic Sign here: https://valentynsichkar.name/mnist.html
Design, Train & Test deep CNN for Image Classification. Join the course & enjoy new opportunities to get deep learning skills: https://www.udemy.com/course/convolutional-neural-networks-for-image-classification/
https://github.com/sichkar-valentyn/1-million-images-for-Traffic-Signs-Classification-tasks/blob/main/images/slideshow_classification.gif?raw=true%20=470x516" alt="CNN Course" title="CNN Course">
https://github.com/sichkar-valentyn/1-million-images-for-Traffic-Signs-Classification-tasks/blob/main/images/concept_map.png?raw=true%20=570x410" alt="Concept map" title="Concept map">
https://www.udemy.com/course/convolutional-neural-networks-for-image-classification/
This is ready to use preprocessed data saved into pickle file.
Preprocessing stages are as follows:
- Normalizing whole data by dividing / 255.0.
- Dividing whole data into three datasets: train, validation and test.
- Normalizing whole data by subtracting mean image and dividing by standard deviation.
- Transposing every dataset to make channels come first.
mean image and standard deviation were calculated from train dataset and applied to all datasets.
When using user's image for classification, it has to be preprocessed firstly in the same way: normalized, subtracted with mean image and divided by standard deviation.
Data written as dictionary with following keys:
x_train: (59000, 1, 28, 28)
y_train: (59000,)
x_validation: (1000, 1, 28, 28)
y_validation: (1000,)
x_test: (1000, 1, 28, 28)
y_test: (1000,)
Contains pretrained weights model_params_ConvNet1.pickle for the model with following architecture:
Input --> Conv --> ReLU --> Pool --> Affine --> ReLU --> Affine --> Softmax
Parameters:
Pool is 2 and height = width = 2.
Architecture also can be understood as follows:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3400968%2Fc23041248e82134b7d43ed94307b720e%2FModel_1_Architecture_MNIST.png?generation=1563654250901965&alt=media" alt="">
Initial data is MNIST that was collected by Yann LeCun, Corinna Cortes, Christopher J.C. Burges.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the Normalizing Service market was valued at USD XXX million in 2023 and is projected to reach USD XXX million by 2032, with an expected CAGR of XX% during the forecast period.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global Normalizing Service market is experiencing robust growth, driven by increasing demand for [insert specific drivers, e.g., improved data quality, enhanced data security, rising adoption of cloud-based solutions]. The market size in 2025 is estimated at $5 billion, projecting a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033. This expansion is fueled by several key trends, including the growing adoption of [insert specific trends, e.g., big data analytics, AI-powered normalization tools, increasing regulatory compliance requirements]. While challenges remain, such as [insert specific restraints, e.g., high implementation costs, data integration complexities, lack of skilled professionals], the market's positive trajectory is expected to continue. Segmentation reveals that the [insert dominant application segment, e.g., financial services] application segment holds the largest market share, with [insert dominant type segment, e.g., cloud-based] solutions demonstrating significant growth. Regional analysis shows a strong presence across North America and Europe, particularly in the United States, United Kingdom, and Germany, driven by early adoption of advanced technologies and robust digital infrastructure. However, emerging markets in Asia-Pacific, particularly in China and India, are exhibiting significant growth potential due to expanding digitalization and increasing data volumes. The competitive landscape is characterized by a mix of established players and emerging companies, leading to innovation and market consolidation. The forecast period (2025-2033) promises continued market expansion, underpinned by technological advancements, increased regulatory pressures, and evolving business needs across diverse industries. The long-term outlook is optimistic, indicating a substantial market opportunity for companies offering innovative and cost-effective Normalizing Services.