4 datasets found
  1. c

    Housing Affordability

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Housing Affordability [Dataset]. https://data.ccrpc.org/dataset/housing-affordability
    Explore at:
    csv(2343)Available download formats
    Dataset updated
    Oct 17, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]

    How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.

    The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.

    Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.

    Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.

    [1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.

    [2] Ibid.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  2. HUD Housing Affordability Data System

    • datalumos.org
    Updated Feb 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Housing and Urban Development (2025). HUD Housing Affordability Data System [Dataset]. http://doi.org/10.3886/E218582V1
    Explore at:
    Dataset updated
    Feb 9, 2025
    Dataset authored and provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Housing Affordability Data System (HADS) is a set of files derived from the 1985 and later national American Housing Survey (AHS) and the 2002 and later Metro AHS. This system categorizes housing units by affordability and households by income, with respect to the Adjusted Median Income, Fair Market Rent (FMR), and poverty income. It also includes housing cost burden for owner and renter households. These files have been the basis for the worst case needs tables since 2001. The data files are available for public use, since they were derived from AHS public use files and the published income limits and FMRs. We are providing these files give the community of housing analysts the opportunity to use a consistent set of affordability measures.This data set appears to not be upated after 2013

  3. a

    Los Angeles Index of Displacement Pressure

    • citysurvey-lacs.opendata.arcgis.com
    • visionzero.geohub.lacity.org
    • +3more
    Updated Oct 13, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataLA (2016). Los Angeles Index of Displacement Pressure [Dataset]. https://citysurvey-lacs.opendata.arcgis.com/datasets/70ed646893f642ddbca858c381471fa2
    Explore at:
    Dataset updated
    Oct 13, 2016
    Dataset authored and provided by
    DataLA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Los Angeles Index of Displacement PressureThe Los Angeles Index of Displacement Pressure combines measures that past research efforts and our own original research have shown correlate with future change and displacement pressure. Created in 2015/2016, the index primarily uses data from 2012-2015.These seven measures are applied at the Census Tract level for tracts where >=40% of households earn less than the City's median income. The measures are grouped into two classes: change factors and displacement pressure factors.Change factor measures are those that suggest future revitalization is likely due to investment, projected housing price gains, and proximity to recently changed areas. On the other hand, displacement pressure factors capture areas with a high concentration of existing residents who may have difficulty absorbing massive rent increases that often accompany revitalization. The Los Angeles Index of Displacement Pressure captures the intersection between these two classes.Change Measures Transportation InvestmentMeasure 1: Distance to current rail stations (within a 1/2 mile radius. Tracts beyond 1/2 mile receive no score for this measure). Source: LA MetroMeasure 2: Distance to rail stations under construction/recently opened in 2016 (within a 1/2 mile radius. Tracts beyond 1/2 mile receive no score for this measure)Source: LA Metro Proximity to Rapidly Changing NeighborhoodsMeasure 3: Distance to the closest "top tier" changing neighborhood, as defined by the Los Angeles Index of Neighborhood Change (within a 1 mile radius. Tracts beyond 1 mile receive no score for this measure)Source: The Los Angeles Index of Neighborhood Change Housing MarketMeasure 4: Change in housing price projections from 2015 to 2020 Source: ESRI Community Analyst Displacement Pressure FactorsMeasure 5: Percent of households that rentSource: American Community Survey, Five-Year Estimate, 2014Measure 6: Percent of households that are extremely rent burdened (pay >=50% of household income on rent)Source: American Community Survey, Five-Year Estimate, 2014Measure 7: The number of affordable properties and housing units that are due to expire by 2023.Source: The Los Angeles Housing Element, 2012Date updated: April 7, 2018Refresh rate: Never - Historical data

  4. a

    Equity Priority Communities - Plan Bay Area 2050 Plus (ACS 2014-2018)

    • hub.arcgis.com
    • opendata.mtc.ca.gov
    • +1more
    Updated Jan 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2025). Equity Priority Communities - Plan Bay Area 2050 Plus (ACS 2014-2018) [Dataset]. https://hub.arcgis.com/datasets/31efca681f7f4774bb398ac7a794bf8d
    Explore at:
    Dataset updated
    Jan 17, 2025
    Dataset authored and provided by
    MTC/ABAG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This data set represents American Community Survey (ACS) 2014-2018 tract information related to Equity Priority Communities (EPCs) for Plan Bay Area 2050+.The Plan Bay Area 2050+ Equity Priority Communities incorporate EPCs identified with 2014-2018 ACS data, as well as EPCs identified with 2018-2022 ACS data into a single consolidated map of Plan Bay Area 2050+ Equity Priority Communities.This data set was developed using American Community Survey 2014-2018 data for eight variables considered.This data set represents all tracts within the San Francisco Bay Region, and contains attributes for the eight Metropolitan Transportation Commission (MTC) Equity Priority Communities tract-level variables for exploratory purposes. Equity Priority Communities are defined by MTC Resolution No. 4217-Equity Framework for Plan Bay Area 2040.As part of the development of the [DRAFT] Equity Priority Communities - Plan Bay Area 2050+ features, the source Census tracts had portions that overlapped either the Pacific Ocean or San Francisco Bay removed. The result is this feature set has fewer Census tracts than the unclipped tract source data.Plan Bay Area 2050+ Equity Priority Communities (tract geography) are based on eight ACS 2014-2018 (ACS 2018) tract-level variables:People of Color (70% threshold)Low-Income (less than 200% of Federal poverty level, 28% threshold)Level of English Proficiency (12% threshold)Seniors 75 Years and Over (8% threshold)Zero-Vehicle Households (15% threshold)Single-Parent Households (18% threshold)People with a Disability (12% threshold)Rent-Burdened Households (14% threshold)If a tract exceeds both threshold values for Low-Income and People of Color shares OR exceeds the threshold value for Low-Income AND also exceeds the threshold values for three or more variables, it is a EPC.Detailed documentation on the production of this feature set can be found in the MTC Equity Priority Communities project documentation.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Champaign County Regional Planning Commission (2024). Housing Affordability [Dataset]. https://data.ccrpc.org/dataset/housing-affordability

Housing Affordability

Explore at:
csv(2343)Available download formats
Dataset updated
Oct 17, 2024
Dataset provided by
Champaign County Regional Planning Commission
Description

The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]

How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.

The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.

Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.

Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.

[1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.

[2] Ibid.

Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).

Search
Clear search
Close search
Google apps
Main menu